

ON THE OPTIMAL EFFICIENCY OF A* WITH DOMINANCE PRUNING ÁLVARO TORRALBA

MOTIVATION

- A^{*} is the canonical choice for solving shortest path problems
- A^{*} is optimally efficient in node expansions (Dechter and Pearl, 1985)
- Dominance pruning methods \rightarrow new source of information!
- We use dominance pruning in A*:
 - Is this a good choice?
 - Could we achieve more pruning with other expansion orders?
 - What tie-breaking strategies are good for dominance pruning?

SEARCH ALGORITHMS

UDXBB: Unidirectional Deterministic Expansion-based Black-Box \rightarrow Can only get information of the state space by expanding nodes

 A^* : \rightarrow Expands nodes based on *f*-value: $f(n_s) = g(n_s) + h(s)$ \rightarrow Family of algorithms: tie-breaking may pick any node with min f

A* IS 1-OPTIMAL ON CONSISTENT INSTANCES (DP, 1985)

 A^* is 1-optimal on consistent instances Let N be the set of states expanded by any admissible UDXBB algorithm, then there exists a tiebreaking of A^* that expands subset of N. Consistent Heuristic: $h(s) - h(t) \le c(s, t)$

DOMINANCE PRUNING

Dominance relation directly compares pairs of states

t dominates $s \ (s \leq t)$ implies that $h^*(t) \leq h^*(s)$

UDXBB WITH DOMINANCE PRUNING

the rule above

AALBORG UNIVERSITET

• Until the last layer is better to break ties in favor of lower g-value