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Abstract

This paper explores how domain-independent classical plan-
ners can be used to control non-player characters in an in-
teractive storytelling videogame engine. Our planning mod-
els take into account the emotional state of the characters
to decide the course of action, resulting in believable agents
that act in a goal-driven manner with their own motivations.
Moreover, despite using single-agent models, we incorporate
reasoning about the actions of other agents, so that characters
interact with each other to achieve their goals. We analyze the
performance of current classical planners on our NPC plan-
ning models and show that they are capable to find plans un-
der short time limits.

1 Introduction
In Videogames, it may be desirable that the Non-Player
Characters (NPCs) dynamically adapt their behaviour de-
pending on the player actions. This can create a more liv-
ing and thus believable game world, hereby increasing so-
cial immersion in the game world. One option is to specify
the possible courses of action in advance, in so called be-
haviour trees (Lim, Baumgarten, and Colton 2010). While
this provides a lot of control to the game designer, it requires
a design process that takes into consideration all possible
courses of action in advance. This may be hard to do, spe-
cially for games where NPCs have a broad range of actions,
items, and/or variables that influence the decision-making
process. Furthermore, behaviour trees may need to be up-
dated whenever new abilities or items are introduced. On the
other hand, domain-independent planning is a very flexible
way of modelling the character’s decision making process.
By declaring the new abilities and/or items in the planning
model, this will be automatically taken into account on the
behaviour of all characters and situations. Furthermore, any
advances on planning technology can be adopted without
a large implementation effort. Planning systems have been
used mainly for strategic decision making in videogames
such as first person shooters. While the first approaches
considered classical planning systems (also known as Goal-
Oriented Action Planning, GOAP) such as the AI of the
game F.E.A.R. (Orkin 2006), most approaches have focused
on using Hierarchical Task Network (HTN) planning mod-
els (Nau et al. 2003; Menif, Jacopin, and Cazenave 2014).

In this paper, we apply domain-independent planning
technology within a game engine to create believable NPCs
by making them act in a goal-driven manner, where their
behavior is influenced by a number of factors such as their
personality and/or emotions. Thus, the storytelling narrative
emerges out of the interaction of characters that plan individ-
ually according to their own goals, in contrast to other pre-
vious approaches using planning for interactive storytelling
which follow a centralized approach (Riedl and Young 2010;
Haslum 2012). Our focus is not only on strategical agents,
but also on social and believable agents that act according
to their emotions (Pérez-Pinillos, Fernández, and Borrajo
2011; Belle, Gittens, and Graham 2022). Contrary to those
approaches, we focus on classical (GOAP) planning, as this
is suitable for our game engine in which where agent’s have
goals established by the game events.

In this setting, NPCs should be able to interact with each
other in order to achieve their goals. Furthermore, they
should be believable, i.e., their actions should be consistent
with the expectations of the player according to the estab-
lished personality traits and/or emotions of the characters.

We design planning models that are able to (1) tailor
the behaviour of the characters according to their person-
ality traits and/or emotional state, and (2) achieve plans
where characters collaborate and/or compete. We achieve
(1) through changing the cost of the actions accordingly. For
(2), we achieve implicit coordination through actions that
allow the NPC to plan for other characters to help them.

A critical question is whether current state-of-the-art plan-
ners are capable to provide plans in real-time during the ex-
ecution of the game. To focus on scalability, we keep our
models simple using classical planning where the environ-
ment is deterministic, plans are sequential, and there is a
single agent that has full control over the actions that will
change the environment. Even though the models do not re-
flect the game dynamics in a precise manner, the plans pro-
vided can still result in meaningful plans that could arise
from characters under limited forms of reasoning. While
some of the actions in the plan might fail, this can be ad-
dressed through re-planning.

We conduct an empirical evaluation comparing the per-
formance of several planners on different planning models
of different degrees of complexity. Our results show that cur-
rent planners (e.g., the Fast Downward planning system with



the LM-cut heuristic (Helmert 2006; Helmert and Domshlak
2009)) can provide optimal plans on scenarios with a real-
istic number of characters and that, by sacrificing optimal-
ity guarantees (e.g., using the FF heuristic (Hoffmann and
Nebel 2001)), it is possible to obtain close to optimal solu-
tions in less than a second.

2 Background
We consider STRIPS planning models (Fikes and Nils-
son 1971), where a planning task is specified by a tu-
ple 〈F ,A, sI , sG〉. F is a set of facts, i.e., Boolean vari-
ables that describe the current state. A state s ⊆ F is a
set of facts corresponding to those facts that are true in s.
sI ⊆ F is an initial state and sG ⊆ F is a goal specifi-
cation. A is the set of actions. An action a ∈ A is a tuple
a = 〈pre(a), add(a),del(a), c(a)〉, where pre(a) ⊆ F is a
set of preconditions of the action o, and add(a) ⊆ F and
del(a) ⊆ F are sets of add and delete effects, respectively,
and c(a) ∈ R+

0 is a cost of the action. All actions are well-
formed, i.e., add(a)∩del(a) = ∅ and pre(a)∩add(a) = ∅.
An action o is applicable in a state s if pre(a) ⊆ s. The re-
sulting state of applying an applicable action o in a state s is
the state aJsK = (s \ del(a)) ∪ add(a). A state s is a goal
state iff sG ⊆ s.

A plan is a sequence of actions π = 〈a1, . . . , an〉 that
goes from the initial state to a state that satisfies the goal.
That is, there are states s0, . . . , sn such that ai is applicable
in si−1 and si = aiJsi−1K for i ∈ {1, . . . , n}, s0 = sI , and
sG ⊆ sn The cost of the plan is the sum of the cost of its
actions, c(π) =

∑n
i=1 c(ai). A plan is optimal if its cost is

minimal among all plans for the task.
We specify planning tasks using the Planning Domain

Definition Language (PDDL) (McDermott et al. 1998; Mc-
Dermott 2000). In PDDL, STRIPS tasks are specified
in terms of fact and action templates, with parameters
that are to be replaced by a set of objects. For exam-
ple, the action Travel (?c - character ?l ?l’
- location) has three parameters, where the first pa-
rameter can be instantiated by objects of the type “char-
acter”, whereas ?l and ?l’ can be instantiated with objects
of type location. In the rest of the paper we leave the
object types implicit, as they are always clear from the
context. Given a set of objects, one can instantiate these
templates to obtain the STRIPS task. For example. given
characters {Alice, Bob, Carol}, and locations {lA, . . . , lE},
we would obtain actions Travel(Alice, lA, lB),
Travel(Bob, lA, lB), and so on for every character
and pair of connected locations. The process of enumerat-
ing all possible substitutions to translate a PDDL task into a
STRIPS task is called grounding (Helmert 2009).

3 The Game Engine
We assume a game engine that focuses on dynamic and in-
teractive storytelling, through the interaction with several
goal-driven characters. The game state 〈M, C, I〉 consists
of an scenarioM, a set of characters C, and a set of items I.

The scenario represents the game map here as a directed
graph where each node corresponds to a location, and edges
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Figure 1: Game loop.

represent the possible movements among locations. Further-
more, some locations may be locked. Each item in I, may
have diverse properties, such as power, or being the key to
unlock certain locations. Each character in C has a set of as-
sociated resources, some of which are numeric (e.g., health,
wealth), and some are binary (e.g., having certain items).
Moreover, the character has a set of emotions (e.g., the level
of happiness), which influence their behaviour. Social rela-
tions are modelled through a function friend : C × C 7→
[−100, 100], where friend(c, c′) > 0 if c considers c′ to be
their friend; and friend(c, c′) < 0 if c considers c′ to be their
enemy.

Characters are goal-driven, so that their actions can be ex-
plained in terms of what goals they intend to achieve. Fig-
ure 1 shows the game loop and how characters interact with
the rest of the world. The game flow is guided by a series
of events. Every time a character executes an action, this re-
sults in an event, which may change the resources of one or
more characters. Changes in resources motivate a change in
the emotional state of the characters (e.g., upon loss of an
item, a character happiness will decrease), and this leads to
the occurrence of new goals (e.g., recovering the lost item,
or causing damage to the actor who caused the item loss).

We consider two types of goals that a character could
have, social and quest goals. Social goals aim to affect the
emotions/resources of other characters in a positive or neg-
ative way. This includes, for example, complimenting an-
other character, giving them an item, or causing them dam-
age. Quest goals correspond to obtaining specific items that
are valuable for the character and often involve going into
locked locations.

Furthermore, characters can interact with each other. For
example, a character may ask another to perform an action in
their behalf. If they agree, the event resolves by introducing
a new goal for the second character, which now will plan
independently how to best achieve such a goal.

After any event, re-planning may be triggered for a char-
acter if the character’s plan is not executable anymore (e.g.,
an action has failed or another character does not agree
to achieve the requested sub-goal) and/or their goals have
changed. In that case, the character will make a new plan for
the updated goal with the available resources.

Example 1. As an illustration, consider the following sce-
nario, where there are 3 characters Alice, Bob, and Carol.
Our main character, Alice, has a goal of getting an object,
which requires to enter a blocked location. Alice does not



have the key, however, nor she has any lockpicking skills, so
in order to achieve her goal, she will have to rely on the help
of other characters. There are two main alternatives. On the
one hand, Alice’s friend, Bob, has some lockpicking skills.
So plan πB consists of asking Bob the favour of lockpick-
ing the door. On the other hand, Carol has the door’s key but
she is not in very good relationship with Alice. So an alter-
native plan πC could be to threaten Carol and demand her
to give Alice the key. In order to be believable the plan of
Alice should be consistent with her emotional state and/or
personality. When in “good mood”, πB is preferable as it is
less confrontational, even though Bob may fail at lockpick-
ing the door. If Alice is angry, it may be more believable
to choose πC , as it is more confrontational and has higher
changes of success.

After choosing a plan, Alice will start its execution (e.g.
going to Bob/Carol and asking them the favour). However,
as Bob and Carol are also following their own plans this
may trigger a re-planning in a number of cases, such as if
they become unavailable, or if they reject doing the favour.
In that case, Alice will have to find an alternative course
of action, provided that she cannot repeat the failed action
anymore.

In this paper, we focus on the planning process of each
character. We assume that the character’s goals and emotions
have already been decided by the game engine and focus on
how to find a plan that is consistent with the character’s goals
and emotions.

4 Planning Models
In this section, we describe the planning models we use to
represent the reasoning process of an NPC character to de-
cide what action to perform depending on the current state of
the world and its current goals. These planning models are
only a small sample of what would be possible in a game en-
gine featuring different sets of actions, emotions, and char-
acter resources.1 The model is kept simple, but still represen-
tative of what could be the expected performance on other
game engines with similar number of characters, items, and
actions.

We emphasize that the purpose of these planning models
is not to have an accurate description of the game mechan-
ics, reflect the precise knowledge of the character, nor con-
sider all the possible dynamics with other characters and/or
the non-deterministic environment. Instead, it is just an ap-
proximation that will result in characters choosing actions
that are deemed believable when considering the character’s
goals, personality, and emotions. We use classical planning
models, which offer a good trade-off between modelling ca-
pabilities and performance, as reasoning under temporal, ad-
versarial, and/or probabilistic planning models is often much
harder (Littman, Goldsmith, and Mundhenk 1998; Rintanen
2007). This means that our planning models will ignore ac-
tion non-determinism, and assume that the current character
has full control about all actions that will affect the world.

1While the game engine is not open source, our approximated
planning models are publicly available (Johansen et al. 2022).

While this may seem utterly unrealistic, we will consider al-
ternatives to approximate these aspects within classical plan-
ning models. This means that, even when selecting optimal
plans according to our models, characters will not necessar-
ily always choose the best course of action under more re-
alistic models. This is acceptable, as realistic characters are
not necessarily fully rational, so such a “perfect” model may
not be the best to obtain believable character behaviour.

Basic planning model
Table 1 shows the basic actions that are available to each
character. Characters navigate through the world via the
Travel action. Our model abstracts away any low-level mo-
tion details, except for the fact that certain locations are
locked and cannot be directly accessed. In order to unlock
them, a character must be in an adjacent location and either
have a key that opens it or use lockpicking skills.

All actions are parameterized by the character that per-
forms them, ?c. In principle, ?c corresponds to the main
character, i.e., the one who is planning its own actions. How-
ever, as we will see in the next section, in certain situations
?c can also be another character.

As explained in Section 3, goals are set to the character
due to the occurrence of some event, and then the charac-
ters will plan in order to achieve them. Following that, we
can specify different types of goals in our planning models.
We consider quest goals, which consist of getting an item
typically located in a locked position (e.g., Alice’s goal in
Example 1), as well as the following social goals:

• Giving a present to a friend and/or complimenting them,
• Insulting an enemy and/or damaging their health.

Reasoning about the actions of other characters
During the planning process of an NPC, there are two types
of considerations regarding other characters: adversarial and
collaborative. Here, we focus on collaborative reasoning,
and do not consider adversarial reasoning explicitly. Collab-
orative reasoning is important, and even necessary, as cer-
tain goals may only be achievable with collaboration from
other agents, as illustrated in Example 1. We consider three
ways in which the character can influence other character’s
actions:

• RequestFavour (?c, ?c’, ?l): Character ?c asks character
?c’ to perform some actions as a favour.

• DemandFavour (?c, ?c’, ?l): Character ?c threatens char-
acter ?c’ making them to perform some actions.

• BargainFavour (?c, ?c’, ?i, ?l): Character ?c gives item ?i
to character ?c’ in exchange for them to perform some
actions.

We will refer to these actions as control actions, and they
have the effect that the target character ?c’ will be control-
lable (by adding a fact (Controllable ?c’)), so that they can
be the actors of subsequent actions in the plan (instantiating
the parameter ?c). This allows Alice to come up with a plan
such as: Travel (Alice, lA, lB), RequestFavour (Alice, Bob,
lB), Travel (Bob, lB , lD), Lockpick (Bob, lD, lE), Travel
(Alice, lB , lD), Travel (Alice, lD, lE), . . . .



Action Description
Travel (?c ?lfrom ?lto) character ?c moves between two connected locations ?from and ?to if ?to is not locked.

Take (?c ?i ?l) character ?c takes item ?i at location ?l.
Unlock (?c ?l ?i ?lfrom ) character ?c unlocks location ?l from an adjacent location ?lfrom using item (key) ?i.

Lockpick (?c ?l ?lfrom ) character ?c unlocks location ?l from an adjacent location ?lfrom by lockpicking it.
Give (?c ?i ?c’ ?l) character ?c gives item ?i to ?c’ at location ?l.

Strike (?c ?i ?c’ ?l) character ?c attacks character c’ using item (e.g. sword) ?i at location ?l.
Compliment (?c ?c’ ?l) character ?c compliments character ?c’ at location ?l.

Insult (?c ?c’ ?l) character ?c insults character ?c’ at location ?l.

Table 1: Actions available to the characters.

Note that this is only Alice’s planning process, so actions
involving Bob represent that Alice is planning for Bob to
perform those actions before there has been any communi-
cation between them. Furthermore, even though the control
actions do not specify explicitly what actions will ?c’ be
asked to perform, they are implicit in the rest of the plan.
During the plan execution, when Alice executes the action
RequestFavour(Alice, Bob, lB), she already knows what ac-
tions Bob is supposed to perform in the rest of the plan, so
this can be used to request the desired actions. In fact, by
a simple analysis of the plan, one can identify which facts
are achieved by Bob’s actions that are relevant for the rest of
Alice’s plan, e.g., extract that Unlocked (lE) is what Alice
needs Bob to accomplish. Therefore, in our example the Re-
questFavour action would be resolved by Alice asking Bob
to unlock lE . If Bob agrees, Unlocked (lE) will be a goal
of Bob in the next planning process, and he may decide to
accomplish it in the same way as Alice anticipated or in a
different way (e.g. depending on his mood Bob could decide
to ask Carol the key).

The model described above is slightly too unrealistic in
the fact that, after asking a favour we gain full control of the
other character and can use it to perform all kinds of actions.
More fine-grained models are possible. We experiment with
a partial control model, where the main character can gain
different levels of control for another character. When us-
ing multiple control levels, actions RequestFavour, Demand-
Favour, and BargainFavour are parameterized by the level of
control to achieve. Actions demanding a higher level of con-
trol have a higher cost as discussed in the next section, but
are a pre-requisite for the controlled character to perform
certain actions. This represents the fact that asking to per-
form actions like Strike is harder than simple actions like
Insult. We introduce 4 levels of control, allowing for the fol-
lowing actions:

1. Travel and Take.

2. Insult and Compliment.

3. Strike, Give, and Lockpick.

4. Other control actions (asking another character to ask an-
other character).

That is, it will be easier to control a character at level 1,
but then that character can only be asked to travel to an-
other location and/or take some objects. Each level provides
a higher degree of control, until level 4, which provides full

control so so the character can be asked to perform any ac-
tion.

Cost function
An important consideration is action cost. In principle, char-
acters should prefer plans that have minimum effort, and
maximum probability of success. This results in a multi-
objective problem, where a trade-off must be chosen. To
keep the model simple, we simply combine two factors into
a single cost function, where the cost of each action corre-
lates with both. This also allows to incorporate the person-
ality of the characters’ as well as their emotions into play,
so that characters choose different plans depending on their
current mood.

Table 2 shows the cost function used in our model. We
assign simple actions such as Travel, Take, or Unlock have
a minimum cost of 1 to reflect that they have full chances
of success. Other actions have costs that depend on different
factors. The formulas shown in Table 2 are arbitrarily chosen
so that the range of action costs is reasonable while making
plans that are consistent with the character’s emotions and
personality. While the formulas themselves are not too im-
portant, they illustrate how one can make believable NPCs
by adjusting the cost function.

We model the emotions of the planning character as a sin-
gle variable, E , representing whether the character is in good
mood or not. Admittedly, this is a simplified model of the
multi-dimensional characterization of emotions that could
be possible in the game engine. However, this simplifies our
evaluation on how a change in emotions can affect the char-
acter’s plan. Note that extending the cost functions to incor-
porate more nuanced emotions and or personality traits (e.g.
how aggressive or risk-averse each character is) can be eas-
ily done by adjusting the cost function.

Going back to Example 1, we see that changing the value
of E will immediately change the cost of multiple actions,
possibly affecting the choice of plan. If E ≈ 1, then the
cost of DemandFavour is very high, so Alice will prefer to
use RequestFavour instead. As the cost of RequestFavour
depends on whether the actor is friend of the actee, Alice
will prefer to ask Bob, as expected. On the other hand, if
E ≈ 0 is preferred, using DemandFavour with Carol will
have lower cost.

While the functions may look complex, they are not state-
dependent (Geißer, Keller, and Mattmüller 2015; Speck et al.
2021). All numerical variables, and in particular those de-



Travel 1
Take 1
Unlock 1
Lockpick 10(1− lockpick-skill(?c))
Strike (1 + 10 · E · friend+(?c, ?c′)) · str-diff(?c, ?c′, ?i)
Compliment 1 + 2 · (1− E) · friend−(?c, ?c′)
Insult 1 + 2 · E · friend+(?c, ?c′)
Give 3 item-val(?i, ?c)
RequestFavour 1 + 5 · 2?l · (1− E) · friend−(?c, ?c′)
DemandFavour (1 + 5 · 2?l · E · friend+(?c, ?c′)) · str-diff(?c, ?c′)

BargainFavour 4 · 2?l · item-val(?i,?c)
1+item-val(i?,?c)

+ 2 friend+(?c, ?c′)

where ?c is the character performing the action, ?c’ is the
character receiving the action, ?i is an item, ?l is the level of
control acquired (?l = 1 if the full control model is used),
and the following expressions are used:

friend+(?c, ?c′) := (2 + friend(?c, ?c′))2

friend−(?c, ?c′) := (2− friend(?c, ?c′))2

str-diff(?c, ?c′, ?i) := 1 + strength(?c′)
1+strength(?c)+power(?i)

str-diff(?c, ?c′) := 1 + strength(?c′)
1+strength(?c)

Table 2: Cost function. All numeric variables are consid-
ered here to be normalized in the [0, 1] interval ([−1, 1] for
friend(?c, ?c′)).

scribing emotions (E), do not change their value within the
planning process. At first glance, that may seem unrealis-
tic, as certain actions will definitively influence the charac-
ter’s emotions. Our models have the assumption, however,
that characters are not capable of reasoning in advance about
this (e.g., a scared character will not specifically plan to do
actions that calm him down). Within the game engine, if a
change in emotions occurs during the execution of the plan,
this event will trigger a re-planning process so that the char-
acter can find a plan according to the new emotion.

As costs are not state-dependent, each grounded action
has a single constant cost. This allows us to use standard
planning systems to solve our planning tasks. In order to do
that, we perform a minor modification to the PDDL parser
of Fast Downward (Helmert 2006), so that the costs are cor-
rectly computed for each grounded action.

Filtering irrelevant actions
Most classical planners are based on grounding, the process
of enumerating all combinations of objects that could instan-
tiate the parameters of the actions. An issue of these plan-
ning models is that the amount of ground actions may be
huge, especially for the actions Give, RequestFavour, De-
mandFavour, and BargainFavour. For example, the amount
of Give actions is O(|C|2||I||M|) as any character can give
any item to any other character at any location. Even though
most of these actions will never be used, they can greatly
diminish the efficiency of planners based on grounding, as
with only 10 characters, 20 items and a map with 50 loca-
tions, we have 100000 combinations.

A possible solution is to filter some of the actions, if they
can be deemed unnecessary for achieving the goal (Gnad

et al. 2019). We do this by introducing additional precon-
ditions that can be used to restrict some of the arguments.
These preconditions are based on some newly added predi-
cates that are static, i.e., their truth value is specified in the
initial state and they are not in the effect of any action. For
the give action, for example we introduce a precondition
(may give item ?actor ?actee), which is only set
to true in the initial state if either ?actor or ?actee are
the main character. While excluding these actions may for-
bid the actual optimal plan, or even make the main charac-
ter’s goals unreachable, this is unlikely to happen in practice
as most plans are centered around actions that involve the
main character.

Similarly for the “Favour” actions, we filter them based
on the relationship between the actor and actee characters
(for RequestFavour, and BargainFavour) or their difference
in strength (for RequestFavour). The rationale in this case
is that all excluded actions have very high action costs and
are therefore very unlikely to occur in any optimal plan. Ad-
mittedly, this is a heuristic criteria and more effective filters
could be achieved by using machine learning techniques as
done by Gnad et al. (2019).

Introducing these filters as preconditions over static pred-
icates completely gets rid of the grounding issue, as ground-
ing algorithms are able to skip the filtered actions without
enumerating them in the first place (Helmert 2009).

5 Experiments
We evaluate the performance of several planners under the
proposed planning models. In our evaluation, we consider
four variants of the domain, depending on whether we apply
a filter of feasible actions or not and on how we model the
control of other characters. In the full version, control ac-
tions always allow to obtain full control of other characters,
whereas the partial model uses different levels of control for
the different actions.

For each of the versions, we generate instances randomly
in a way that approximates the scenarios that could occur
typically within the game engine. To analyze the scalability
of planners, we generate instances of diverse sizes by vary-
ing the number of goals (1, 2, 3, 4, or 5), locations (10, 20,
50, 70), and characters (3, 5, 10, 15, 20). The number of
items is always set to be the same as the number of charac-
ters, which is to be expected as often characters may carry
one item. We consider all 100 combinations. For each com-
bination, we generate two instances (with E = 0.25 and
0.75, respectively), resulting in 200 instances in total for
each variant of the domain. For all variants of the domain
we always use exactly the same seed so that different in per-
formances across versions are not affected by the random
generation process.

The chosen ranges for our scalability analysis are repre-
sentative, and go slightly beyond, of what is needed for a
realistic use case. Even though in some cases there may be
more objects (i.e., locations/characters/items) in the game,
the planning process is only concerning the plan of a single
agent, so one can typically include only those objects that
are relevant.
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Figure 2: Results of optimal versus satisficing configuration in terms of cost, and planning time without/with grounding.
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We use a memory limit of 4GB, and a time limit of 2 min-
utes for the overall planning process (including the overhead
of grounding), and 1 minute for the search. These time limits
are very generous for the performance required in practice,
where plans should be provided under a second. However,
this allows us to obtain a more comprehensive view on how
the difficulty of solving the problem scales with the size of
the instance. All our experiments are run on a cluster using
Downward Lab (Seipp et al. 2017). All benchmarks, scripts
and experiment data are publicly available (Johansen et al.
2022).

We considered the best standalone planners from
the sequential optimal track of IPC2018: Complemen-
tary2 (Franco et al. 2017; Franco, Lelis, and Barley 2018),
Scorpion (Seipp 2018; Seipp, Keller, and Helmert 2020),
and Symbolic Bidirectional Blind Search (Torralba et al.
2017). Complementary-2 and Scorpion, however, rely on a
preprocessing phase that was optimized for maximizing the
number of tasks solved within 30 minutes. The exact same

Optimal
bl sfw sbd sPDB scrp lmc FF

full 76 55 52 73 122 109 163
full-filter 110 107 102 135 166 171 195
partial 66 50 47 65 87 91 118
partial-filter 97 96 86 117 137 150 176

Table 3: Coverage of blind explicit search (bl), symbolic
forward (sfw) and bidirectional (sbd) search, and A∗with
symbolic PDBs (sPDB), Scorpion (scrp), LM-cut (lmc),
and the FF heuristic. Best optimal planner in each kind of
planning model highlighted in bold.

configurations perform very poorly under our time limit. For
Scorpion, we adapt the configuration to consider only pat-
terns up to size 3, with a shorter time limit. We replace com-
plementary with a planner that interleaves search and sym-
bolic PDBs (Kissmann and Edelkamp 2011; Franco and Tor-
ralba 2019), which also uses symbolic PDBs and is more op-
timized towards solving problems quickly. As baselines, we
included blind search and A∗search with the LM-cut heuris-
tic (Helmert and Domshlak 2009), as implemented in ver-
sion 21.12 of the Fast Downward Planning System (Helmert
2006). All those configurations are optimal, i.e., they are
guaranteed to always provide a minimum-cost plan.

Finally, to evaluate the gap with respect to satisficing
planners, we also run A∗search with FF. This is a non-
typical choice, as satisficing planners typically use more
greedy algorithms such as greedy best-first search and/or
WA∗(oftentimes in iterative anytime configurations that re-
fine the quality of the plan found over time (Richter and
Westphal 2010)). Here, we chose A∗with FF due to its sim-
plicity as well as its ability to find close-to-optimal plans in
one go.

Coverage Analysis
Table 3 shows the coverage on the different types of models,
that is, the number of instances solved within the time and
memory limits by each planner. Even though the time limit
is higher than what it would be required for it to be usable
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Figure 4: Impact of filter of feasible actions in cost and planning time without/with grounding on optimal (lmc, above) and
satisficing (FF, below) configurations.

in the game engine, the results are representative of the gen-
eral trends regarding which versions of the domain and/or
planners lead to better results.

The results show a number of interesting observations.
First of all, comparing the solved tasks within each of the
four different planning models, it is always the case that
full is easier than partial. This is to be expected, as the par-
tial model is more fine-grained and has a larger state space
due to the character having the choice of how much of a
favour ask to other characters. Filtering out actions always
improves performance regardless of how the interaction with
other characters is modelled or the planner being used. This
again is not surprising as the number of grounded actions
without any filter can grow very large.

Comparing the performance of optimal planners, how-
ever, the trend is not exactly as expected. In particular, the
baseline, lmc, is clearly superior to the best performing
planners in the last IPC. Part of it could be due to the dif-
ferent time limits, specially given that these planners have
not been fully optimized for short time limits. However, the
domain seems to suit particularly well to heuristics based on
the delete-relaxation such as lmc and FF, which compute
accurate estimates. This could be related to the fact that the
more costly actions, control actions, related to the control of
other characters are “delete-relaxed” in the sense that they
are about gaining resources that are never lost once acquired.

On the other hand, planners based on symbolic search
tend to perform poorly, even under blind explicit search.
This is likely related to the large number of grounded facts
and actions, but also to the fact that reasoning backwards
from the goal seems challenging, as suggested by the fact
that bidirectional search (sbd) performs worse than only
forward search (sfw) in several cases.

Optimal versus Satisficing Configurations
Figure 2 shows a comparison of the best configuration that
guarantees always finding the optimal solution (lmc) and
our satisficing configuration (FF). Overall, A∗with the FF
heuristic (FF) offers a very good trade off between planning
time and plan quality. The comparison in terms of plan cost,
shows that the plans found by FF are quite often very close
to the optimal one, whereas the advantage in search time
(i.e., excluding grounding) is huge, of more than one order
of magnitude. FF is able to solve the problem below a sec-
ond in many cases, once that the problem has been grounded.
However, the grounding process is still a bottleneck, so the
difference in terms of planner time, even though still favor-
able to FF, is not that huge.

When considering which instances can be solved under a
time limit of 1 second, we observe that search time is not a
problem. For example, under full filtering actions, and fix-
ing the number of goals to 1, lmc can easily address tasks



with 70 locations, and 10 characters in 0.11 seconds and FF
takes only 0.01 seconds. However, grounding is an issue on
problems with larger number of objects. This is specially
sensitive to the number of characters so to keep time under
a second it is desirable that the number of characters is 5
or less. In future work, we will analyze how to filter which
characters are relevant for the planning process in automatic
ways, e.g., by extending our action filters or using additional
object filters (Silver et al. 2021)

Filtering Actions
As shown in Table 3, filtering some actions can improve
the performance across all planners. The main reason is the
speed-up of the grounding process, thanks to the reduction
in the number of grounded actions. This is clearly a bottle-
neck of the suggested models. As illustrated by Figure 3,
without any filter, some problems cannot be even grounded
within the time/memory limits, which only allow for up to
half a million actions. The simple filters described in Sec-
tion 4 are sufficient to reduce the number of actions by an
order of magnitude, which explains the positive results in
Coverage.

However, as these filters are based on manual heuristic
rules, it is possible that they eliminate important actions that
are required in the optimal plan. If that happens, plans will
have larger cost. As the cost function is tailored to obtain be-
lievable characters, this could result on characters choosing
poorly believable plans.

Figure 4 analyzes in detail the impact of the action filter
on both the optimal and the satisficing configurations. The
cost increases significantly in some cases, suggesting that
there is room of improvement for our filter criteria. However,
in most cases the impact on the cost of the plans obtained is
negligible, where as search and total planning time are both
heavily reduced thanks to the reduction in the number of
actions.

6 Related Work
There are different approaches that aim to obtain social and
emotional NPCs. A popular approach is to use behaviour
trees (Johansson and Dell’Acqua 2012; Agis, Gottifredi, and
Garcı́a 2020; Belle, Gittens, and Graham 2022), or focus on
pathfinding (Aversa and Vassos 2014). In contrast, we fo-
cus on goal-oriented planning, where the NPC’s actions are
determined by finding a (near-)optimal plan for achieving a
pre-specified goal.

Among approaches applying domain-independent plan-
ning to control NPCs, most of them are focused only on
strategic considerations and do not take into consideration
the character’s emotional state (Orkin 2006; Menif, Jacopin,
and Cazenave 2014; Vlachopoulos, Vassos, and Koubarakis
2014). A notable exception is the work by Pérez-Pinillos,
Fernández, and Borrajo (2011), whose planning models take
into account the emotions and personality traits of the char-
acters. They introduce a numeric planning approach where
the goal is to satisfy basic needs, described in terms of nu-
meric variables such as “hunger”, “neuroticism”, etc. In con-
trast, our models are focused on achieving specific goals.

Our model of the character’s state is simpler, aiming for a
scalable solution that can provide believable plans in real
time. Furthermore, our NPCs take into consideration other
agents in order to collaborate with them for achieving their
goals.

Finally, there has been a lot of research on multi-agent co-
ordination and/or negotiation, e.g. (Kraus 1997). Again, our
focus is not on obtaining optimal co-ordination for solving
problems (Davis and Smith 1983), or on how agents negoti-
ate. Instead, we aim for a simpler and scalable approach that
is used during planning to achieve a realistic NPC behaviour.
The actual negotiation between the agents that arises after an
agent executes the RequestFavour could be based on any of
those negotiation frameworks.

7 Conclusions
In this paper, we have shown how domain-independent clas-
sical planners can be used to obtain believable characters in a
social storytelling environment, by taking into consideration
collaboration with other agents. By designing a cost function
that depends on the emotional state of the characters, their
behaviour can be controlled so that the character actions are
consistent with the player’s expectations. Furthermore, we
showed that current planners can find optimal or close-to-
optimal solutions in the order of milliseconds on instances
with a realistic number of characters.

We highlight that this work also opens several promis-
ing avenues for future research. First, we have manually de-
signed a cost function that results in characters choosing be-
lievable plans. An interesting direction, however, is how to
more systematically evaluate whether plans are believable,
and whether the NPC’s actions are consistent with players’
expectations. This can lead to an automate process where
cost functions are personalized for the player, i.e., so that
the game can adapt if the player does not consider certain
plans believable.

Secondly, in this paper we have focused only on hard
goals, as currently we assume the game engine is in charge
of defining goals based on previous events with a rule-based
system. However, our set-up is very amenable for consider-
ing goal selection as part of the planning process, using soft
goals whose utility also depends on the character’s emotions.

Finally, as the main bottleneck is currently the grounding
process, this is an interesting application for lifted planners
which avoid it (e.g. (Corrêa et al. 2020, 2021; Lauer et al.
2021)). Future work could analyze how to handle complex
cost functions such as the ones in our model in near-optimal
lifted planning.
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