
ON THE OPTIMAL EFFICIENCY OF A∗WITH DOMINANCE PRUNING
ÁLVARO TORRALBA

MOTIVATION

• A∗ is the canonical choice for solving shortest path problems

• A∗ is optimally efficient in node expansions (Dechter and Pearl, 1985)

• Dominance pruning methods→ new source of information!

• We use dominance pruning in A∗:

– Is this a good choice?

– Could we achieve more pruning with other expansion orders?

– What tie-breaking strategies are good for dominance pruning?

SEARCH ALGORITHMS

UDXBB: Unidirectional Deterministic Expansion-based Black-Box
→Can only get information of the state space by expanding nodes

A∗: →Expands nodes based on f -value: f(ns) = g(ns) + h(s)
→Family of algorithms: tie-breaking may pick any node with min f

A∗ IS 1-OPTIMAL ON CONSISTENT INSTANCES (DP, 1985)

A∗ is 1-optimal on consistent instances Let N be the set of states ex-
panded by any admissible UDXBB algorithm, then there exists a tie-
breaking of A∗ that expands subset of N .
Consistent Heuristic: h(s)− h(t) ≤ c(s, t)

DOMINANCE PRUNING

Dominance relation directly compares pairs of states
�

t dominates s (s � t) implies that h∗(t) ≤ h∗(s)

UDXBB WITH DOMINANCE PRUNING

UDXBB algorithms that can prune a node ns whenever another nt has
been seen such that g(nt) ≤ g(ns) and t dominates s.

→No access to �: can only use dominance for pruning according to
the rule above

A∗ with dominance pruning (A∗pr ):
• Expand nodes based on f -value: f(ns) = g(ns) + h(s)
• Prune any node that can be pruned

A∗pr IS NOT OPTIMALLY EFFICIENT IN GENERAL

→The expansion order of A∗ may not be optimal

A∗pr : 〈I, C, . . . , A,B,G〉

optimal: 〈I, A,B,G〉

→Sometimes it is better to expand a node even if it can be pruned

NEW DEFINITION OF CONSISTENT INSTANCES

1. Consistent heuristic: h(s)− h(t) ≤ c(s, t)

2. Dominance relation � is a transitive cost-simulation relation

Transitive: C � B and B � A implies C � A

Cost-simulation: Whenever s � t and s
a−→ s′, either s′ � t or

there exists t a′

−→ t′ such that s′ � t′ and c(a) ≤ c(a′)

C8 D7

C9 D8

�

c

c′ ≤ c

�

3. Heuristic and dominance relation are consistent with each other

s � t =⇒ h(t) ≤ h(s)

A∗pr IS #-OPTIMAL

A∗pr is not 1-optimal, because it can expand a diferent set of nodes.
A∗pr is #-optimal on consistent instances (it expands fewer or equal
nodes)

TIE-BREAKING STRATEGIES

In A∗ tie-breaking is only relevant in the last f -layer, but in A∗pr tie-
breaking is relevant in all layers

We consider two tie-breaking strategies:

1. Prefer nodes with lower h value

• Standard in most implementations of A∗

• Advantage: follow heuristic in the last f -layer

→We prove that it is not optimally efficient until the last f -layer

2. Prefer nodes with lower g value

→We prove that it is optimally efficient until the last f -layer

CONCLUSIONS

• Dominance pruning introduces a new source of information for
heuristic search algorithms

• A∗pr is #-optimally efficient on consistent instances

• Until the last layer is better to break ties in favor of lower g-value


