
Size-Independent Additive Pattern Databases for the Pancake Problem

Álvaro Torralba Arias de Reyna and Carlos Linares López
Planning and Learning Group

Universidad Carlos III de Madrid
Leganés (Madrid) - Spain

{alvaro.torralba, carlos.linares}@uc3m.es

Abstract

The Pancake problem has become a classical combinatorial
problem. Different attempts have been made to optimally
solve it and/or to derive tighter bounds on the diameter of
its state space for a different number of discs. Until very re-
cently, the most successful technique for solving different in-
stances optimally was based on Pattern Databases. Although
different approaches have been tried, solutions with Pattern
Databases on Pancakes with more than 19 discs have never
been reported. In this work, a new technique is introduced
which allows the definition of Additive Pattern Databases for
solving Pancakes of an arbitrary length. As a result, this tech-
nique solves Pancake problems with twice as many discs as
the largest ones solved nowadays with other techniques based
on Pattern Databases saving up to two orders of magnitude of
space.

Introduction

The Pancake problem was originally introduced by Harry
Dweighter as follows: (Dweighter 1975)

The chef in our place is sloppy, and when he pre-
pares a stack of pancakes they come out all different
sizes. Therefore, when I deliver them to a customer, on
the way to the table I rearrange them (so that the small-
est winds up on top, and so on, down to the largest at the
bottom) by grabbing several from the top and flipping
them over, repeating this (varying the number I flip) as
many times as necessary. If there are N pancakes, what
is the maximum number of flips that I will ever have to
use to rearrange them?

Schematically, this problem is represented as a permuta-
tion π of the constants {0, 1, . . . , N−1}where each number
denotes a different pancake —also called discs from now on.
The goal consists of restoring the identity permutation by
performing prefix reversals. Therefore, an operator fi gen-
erates a new permutation by flipping the location of the first
i discs, 1 < i ≤ N . It is trivial to show that every permuta-
tion can be solved so that the size of the state space with N
discs is exactly equal to N !.

Here, we are exclusively concerned with the problem of
optimally solving particular instances of the Pancake prob-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lem. In this setting, the most successful approach for a num-
ber of years has been Pattern Databases —or PDBs for short.
Originally introduced by Culberson et al. (Culberson and
Schaeffer 1998), a Pattern Database is a collection of pat-
terns which are defined as abstractions of the original state
space where each constant {0, 1, . . . , N − 1} gets replaced
by either a dedicated symbol or a special “don’t care” sym-
bol. Thus, Pattern Databases are computed as hash tables
which store, for every pattern (or arrangement of symbols in
the abstract state), the minimum number of moves required
to place the symbols in the abstract state space in their goal
location —also known as the goal pattern. This value can be
easily computed with a backwards brute-force breadth-first
search from the goal pattern. So far, Pattern Databases are
admissible heuristic functions. A remarkable property of the
Pattern Databases generated this way is that they consider as
many symbols as there are in the original state space which
is N in the Pancake problem, the number of discs. Origi-
nally, all moves were counted in so that when comparing the
values retrieved from different Pattern Databases (for a col-
lection of different patterns), taking the maximum of all val-
ues guarantees admissibility. However, when the constants
appearing in the original state space can be split into dis-
joint sets so that each operator affects only constants in one
set (as in the sliding tile puzzle or the towers of Hanoi), a
usually far better informed heuristic function can be built
by computing the summation of all values (Korf and Felner
2002). This idea is known as disjoint, or just additive Pattern
Databases. Using techniques based on Pattern Databases,
no experimental results have been reported with instances
with more than 17 discs for many years and only very re-
cently 10 instances have been solved with up to 18 and 19
discs (Helmert and Röger 2010).

However, it has been recently shown that it is possible to
optimally solve instances with up to 60 discs with a very
simple heuristic function known as gap (Helmert 2010)1.
This heuristic function simply counts the number of gaps
or adjacent locations such that |πi − πi+1| > 1, 0 ≤ i < N ,
where πN is always equal to N and stands for the table.
Since such locations contain discs which are not adjacent
in the goal permutation, at least one occurrence of the op-

1Credit shall be acknowledged to Tomas Rokicki:
http://tomas.rokicki.com/pancake/

164

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011)

erator that separates them shall be counted in. As a result,
the number of gaps is an admissible heuristic function which
has been shown to be far more informed than the best Pattern
Databases known up to date.

In this work, we provide a new class of abstractions for the
Pancake problem which is independent of the size of the un-
derlying permutations. More remarkably, the new abstrac-
tion computes the number of moves required to sort specific
blocks without affecting others so that values from different
PDBs can be added. Besides, the resulting heuristic func-
tion has been found to be inconsistent and can be enhanced
by comparing the values retrieved by a regular lookup and a
dual lookup (Zahavi et al. 2007).

This paper is structured as follows. First, we introduce a
new abstraction based on the adjacency of discs instead of
the contents of each location. It is shown that these abstrac-
tions can be used for solving Pancakes with any number of
discs. Next, we discuss how to extend these abstractions to
consider an arbitrary number of PDBs simultaneously whose
values can be added. Also, a discussion is conducted on con-
sistency and duality of the new type of PDBs. Next, some
analysis on the relations with previous heuristics for the Pan-
cake problem are done. The experimental results show that
this new class of abstractions can solve Pancakes which are
twice as the largest ones solved by other PDBs before. Fi-
nally, the paper ends with some conclusions.

Block Representation

We start by defining the notion of a block from the idea of
adjacency introduced by Gates et al. (Gates and Papadim-
itriou 1979): an adjacency is a pair of pancakes that are ad-
jacent in the current permutation, and such that no other disc
has intermediate size between the two.

Definition 1 A block is defined as an arbitrary number of
contiguous adjacencies such that at each extreme either
there is a gap or the permutation ends

By slightly abusing the notation, we also consider blocks
of length one, i.e., single pancakes if and only if the pan-
cakes before and after it are not contiguous in the goal state
or the permutation ends there. A similar representation was
suggested previously by Chitturi et al. (Chitturi et al. 2009)
to derive upper bounds on the diameter of the state space.

For example, the Pancakes 〈01324〉 and 〈012376548〉
have exactly three blocks. Blocks are denoted with an iden-
tifier and possibly a sign. The identifier consists of a number
such that block i contains discs which are all larger than pan-
cakes of block (i−1). On the other hand, if a block contains
more than one pancake, it can be sorted either in ascending
or descending order. The first case is said to have a posi-
tive sign whereas the latter is said to have a negative sign.
Obviously, if a block consists of a single pancake it has no
sign. In the previous examples, both pancakes can be rep-
resented in the block notation as 〈0+1−2〉. Since the block
notation preserves all the information of the original permu-
tation but the number of discs in each block, they do provide
a convenient way to reason with pancakes of any size though
one cannot recover the complete state of a problem from its

block representation. It is easy to notice that the gap heuris-
tic is exactly equal to the number of blocks minus one if the
N -th disc representing the table is preserved in the block no-
tation2. Thus, the gap heuristic of the preceding pancakes is
equal to 2.

Blocks can be handled symbolically to either build up
new blocks or to split them. In fact, the following self-
explanatory relations hold (for an arbitrary pair of adjacent
blocks i and i+ 1):

〈i (i+ 1)〉 =〈i+〉 〈(i+ 1) i〉 =〈i−〉
〈i+(i+ 1)〉 =〈i+〉 〈(i+ 1) i−〉=〈i−〉
〈i (i+ 1)+〉=〈i+〉 〈(i+ 1)−i〉 =〈i−〉
〈i+(i+ 1)+〉=〈i+〉 〈(i+ 1)−i−〉=〈i−〉

The block representation can be computed considering
pancakes in any order since the preceding relationships can
be applied associatevily: (0s01s1)2s2 = 0s0(1s12s2), where
s0, s1 and s2 stand for the signs of blocks 0, 1 and 2, if any,
respectively. This guarantees that the representation with
blocks is unique.

In this representation, operators either invert a prefix of
blocks or split blocks in four different ways. Thus, any pan-
cake represented with blocks can generate up to five differ-
ent successors per block:

1. A prefix of blocks can have their sign and position in-
verted by applying an operator immediately after it only
if it consists of more than one block or a single block with
sign. For example: the permutation 〈1−2+0+〉 generates
the descendants 〈0−2−1+〉, 〈2−1+0+〉 and 〈1+2+0+〉
—the latter being equivalent to 〈1+0+〉.

2. An operator can split a block in four different ways (in all
the examples the block to split is 2+):

(a) It can separate the first pancake of the block from the
rest, only if it is not the first block of the permutation.
For example, 〈1−2+0+〉 generates 〈21+3+0+〉.

(b) It can break up a block from the middle creating two
smaller blocks. For instance, 〈2−1+3+0+〉 can be gen-
erated from 〈1−2+0+〉.

(c) If a block has length two, the previous split gener-
ates two single blocks, e.g., 〈21+30+〉 results from
〈1−2+0+〉.

(d) Finally, it can get all pancakes in a block from the last
one as in 〈2−1+30+〉 which is generated this way from
〈1−2+0+〉.

Note from the preceding discussion that: two blocks can
be merged into a single one when applying an operator (as in
case 1); also, some blocks with a single disc naturally appear
as in cases 2a, 2c and 2d.

From the relations shown above and the redefinition of the
operators just discussed it is feasible to generate all the pos-
sible combinations of Pancakes as blocks from the identity
permutation, which is represented as 〈0+〉. However, the
state space to traverse to visit all the feasible permutations

2Since our representation does not model the table as in the case
of the gap heuristic, it will always be ommitted.

165

〈0+〉 (〈0123〉)

〈0−〉 (〈3210〉)

〈1+0−〉 (〈2310〉)

〈0+1−〉 (〈0132〉)

〈1+0〉 (〈1230〉)

〈01−〉 (〈0321〉)

〈0−1+〉 (〈1023〉)

〈1−0+〉 (〈3201〉)

〈1+0+〉 (〈2301〉)

〈0−1〉 (〈2103〉)

〈10+〉 (〈3012〉)

〈0−1−〉 (〈1032〉)

Figure 1: Abstract state space generated with 2 blocks or less (instances of the 4-Pancake are shown between parenthesis)

of blocks grows very rapidly with the number of blocks. The
number of permutations that can be achieved with B blocks
can be estimated by observing that B blocks can be ordered
in B! different ways where each block can have three differ-
ent signs: positive, negative, or none. Hence, an estimation
of the number of positions that can be achieved with a num-
ber of blocks less or equal than B is

∑B
i=1 i!3

i. Although
this formula is just an upper bound (since it includes im-
possible cases like 〈0+1+〉 which is equivalent to 〈0+〉) the
number of positions grows with the factorial of B. Thus, a
bound is set on the number of blocks when generating PDBs
like this to avoid memory exhaustion. This does not mean
that descendants with more than B blocks are not traversed.
They should indeed (though they are not stored) since an op-
timal path to a Pancake with B blocks might go through a
node with B′ blocks, B′ > B 3. Thus, the termination con-
dition is simply that all feasible permutations with up to B
blocks have been generated though the generation of these
permutations can include the consideration of Pancakes with
more blocks. Figure 1 shows the abstract state space gener-
ated with B = 2 —along with particular instances of the
4-Pancake for the sake of clarity. Pancakes with more than
2 blocks have been explicitly ommitted in the figure since
none generates pancakes with 2 blocks or less. As it can be
seen, this PDB improves the gap heuristic from 2 to 3 in four
cases —namely, 〈0+1−〉, 〈01−〉, 〈1+0+〉 and 〈0−1−〉.

All these permutations can be stored and then looked up
in memory when solving a particular instance. Although
this abstraction does not ignore any block the distances es-
timated with this PDB might not be optimal. The reason is
that these abstractions get rid of the number of pancakes in
each block and optimal solutions of different lengths might
exist for blocks with a different number of discs.

Additive Pattern Databases

As a matter of fact, since no block is ignored in the pre-
vious representation the previous Pattern Database cannot
be used, in general, when solving a particular Pancake. The
reason is that there is no guarantee that for Pancakes arbitrar-

3Since the gap heuristic is not perfectly informed, there are op-
erators that split a block somewhere along the optimal path for a
number of start states. For example, the first state in the optimal
path from 〈784523061〉 is 〈254873061〉 which splits the block
containing discs 2 and 3.

ily large, there are a number of blocks less or equal than B,
the threshold used in the generation. This difficulty is over-
come making the same observation as in ordinary PDBs: ig-
noring some blocks. In addition to the blocks considered in
the previous section, those whose contents are ignored are
denoted with uppercase letters from the end of the alphabet
and are known as “don’t care” blocks in contraposition to
those blocks whose contents are considered in a particular
abstraction (as in the previous section), which are known as
“care” blocks. “Don’t care” blocks are indistinguishable,
have no sign and they obey the following rule XY = X.

During the generation of the Pattern Database, operators
are distinguished by the block they are applied to, i.e. the
adjacency relationship that they modify. In order to guaran-
tee admisibility we rely on a cost partitioning schema (Yang
et al. 2008). Therefore, when ignoring some blocks, moves
that change their adjacency are simply ignored. This is, their
cost is assumed to be zero. Otherwise, the cost of an opera-
tor is computed as follows:

1. If the operator splits a “care” block or if it is applied ex-
actly between two “care” blocks, the cost equals the cost
of the operator, one.

2. However, if the operator is applied right between a “care”
block and a “don’t care” block, the cost considered in this
particular abstraction is divided by the number of abstrac-
tions that will take into account the same operator. Since
the “don’t care” block shall be considered by some other
abstraction, but no more than one, the cost is divided by
two and 0.5 is added to each abstraction4.

As a consequence of the consideration of “don’t care”
blocks, PDBs start now from a different specification of the
goal pattern, thus allowing the simultaneous consideration
of a number of PDBs. For example, a block whose contents
are ignored can be considered in the identity permutation ei-
ther at the beginning or the end resulting in different goal
specifications, namely: 〈0+X〉 and 〈X0+〉.

Clearly, if every abstraction maps different blocks so that
the same block is considered in one and only one abstraction,
then the values retrieved from different PDBs can be added
instead of maximized when using the computation of costs
discussed above. However, the gap between two blocks in

4To avoid storing numbers in floating point precision, numbers
are multiplied by two in the PDB.

166

different lookups is not always considered. Consider, for
example, the Pancake 〈21034〉, which is represented in the
blocks formulation as 〈0−1+〉. If two PDBs are generated
with no more than one block each (i.e., B = 1), the first
PDB would retrieve the value of 〈0−X〉 whereas the second
one would look up the permutation 〈X0+〉. According to the
previous rules, the first lookup would return 0.5 since the
optimal path from 〈0−X〉 to 〈0+X〉 consists of a single op-
erator that inverts the sign of the first block —indeed, if X
would consist of a single positive block then this flip solves
the Pancake. However, the second lookup would return 0
because 〈X0+〉 is the goal permutation. Adding both values
yields 0.5, whereas the gap heuristic would give one. When
the number of PDBs used for computing the heuristic esti-
mate of a particular Pancake grow, these half points result in
a significant loss of accuracy.

The key observation is that when mapping a permutation
to different PDBs, none of these mappings take into account
the relations between different lookups in the same state.
The easiest solution simply consists of adding one between
them —indeed, there should be a gap otherwise they would
form a block. However, this solution allows the possibility
of returning inadmissible estimates. This is exemplified with
the same Pancake considered above, 〈21034〉. Since there is
a gap between the last disc (0) of the block considered in the
first lookup (〈0−〉) and the first disc (3) of the block consid-
ered in the second lookup, one can be added. However, this
results in an estimate of 1.5 when adding one to the value re-
turned by both PDBs, which is larger than the optimal cost,
one. Since we are adding the gap between the first (last) care
block and the disc located at its left (right, respectively) in
the goal state, we must consider that operator to have a cost
equal to zero. In order to be able to identify the discs just
at the left (right) of the first (last, respectively) care block
in the goal state, two additional “don’t care” blocks are de-
fined: L and R which consist of a single disc (i.e., they are
blocks with no sign) and are always placed to the left and to
the right of the first and last block in the goal pattern. This is,
L and R are “don’t care” blocks (consisting of a single pan-
cake) which can be substituted only by the discs preceding
the first block of the abstraction or the last one respectively.

Thus, the new goal specifications considered before are
represented instead by 〈0+RX〉 and 〈XL0+〉. Henceforth,
rule 2 discussed above for computing the cost of an oper-
ator that affects a “don’t care” block is now extended with
the following remarks (similar rules follow for the consider-
ation of the “don’t care” block L):

2(a) Still, if an operator is applied between R and any “don’t
care” block, a cost equal to zero is computed. The
reason is that R is also a “don’t care” block.

2(b) If the operator is applied between the last “care” disc
of an abstraction and R, zero is added as well, since the
consideration of the gap between successive lookups
guarantees no loss of accuracy.

2(c) Finally, if the operator is applied between a “care” disc
other than the last one of the current abstraction and R
or between a “care” block and any “don’t care” block
other than R, 0.5 is added.

Note there are a high number of potential arrangements
of PDBs for solving Pancakes. In this work, abstractions
are uniquely identified by their goal pattern. In particular,
the following have been chosen: 〈0+〉, 〈0+RX〉, 〈XL0+〉 and
〈XL0+RX〉. The first one was introduced in the second sec-
tion and it is the PDB of choice when the number of blocks
is less or equal than B, the number of blocks used for its
generation. The rest can be applied in spite of the number
of blocks present in the current permutation: 〈0+RX〉 and
〈XL0+〉 have been already discussed in this section and can
be applied when the mapped blocks shall be located at the
beginning or the end of the goal permutation; the last one,
〈XL0+RX〉, can be applied when the number of blocks iden-
tified exceeds B and they are neither at the beginning nor
the end of the goal state.

For the sake of clarity an example follows: consider
the 10-Pancake 〈6714508329〉 which is uniquely identi-
fied by the following permutation in the blocks notation
〈4+13+052−6〉. Using the preceding PDBs with B = 2
blocks or less in 〈XL0+RX〉 and B = 3 blocks or less for
all the others, PDB 〈0+〉 cannot be used since the current
Pancake has 7 blocks. Instead, the following lookups are
performed (bear in mind that each block shall appear in one
PDB and only one): blocks 0, 1 and 2 are mapped in the
PDB 〈0+RX〉 since these shall be located at the beginning
in the goal state, resulting in the lookup of 〈X1RX0X2−X〉,
which returns 2; blocks 3 and 4 are used in the abstraction
〈XL0+RX〉 because these shall be restored to intermediate
positions in the goal permutation. This mapping results in
the permutation 〈1+X0+XRLX〉 which returns 1.5. Finally,
there are only two blocks awaiting to be mapped: 5 and 6.
Since these shall be restored to the end of the goal state, the
PDB 〈XL0+〉 is used and the resulting lookup to the PDB is
〈XLX0X1〉 which returns 1. Adding all these values yields
the heuristic estimate 2 + 1.5 + 1 = 4.5 which can be en-
hanced further by adding two gaps, those between blocks 2
and 3 (used as the last and first ones in the first two lookups)
and blocks 5 and 6 —used as the last and first ones in the last
two lookups. Therefore, the resulting estimate is 4.5+2=6.5
which can be rounded up to 7. This result improves the gap
heuristic by one.

Before moving on to the experimental results, a discus-
sion is conducted now on inconsistency and weather duality
can improve the regular estimates or not.

First, these PDBs easily generate inconsistencies —i.e.,
the absolute value of the difference between the heuristic es-
timates of a node and any of its children exceeds the cost of
the operator. This happens when a pancake n has a descen-
dant which creates a gap and, in addition, the PDBs realize
that an extra move is still required so that the descendant has
a heuristic value of h(n) + 2.

Second, while the gap heuristic cannot be improved with
the idea of duality, these PDBs can be used to improve the
heuristic estimate with a dual lookup. In fact, the dual of the
gap heuristic wrt. the identity permutation is the gap heuris-
tic itself since the definition of a gap as shown in the Intro-
duction, |πi − πi+1| > 1, 0 ≤ i < N , is strictly equiv-
alent when considering the inverse of π, π−1, resulting in
|π−1

i − π−1
i+1| > 1, 0 ≤ i < N . In words, if there is a gap

167

between two adjacent locations, then these locations will be
placed in positions far from each other in the dual state, thus
preserving the same gap. However, the dual state of a block
representation can result in a different value stored in the
PDB. Moreover, the dual lookup of a block representation
can be readily computed: if there is a block of length k start-
ing at location i, the same block (with the same length and
sign) is preserved in the dual representation wrt. to the iden-
tity permutation starting at location πi. The only difference
is that blocks might be renamed when computing the dual
representation in the blocks notation resulting in little over-
head, if any.

Related Work

In (Yang et al. 2008), an additive abstraction is proposed for
solving the pancake problem with two possible cost distribu-
tions over the operators: cost-splitting and location-based.
The one with better results for the pancake problem is the
location-based policy. This schema counts most of the gap
relationships: the ones between two care blocks on the same
abstraction, as to repair a gap between the two care discs,
one of them has to be moved from the first position to the
adjacent location. Only those gaps between discs considered
in different PDBs will be ignored. However, as this kind of
PDBs maps the location of each disc, their size grows with
the pancake size, limiting the effectiveness of this technique
in problems with a large number of discs.

The relative order abstractions (Helmert and Röger 2010)
are size-independent PDBs for the pancake problem, which
consider the cost of sorting a limited number of discs distin-
guished by their relative order (12 discs at most were used
with a total memory usage of roughly 500 MB). However,
when making more than one lookup the result can only be
the maximum among all, limiting the maximum heuristic
value that a state can have independently of the size of the
complete pancake. This greatly reduces its effectiveness as
the pancake size grows.

The better known heuristic for the pancake problem is the
gap heuristic (Helmert 2010). Our heuristic counts the num-
ber of gaps as well but also, very importantly, it detects some
patterns or relationships between blocks locations that need
an extra operator that does not reduce the number of gaps.
Therefore, it is more informed than the gap heuristic. An
interesting question, regarding the utility of our heuristic
is how many node expansions can be saved for these pat-
terns. For example, in 〈0+RX〉, the pattern 〈0+XR〉 detects
that none of the available operators reduces a gap. While
this can be easily detected just expanding the node and real-
izing that all descendants preserve the number of gaps, there
are more interesting patterns whose detection can lead to
pruning large parts of the search tree. Take, for example,
pancake 〈XL0+〉. The pattern 〈XL0−〉 needs an extra move
bringing the block 0 to the first position. As a ”don’t care”
symbol is at the start of the pancake and it may consist of
any number of disc with any number of gaps, there could be
a large number of node expansions saved. Thus, identifying
such ”conflicts” can make this heuristic significantly more
informed than the gap heuristic.

hb2 hb3

B memory B memory
〈0+〉 4 2,127 5 31,287

〈0+RX〉 3 21,648 4 643,728
〈XL0+〉 3 21,648 4 643,728

〈XL0+RX〉 2 7,200 3 214,560
Total 52,623 1,533,303

Table 1: Threshold on the number of care blocks and overall
size of each PDB (in bytes)

Concluding, this work contributes to the current state of
the art in three different ways:

• Using a block representation makes our heuristic size-
independent, allowing its application on bigger problems.

• The inclusion of L and R discussed in section 3 allows
the consideration of other gaps between different lookups
that would be otherwise overlooked.

• As shown in the Experimental Results section, our heuris-
tic saves various orders of magnitude on the number of
nodes generated when compared with any other Pattern
Databases known up to date and still a significant number
when being compared to the gap heuristic and various or-
ders of magnitude in the time spent for solving particular
instances when being compared to other PDBs.

Experimental Results

As mentioned in the third section, the following PDBs have
been generated: 〈0+〉, 〈0+RX〉, 〈XL0+〉 and 〈XL0+RX〉 with
two different thresholds on the maximum number of care
blocks, B. The heuristic function that results from adding
the values retrieved from each configuration is denoted as
hb2 and hb3 . Table 1 shows the maximum number of care
blocks in the stored patern selected for each PDB and their
overall size in bytes. To ensure that it is possible to match all
the “don’t care” blocks when using the PDBs, B is greater
for those PDBs with less care blocks, avoiding the creation
of PDBs with the goal patterns 〈L0+〉, 〈0+R〉, and 〈L0+R〉.
For that reason hb2 sets B = 2 for the PDB 〈XL0+RX〉,
B = 3 for 〈XL0+〉 and 〈0+RX〉 and, finally B = 4 in 〈0+〉.
On the other hand, hb3 expands an additional care block in
each PDB, with B = 3 in 〈XL0+RX〉, B = 4 in 〈XL0+〉
and 〈0+RX〉 and B = 5 in 〈0+〉. The memory requirements
listed in table 1 are larger than the upper bound computed
in the second section. This results from the ranking schema
chosen which wastes some space with the benefit of making
the ranking procedure faster. Despite this, the largest PDB
(hb3) take altogether less than 2 MB of space.

Table 2 shows the optimal cost and mean number of nodes
generated by the gap heuristic and hb2 and hb3 for solving
1000 instances randomly selected from N = 10 to 42 discs
with the IDA∗ with the Bidirectional pathmax propagation
rule. These experiments were run on an Intel Core 2 duo
1.86GHz with 8GB RAM using the Java virtual machine
1.6.1. The generated nodes shown for the gap heuristic are
consistent with those reported before (Helmert 2010), but

168

Generated nodes Time (sec)
N h∗ hgap hb2 hb3 hgap hb2 hb3

10 8.684 294.339 121.480 87.910 0.102 0.361 0.210
11 9.717 570.040 232.331 164.630 0.131 0.745 0.435
12 10.715 927.181 425.946 306.211 0.244 1.385 0.924
13 11.685 1,476.777 676.725 488.963 0.346 2.330 1.512
14 12.723 2,073.177 1,045.742 789.024 0.537 3.841 2.626
15 13.699 2,793.450 1,495.204 1,147.949 0.747 5.826 4.095
16 14.699 4,443.078 2,516.042 1,967.638 1.177 10.304 7.429
17 15.805 7,028.581 3,829.974 3,066.605 1.899 16.629 12.239
18 16.730 9,229.122 5,341.750 4,198.285 2.569 24.546 17.695
19 17.719 12,105.556 7,538.589 6,265.455 3.511 36.244 27.652
20 18.710 20,159.721 11,398.400 9,259.529 5.980 57.848 43.441
21 19.730 24,557.891 15,496.780 12,746.851 7.615 83.016 62.878
22 20.709 33,711.946 22,027.050 18,497.313 10.585 124.214 95.929
23 21.748 48,366.230 31,689.464 26,695.949 15.488 186.298 144.250
24 22.633 50,187.097 33,755.005 28,891.763 16.283 208.918 164.142
25 23.720 79,348.358 55,607.005 47,473.662 26.236 358.042 280.647
26 24.735 94,388.283 67,548.043 58,659.569 31.392 456.075 363.845
27 25.689 113,317.403 82,122.610 72,002.949 39.268 576.897 464.681
28 26.697 153,972.289 108,525.645 94,103.649 54.362 798.533 633.978
29 27.754 183,222.217 133,295.550 116,548.775 65.879 1,019.417 818.450
30 28.675 263,108.280 177,918.376 155,474.814 95.495 1,416.736 1,135.227
31 29.702 360,065.623 209,150.386 187,876.132 132.722 1,728.874 1,426.111
32 30.750 357,276.950 262,369.433 231,016.450 134.709 2,259.041 1,825.603
33 31.639 458,478.223 345,145.443 311,125.870 173.690 3,083.068 2,544.769
34 32.680 525,150.190 397,217.293 355,743.816 202.403 3,689.623 3,025.660
35 33.664 734,044.287 553,287.486 495,887.725 286.105 5,352.354 4,391.045
36 34.665 820,331.125 632,925.129 562,590.146 328.954 6,305.066 5,114.836
37 35.682 1,290,816.553 988,602.809 872,516.678 513.398 10,139.311 8,202.614
38 36.695 1,305,943.076 1,014,136.669 918,736.036 531.696 10,792.457 8,923.332
39 37.683 1,564,876.327 1,258,145.321 1,156,110.937 645.798 13,743.394 11,496.780
40 38.703 1,708,990.215 1,368,569.706 1,259,357.089 727.621 15,482.981 12,966.377
41 39.708 2,856,850.225 2,268,045.902 2,049,308.053 1,224.695 26,505.072 21,840.799
42 40.711 2,626,988.835 2,130,661.501 1,972,564.906 1,144.392 25,833.201 21,709.817

Table 2: Mean number of nodes generated and time spent (in milliseconds) by the gap heuristic and the blocks abstraction in
pancakes with a number of discs ranging from 10 to 42

the mean times reported here are slightly greater. This effect
is attributed to our implementation in Java in contraposition
to the most effective implementation in C used in the origi-
nal experiments with the gap heuristic.

The results show that both hb2 and hb3 generate signifi-
cantly fewer nodes than the gap heuristic at the cost of tak-
ing longer for the evaluation of every node. While the gap
heuristic results in an elegant definition that can be evalu-
ated very fast, the ranking mechanism imposed by Pattern
Databases can become a serious bottleneck. In fact, hb2

and hb3 take from 6 (for the easiest problems) up to 20
times more than the gap heuristic for completing the search.
When comparing the number of nodes, hb2 saves a num-
ber of nodes ranging from 40% (for the lowest values of N)
to 25%, for the largest Pancakes; on the other hand, hb3

saves between 55% and 30% generations. Thus, as the pan-
cake length grows, the percentage reduction on the number
of nodes wrt. the gap heuristic decreases. As a consequence,
the difference in runtimes between hgap and our new heuris-

tics increase with the pancake length. Besides, the differ-
ences between hb2 and hb3 does not suggest that increasing
the number of care blocks could lead to a significant im-
provement over hgap as the pancake gets larger.

Table 3 shows a comparison with the best results re-
ported up to date5 with Pattern Databases. This includes sev-
eral configurations for the location-based PDBs (Yang et al.
2008) and the relative order abstractions (Helmert and Röger
2010). Clearly, additive PDBs generate fewer nodes and
take less time than relative-order PDBs. However, the lat-
ter have constant memory requirements and the same PDB
can be used for problems of any size. hb2 and hb3 take the
best from each, expanding fewer nodes than any and solv-
ing problems remarkably faster. For example, pancakes of
length 17, 18 and 19 are solved saving four, five and seven
orders of magnitude while taking about two orders of mag-
nitude less space in comparison with relative-order PDBs.

5To the best of the authors’ knowledge

169

N PDB technique Nodes PDB size (MB) Time (s)
Relative order DIDA∗ 2x50 random pancake sets 411,830 ≈ 479 60.390
Relative order IDA∗ 50 random pancake sets 673,340 ≈ 479 49.300
Relative order DIDA∗ 2x4 random lookups and
2xobject-location abstraction

2,362,899 ≈ 479 31.620

17 Additive location-based DIDA∗ 4-4-5 368,925 ≈ 1 0.195
Additive location-based DIDA∗ 5-6-6 44,618 ≈ 18 0.028
Additive location-based DIDA∗ 3-7-7 37,155 ≈ 196 0.026
hb2 3,830 ≈ 0.053 0.017
hb3 3,067 ≈ 1.5 0.013
Relative order DIDA∗ 2x5 random lookups 13,439,483 ≈ 479 209.810

18 Relative order DIDA∗ 2x10 random lookups 7,638,885 ≈ 479 236.100
hb2 5,342 ≈ 0.053 0.025
hb3 4,198 ≈ 1.5 0.018
Relative order DIDA∗ 2x5 random lookups 1,236,838,871 ≈ 479 20,409.900

19 Relative order DIDA∗ 2x10 random lookups 689,598,292 ≈ 479 22,576.390
hb2 7,539 ≈ 0.053 0.036
hb3 6,265 ≈ 1.5 0.028
Relative order Not reported

≥20 Additive location-based Not reported
hb2 and hb3 More than 40 pancakes

Table 3: Comparision of various PDBs in the number of nodes generated, size and time spent in the 17, 18, 19-pancake and
above

Since hb2 and hb3 can be enhanced by taking the max-
imum from the sum of the regular lookups and the dual
lookups, we also used duality for reducing the number of
nodes. Being so close to the optimal value the reduction
in the number of nodes (not shown in Table 2 due to lack
of space) ranged from 50% (for small values of N) to 25%
—for the most difficult instances. In comparison with the
gap heuristic, the dual lookups of hb2 save between 70%
and 40% generations, whereas the dual lookups of hb3 re-
sult in savings between 80% and 50%. However, making
two lookups affects the overall running time by a factor of
two. Using DIDA∗ did not significantly improve our results.

Conclusions and Future Work

This work does not set a state-of-the-art heuristic for the
pancake problem. Although the technique discussed here re-
duces significantly the number of nodes generated, the gap
heuristic obtain optimal solutions faster. However, it con-
tributes to the current state of the art in the study of Pattern
Databases by showing how to create PDBs which are size
independent (so that they are generated only once); which
take two orders of magnitude less space than those produc-
ing the best results known so far; and which allow solving
Pancakes with twice as many discs as the Pancakes solved
by previous approaches with Pattern Databases.

There are several lines to research further in the context
of this work in order to improve the results on the Pan-
cake problem. First, faster heuristic evaluations could be
achieved through an incremental calculation over the gap
heuristic, being only neccesary to determine if some con-
flicts can be added to the number of gaps. Interestingly, pay-
ing attention to Figure 1, it becomes clear that all abstrac-

tions ending in 1− can add one to the gap heuristic —this
is true, for 〈0−1−〉, 〈0+1−〉, and 〈01−〉. In fact, it is trivial
to show a further generalization of this rule and all pancakes
ending in 〈k−〉, with k being the larger block add one move
to the gap heuristic. This and other relations can be auto-
matically discovered with these PDBs leading to more ac-
curate estimations. Moreover, these relations might lead to
a further compression ratio of these PDBs. Finally, in order
to improve the heuristic informedness, some considerations
about the size of the block can be made. For example, distin-
guishing blocks with two discs from those with more discs
can be very helpful as operators splitting a block into two
single discs are only applicable in the first case.

On the other hand, while the gap heuristic only counts the
number of gaps, block-based abstractions take into account
their relative location. Consequently, it seems reasonable to
expect that PDBs like this could be useful in those problems
where adjacency is a key property of the domain. Interest-
ing domains for applying this kind of abstractions include
the burnt-pancake introduced by Gates and Papadimitriou
(Gates and Papadimitriou 1979), and the genome rearrange-
ment problem formalized as a planning problem in (Erdem
and Tillier 2005). In the burnt pancake problem, the block
representation can be applied just considering that all blocks
are signed. In this case the gap heuristic can be extended
by considering that two pancakes which are adjacent in the
goal location appear together in the current permutation do
generate a gap if they are not oriented in the same direction.
Still, the gap heuristic is bounded by the number of pan-
cakes. However, the current upper bound for the burnt pan-
cake might be larger than the unburnt pancake (considered
here) so that more opportunities are given to these PDBs
for improving over the gap heuristic. In the genome rear-

170

rangement problem, operators are applied over any number
of adjacent genes, so that the size of the block can be ig-
nored. Therefore, the block representation can be expected
to provide good results. The operators can be seen as fol-
lows: transposition swaps the location of two blocks while
preserving their sign; inversions change the sign of a block
while preserving its location; transversions change the loca-
tion and position of a block. Of course, these operators can
be applied within the blocks, splitting them in two. With
operators fitting so well the block representation, it only re-
mains to choose a good cost-splitting schema.

Acknowledgements

This research is partially supported by the Spanish Governe-
ment MICINN projects TIN2008-06701-C03-03, TIN2008-
06701-C03-03 and Comunidad de Madrid - UC3M CCG10-
UC3M/TIC-5597. The first author is supported by a PhD
grant from Universidad Carlos III de Madrid.

References

Chitturi, B.; Fahle, W.; Meng, Z.; Morales, L.; Shields,
C. O.; Sudborough, I. H.; and Doit, W. 2009. An (18/11)n
upper bound for sorting by prefix reversals. Theoretical
Computer Science 410(36):3372–3390.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Dweighter, H. 1975. Problem E2569. American Mathemat-
ical Monthly 1010(82).
Erdem, E., and Tillier, E. 2005. Genome rearrangement and
planning. In Proceedings of the 20th national conference on
Artificial intelligence - Volume 3, 1139–1144. AAAI Press.
Gates, W. H., and Papadimitriou, C. H. 1979. Bounds for
sorting by prefix reversal. Discrete Mathematics 27:47–57.
Helmert, M., and Röger, G. 2010. Relative-order ab-
stractions for the pancake problem. In Proceedings of the
Nineteenth European Conference on Artificial Intelligence
(ECAI-10), 745–750.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In The Third Annual Symposium on Combinatorial
Search (SOCS-10), 109–110.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134(1–2):9–22.
Yang, F.; Culberson, J. C.; Holte, R.; Zahavi, U.; and Felner,
A. 2008. A general theory of additive state space abstrac-
tions. Journal of Artificial Intelligence Research 32:631–
662.
Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2007.
Duality in permutation state spaces and the dual search al-
gorithm. Artificial Intelligence 172:514–540.

171

