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Abstract

Minecraft is a videogame that offers many interesting chal-
lenges for AI systems. In this paper, we focus on construc-
tion scenarios where an agent must build a complex struc-
ture made of individual blocks. As higher-level objects are
formed of lower-level objects, the construction can naturally
be modelled as a hierarchical task network. We model a
house-construction scenario in classical and HTN planning
and compare the advantages and disadvantages of both kinds
of models.

Introduction
Minecraft is an open-world computer game, which poses in-
teresting challenges for Artificial Intelligence (Aluru et al.
2015; Johnson et al. 2016), for example for the evaluation of
reinforcement learning techniques (Tessler et al. 2017). Pre-
vious research on planning in Minecraft focused on mod-
els to control an agent in the Minecraft world. Some ex-
amples include learning planning models from a textual de-
scription of the actions available to the agent and their pre-
conditions and effects (Branavan et al. 2012), or HTN mod-
els from observing players’ actions (Nguyen et al. 2017).
Roberts et al. (2017), on the other hand, focused on on-
line goal-reasoning for an agent that has to navigate in the
minecraft environment to collect resources and/or craft ob-
jects. They introduced several propositional, numeric (Fox
and Long 2003) and hybrid PDDL+ planning models (Fox
and Long 2006).

In contrast, we are interested in construction scenarios,
where we generate instructions for making a given structure
(e.g. a house) that is composed of atomic blocks. Our long-
term goal is to design a natural-language system that is able
to give instructions to a human user tasked with completing
that construction. As a first step, in the present paper we
consider planning methods coming up with what we call a
construction plan, specifying the sequence of construction
steps without taking into account the natural-language and
dialogue parts of the problem.

For the purpose of construction planning, the Minecraft
world can be understood as a Blocksworld domain with a
3D environment. Blocks can be placed at any position hav-
ing a non-empty adjacent position. However, while obtain-
ing a sequence of “put-block” actions can be sufficient for

an AI agent, communicating the plan to a human user re-
quires more structure in order to formulate higher-level in-
structions like build-row, or build-wall. The objects being
constructed (e.g. rows, walls, or an entire house) are natu-
rally organized in a hierarchy where high-level objects are
composed of lower-level objects. Therefore, the task of con-
structing a high-level object naturally translates into a hierar-
chical planning network (HTN) (Sacerdoti 1974; Tate 1977;
Wilkins 1988; Erol, Hendler, and Nau 1994).

We devise several models in both classical PDDL plan-
ning (Bylander 1994; McDermott et al. 1998) and hierar-
chical planning for a simple scenario where a house must
be constructed. Our first baseline is a classical planning
model that ignores the high-level objects and simply out-
puts a sequence of place-blocks actions. This is insufficient
for our purposes since the resulting sequence of actions can
hardly be described in natural language. However, it is a use-
ful baseline to compare the other models. We also devise a
second classical planning model, where the construction of
high-level objects is encoded via auxiliary actions.

HTN planning, on the other hand, allows to model the
object hierarchy in a straightforward way, where there is
a task for building each type of high-level object. The
task of constructing each high-level object can be decom-
posed into tasks that construct its individual parts. Unlike
in classical planning, where the PDDL language is sup-
ported by most/all planners, HTN planners have their own
input language. Therefore, we consider specific models for
two individual HTN planners: the PANDA planning sys-
tem (Bercher, Keen, and Biundo 2014; Bercher et al. 2017)
and SHOP2 (Nau et al. 2003).

Scenario Design
We consider a simple scenario where our agent must con-
struct a house in Minecraft. We model the Minecraft envi-
ronment as a 3D grid, where each location is either empty or
has a block of a number of types: wood, stone, or dirt.

Figure 1 shows the hierarchy of objects of our construc-
tion scenario. For the high-level structure the house consists
of four stone walls, a stone roof, and a door. The walls and
the roof are further decomposed into single rows that need
to be built out of individual blocks. The door consists of two
gaps, i.e., empty positions inside one of the walls.

As our focus is on the construction elements we abstract



low-level details away. For example, we avoid encoding the
position of the agent and assume that all positions are always
reachable. We also assume Minecraft’s creative mode, where
all block types are always available so we do not need to
keep track of which blocks are there in the inventory.

This is a very simplistic model, where planning focuses
simply on the construction actions (i.e. placing or remov-
ing blocks), of high-level structures. Nevertheless, it can still
pose some challenges to modern planners, specially due to
the huge size of the Minecraft environment.
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Wall Roof Door

Row
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Figure 1: Object hierarchy of our construction scenario.

Classical Planning Model
Our first model is a classical planning model in the
PDDL language that consists of only two actions: put-
block(?location, ?block-type) and remove-block(?location,
?block-type) where there is a different location for each of
the x-y-z coordinates in a 3D grid. The goal specifies what
block-type should be in each location. As blocks cannot be
placed in the air, the precondition of put-block requires one
of the adjacent locations of ?location to be non-empty. Other
than that, blocks of any type can always be added or removed
at any location. The goal is simply a set of block at facts.

A limitation of this simple model is that it completely
ignores the high-level structure of the objects being con-
structed. As there is no incentive to place blocks in certain
order, a high-level explanation of the plan may be impos-
sible. To address this, we introduce auxiliary actions that
represent the construction of high-level objects. Figure 2
shows the auxiliary actions that represent building a wall.
The attributes of the wall are specified in the initial state
via attributes expressed by predicates wall dir, wall length,
wall height, wall type, and current wall loc. In order to
avoid the huge amount of combinations of walls that could
be constructed of any dimensions and in any direction, the
walls that are relevant for the construction at hand are spec-
ified in the initial state via these predicates. These three ac-
tions decompose the construction of a wall into several rows.
Action begin wall ensures that no other high-level object is
being constructed at the moment and adds the fact construct-
ing wall to forbid the construction of any other wall (or roof)
until the current wall has been finished.

Action build row in wall ensures that a row of the given
length will be built on the corresponding location and direc-
tion by adding predicates (building row) and (rest row ?loc
?len ?dir ?t). Simultaneously, it updates the location for the
rest of the wall to be built and decreases its height by one.

(:action begin wall
:parameters (?w - wall)
:precondition (and (not (constructing roof))

(not (constructing wall))
:effect (and (current wall ?w) (constructing wall)))

(:action build row in wall
:parameters (?w - wall ?loc ?locN - location

?len ?height ?heightN - number
?dir - direction ?t - blocktype)

:precondition (and (current wall ?w) (wall dir ?w ?dir)
(wall length ?w ?len) (wall height ?w ?height)
(wall type ?w ?t) (current wall loc ?w ?loc)
(prev ?height ?heightN) (on top ?loc ?locN)
(not (building row)))

:effect (and (current wall loc ?w ?locN)
(wall height ?w ?heightN)
(not (current wall loc ?w ?loc))
(not (wall height ?w ?height))
(building row) (rest row ?loc ?len ?dir ?t)))

(:action finish wall
:parameters (?w - wall ?loc - location

?height - number ?dir - direction)
:precondition (and (current wall ?w) (is zero ?height)

(wall height ?w ?height) (wall dir ?w ?dir)
(wall initial ?w ?loc) (not(building row)))

:effect (and (wall at ?w ?loc ?dir)
(not (constructing wall)) (not (current wall ?w))))

Figure 2: Auxiliary PDDL actions to build a wall.

When the height is zero, the action end wall becomes appli-
cable, which finishes the construction of the wall.

In the goal we then use the predicates wall at and roof at
that force the planner to use these constructions, instead of a
set of block at facts as we did in the simple model.

Hierarchical Planning Models
HTN models encode the construction of high-level objects in
a straightforward way by defining tasks such as build house,
build wall and build row. These tasks will then be de-
composed with methods until only primitive tasks will be
left, in our case place-block and remove-block. We con-
sider specific models for two individual HTN planners: the
PANDA planning system (Bercher, Keen, and Biundo 2014;
Bercher et al. 2017) and SHOP2 (Nau et al. 2003).

PANDA
PANDA uses an HTN formalism (Geier and Bercher 2011),
which allows combining classical and HTN planning. The
predicates describing the world itself, i.e. the relations be-
tween different locations remain the same as in the PDDL
model, as do the place-block and remove-block primitive ac-
tions. On top of this, high-level objects are described as an
HTN where each object corresponds to a task, without re-
quiring to express their attributes with special predicates as
we did in the PDDL model. Specifically, we defined tasks



(:method build wall 1
:parameters (?loc1 - location ?len ?hgt - numbers

?d - direction ?t - blocktype)
:task (buildwall ?loc1 ?len ?hgt ?d ?t)
:precondition (isone ?hgt)
:subtasks (buildrow ?loc1 ?len ?d ?t))

(:method build wall 2
:parameters (?loc1 ?loc2 - location

?len ?hgt ?hgt2 - numbers
?d - direction ?t - blocktype)

:task (buildwall ?loc1 ?len ?hgt ?d ?t)
:precondition (and (not (isone ?hgt))

(prev ?hgt ?hgt2)
(on top ?loc1 ?loc2))

:ordered´subtasks (and
(buildrow ?loc1 ?len ?d ?t)
(buildwall ?loc2 ?len ?hgt2 ?d ?t)))

Figure 3: Methods for the build-wall task in the PANDA
model.

that correspond to building a house, a wall, a roof, a row of
blocks, and the door.

Figure 3 shows the methods used to decompose the task of
building a wall. These methods work in a recursive fashion
over the height of the wall. For walls with height one, the
build wall 1 method is used to build them. For walls with
larger height, the build wall 2 method decomposes the task
of building them into building a row in the current location
and building the rest of the wall (i.e., a wall of height-1)
in the location above the previous one. These subtasks are
ordered, so that walls are always built from bottom to top.

The methods for buildrow and buildroof work in the same
fashion, while buildhouse only has one method decompos-
ing the house into four walls, the roof, and the door. The
task builddoor also has just one method stating which two
blocks have to be removed to form a door. Choosing this way
of modeling the door by first forcing the planner to place
two blocks and later removing them again may seem ineffi-
cient, but for communication with a human user this may be
preferable over indicating that these positions should remain
empty in the first place.

SHOP2
The SHOP2 model follows a similar hierarchical task struc-
ture as the PANDA model, having methods for decomposing
the house into walls, a wall into rows and rows into single
blocks. Since one of the advantages of SHOP2 is that it can
call arbitrary LISP functions, we can represent the locations
using integers as coordinates and replace the predicates used
in PANDA and PDDL to express their relations by simple
arithmetic operations. This also allows us to compute the
end point of rows of any given length in a given direction,
which means we can construct the walls by alternating the
direction of the rows. Based on this, we define two differ-
ent recursive decompositions of walls as shown in Figure 4.
In the first method we simply build the row starting in the
current location, while in the second method we change the

(:method (build-wall-east ?x ?y ?z ?length ?height ?dir)
zero-height

((call = ?height 0))
()

east-one
((up ?z1 ?z) (up ?height ?h1) (call = ?dir 1))
(:ordered

(:task build-row ?x ?y ?z ?length ?dir)
(:task build-wall-east ?x ?y ?z1 ?length ?h1 ?dir)

)
)

(:method (build-wall-east ?x ?y ?z ?length ?height ?dir)
zero-height

((call = ?height 0))
()

east-two
((up ?z1 ?z) (up ?height ?h1) (call = ?dir 1))
(:ordered

(:task build-row (call -(call + ?x ?length) 1) ?y ?z ?length 2)
(:task build-wall-east ?x ?y ?z1 ?length ?h1 ?dir)

)
)

Figure 4: SHOP2 methods to build a wall in east direction.

direction of the row we want to build and identify the posi-
tion that would previously have been the end of the row by
replacing the x-coordinate with x ` length ´ 1. Since this
computation is different for each direction, we need separate
methods for them. Apart from this, the decomposition struc-
ture is the same as with PANDA, building the walls, roof,
and rows incrementally using a recursive structure.

Experiments
To evaluate the performance of common planners on our
models1, we scale them with respect to two orthogonal pa-
rameters: the size of the construction, and the size of the cu-
bic 3D world we are considering. We use different planners
for each model. For the classical planning models we use the
LAMA planner (Richter, Westphal, and Helmert 2011). The
PANDA planning system implements several algorithms, in-
cluding plan space POCL-based search methods (Bercher,
Keen, and Biundo 2014; Bercher et al. 2017), SAT-based
approaches (Behnke, Höller, and Biundo 2018), and for-
ward heuristic search (Höller et al. 2018). We use a config-
uration using heuristic search with the FF heuristic, which
works well on our models. For SHOP2, we use the depth-
first search configuration (Nau et al. 2003). All experiments
were run on an Intel i5 4200U processor with a time limit of
30 minutes and a memory limit of 2GB.

In our first experiment, we scale the size of the house start-
ing with a 3 ˆ 3 ˆ 3 house and increasing one parameter
(length, width, and height) at a time (4 ˆ 3 ˆ 3, 4 ˆ 4 ˆ

1Benchmarks are publicly available at: https://doi.org/
10.5281/zenodo.3239243
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Figure 5: Search time, total time, number of operators, and facts of the grounded task to build a house with given number of
blocks (above) or in a world with increasing size (below).

3, . . . , 9ˆ9ˆ9.). The size of the 3D world is kept as small as
possible to fit the house with some slack, so initially is set to
5ˆ5ˆ5 and is increased by one unit in each direction every
three steps, once we have scaled the house in all dimensions.
The upper row of Figure 5 shows the search and total time of
the planners on the different models. The construction size
in the x-axis refers to the number of blocks that need to be
placed in the construction. All planners scale well with re-
spect to search time, solving problems of size up to 9ˆ9ˆ9
in just a few seconds. The non-hierarchical PDDL planning
model (PDDL blocks) that only uses the place-block and
remove-block actions without any hierarchical information
is the one with worst search performance. Moreover, it also
results in typically longer plans that build many “support”
structures to place a block in a wall without one of the adja-
cent blocks in the wall being there yet.

However, there is a huge gap between search and total
time for the PANDA and PDDL models, mostly due to the
overhead of the grounding phase. SHOP2 does not do any
preprocessing or grounding so it is not impacted by this. For
the PANDA and PDDL models, total time significantly in-
creases every three problems, whenever the world size is in-
creased. This suggests that, somewhat counterintuitively, the
size of the world environment has a greater impact on these
planners’ performance than the size of the construction. In
the PDDL based approaches, the number of operators and
facts produced in the preprocessing shows a similar trend so
the planner’s performance seems directly influenced by the
size of the grounded task. For PANDA, on the other hand,
we observe a linear increase in the number of facts and only
a comparatively small increase in the number of operators.

To test more precisely what is the impact of increasing
the world size, we ran a second set of experiments where we
kept the size of the house fixed at 5ˆ5ˆ5 and just increased
the size of the world. As shown in the bottom part of Figure 5

the performance of SHOP2 is not affected at all, since it does
not require enumerating all possible locations. Search time
for PANDA also stays mostly constant, but the overhead in
the preprocessing phase dominates the total time. This con-
trasts with the number of operators and facts, which is not
affected by the world size at all. The PDDL based models
are also affected in terms of preprocessing time, due to a
linear increase in the number of facts and operators with re-
spect to world size, but to a lesser degree. However, search
time increases linearly with respect to the world size due to
the overhead caused in the heuristic evaluation.

Discussion
We have introduced several models of a construction sce-
nario in the Minecraft game. Our experiments have shown
that, even in the simplest construction scenario which is not
too challenging from the point of view of the search, current
planners may struggle when the size of the world increases.
This is a serious limitation in the Minecraft domain, where
worlds with millions of blocks are not unrealistic.

Lifted planners like SHOP2 perform well. However, it
must be noted that they follow a very simple search strategy,
which is very effective on our models where any method
decomposition always leads to a valid solution. However, it
may be less effective when other constraints must be met
and/or optimizing quality is required. For example, if some
blocks are removed from the ground by the user, then some
additional blocks must be placed as auxiliary structure for
the main construction. Arguably, this could be easily fixed
by changing the model so that whenever a block cannot be
placed in a target location, an auxiliary tower of blocks is
built beneath the location. However, this increases the bur-
den of writing new scenarios since suitable task decompo-
sitions (along with good criteria of when to select each de-
composition) have to be designed for all possible situations.



This makes the SHOP2 model less robust to unexpected sit-
uations that were not anticipated by the domain modeler.
PANDA, on the other hand, supports insertion of primitive
actions (Geier and Bercher 2011), allowing the planner to
consider placing additional blocks, e.g., to build supporting
structures that do not correspond to any task in the HTN.
This could help to increase the robustness of the planner in
unexpected situations where auxiliary structures that have
not been anticipated by the modeler are needed. However,
this is currently only supported by the POCL-plan-based
search component and considering all possibilities for task
insertion significantly slows down the search and it runs out
of memory in our scenarios. This may point out new avenues
of research on more efficient ways to consider task insertion.

In related Minecraft applications, cognitive priming has
been suggested as a possible solution to keep the size of the
world considered by the planner at bay (Roberts and Hiatt
2017). In construction scenarios, however, large parts of the
environment can be relevant so incremental grounding ap-
proaches may be needed to consider different parts of the
scenario at different points in the construction plan.

Our models are still a simple prototype and they do not
yet capture the whole complexity of the domain. We plan to
extend them in different directions in order to capture how
hard it is to describe actions or method decompositions in
natural language. For example, while considering the posi-
tion of the user is not strictly necessary, his visibility may be
important because objects in his field of view are easier to
describe in natural language. How to effectively model the
field of vision is a challenging topic, which may lead to com-
binations with external solvers like in the planning modulo
theories paradigm (Gregory et al. 2012).

Another interesting extension is to consider how easy it is
to express the given action in natural language and for exam-
ple by reducing action cost for placing blocks near objects
that can be easily referred to. Such objects could be land-
marks e.g. blocks of a different type (“put a stone block next
to the blue block”) or just the previously placed block (e.g.,
“Now, put another stone block on top of it”).
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