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Abstract

This paper describes three different planners that participated
in the 2016 unsolvability International Planning Competi-
tion (IPC). They use the Merge-and-Shrink (M&S) frame-
work in different ways. MS-unsat tailors M&S to derive per-
fect unsolvability abstractions, proving unsolvability without
any search. MS-unsat-irr uses the same approach with irrele-
vance pruning techniques to eliminate transitions and opera-
tors from the planning task. SimulationDominance performs
a search using simulation-based dominance and irrelevance
pruning, making use of M&S heuristics and A" as dead-
end detectors.

Introduction

Abstractions map the state space of the problem into a
smaller abstract state space. They are commonly used to
derive admissible heuristics for cost-optimal planning, by
using the optimal distance in the abstract state space as
an admissible estimation for the original problem. Abstrac-
tion techniques are very promising for proving unsolvability
since proving that any abstraction is unsolvable is a suffi-
cient condition for proving unsolvability (Béckstrom et al.
2013). The question is how to design suitable abstractions
for the problem at hand.

Merge-and-shrink (M&S) is a framework for deriving
abstractions in a flexible way. It was originally devised
for model-checking (Dréger et al. 2006; 2009) and later
adapted to planning (Helmert et al. 2007; 2014; Sievers et al.
2014). The behavior of M&S is determined by the shrinking
and merging strategies. Some shrinking strategies are safe,
meaning that they preserve plan-existence so that the result-
ing abstraction is solvable if and only if the original prob-
lem is (Hoffmann et al. 2014). If non-safe shrinking is used,
the resulting abstractions can be used as dead-end detector
heuristics in a A* search.

Another further use of M&S was to derive a set of transi-
tion systems in order to compute a dominance relation (Tor-
ralba and Hoffmann 2015). This dominance relation can
be used for dominance pruning during search, eliminating
states such that another “at least as good” state is known.
Also, this dominance relation can be used for irrelevance
pruning, removing transitions during the M&S process or
even planning actions while preserving at least one optimal
plan (Torralba and Kissmann 2015).

In this paper we present three different planners. MS-
unsat employs M&S with safe shrinking to prove unsolv-
ability without any search on the original state space. MS-
unsat-irr uses the same strategy as MS-unsat, plus irrel-
evance pruning. The SimulationDominance planner uses
search with simulation-based dominance and irrelevance
pruning, h""**, and a set of M&S heuristics. The core ideas
of these planners were introduced in previous work (Hoff-
mann et al. 2014; Torralba and Hoffmann 2015; Torralba and
Kissmann 2015). This paper provides a general overview
of the related literature and describes the configuration we
chose for the planners.

Merge-and-Shrink

Merge-and-shrink is a framework to construct abstraction
functions (Helmert et al. 2007; 2014). M&S works with a
set of transition systems, initialized with the atomic abstrac-
tions, i.e. projections onto single state variables. Then, it
interleaves merging steps, in which two transition systems
are replaced by their synchronized product, with shrinking
steps, which apply abstraction to keep the size of the tran-
sitions systems at bay. The algorithm stops when only one
transition system remains and this is guaranteed to be an
abstraction of the original problem. The algorithm depends
on two strategies. The shrinking strategy selects how to ap-
ply abstraction to reduce the size of the transition systems.
The merging strategy selects which two transition systems
to merge at every step.

Shrinking strategies

Shrinking strategies decide which states to aggregate in or-
der to reduce the size of the transition systems. The most
popular shrinking strategy is bisimulation (Nissim et al.
2011), which computes the coarsest goal-preserving bisim-
ulation relation and aggregates states that are bisimilar. An
important property of bisimulation is that, if only bisimula-
tion shrinking is applied at every step, the resulting transition
system is a bisimulation of the original planning task. Since
bisimulation preserves goal-distance, the resulting heuristic
will be perfect and cost-optimal planning can be decided
without any search. Exact label reduction aggregates some
labels while preserving the structure of the state space, in-
creasing the shrinking achieved by bisimulation while pre-
serving its useful properties.



However, when only plan existence matters, one can fur-
ther shrink the transition systems while keeping a perfect
heuristic such that the abstraction is solvable if and only if
the original problem is. Hoffmann ef al. (2014) introduced
safe shrinking strategies based on the concept of own-labels,
i.e. labels that only affect a single transition system and have
no preconditions or effects on the rest. Own-path shrinking
aggregates all abstract states in a cycle of own-labeled tran-
sitions. Intuitively, since those transitions can be performed
with no preconditions or effects on the rest of the problem
those abstract states are interchangeable and can be aggre-
gated. Moreover, if all goal variables have been merged in a
transition system, states with an own-labeled path to a goal
state can be aggregated since they are always solvable. Own-
path and bisimulation shrinking are safe shrinking strategies,
so if no other shrinking is used, the resulting heuristic is the
unsolvability-perfect heuristic so that it can decide whether
the problem is solvable without any search.

If the size of the abstraction is still too large, other approx-
imations can be used, such as greedy bisimulation (Nissim
et al. 2011) or K-catching bisimulation (Katz et al. 2012).
We use the approximate bisimulation strategy introduced by
Nissim et al., in which they set a maximum limit for the ab-
straction size.

Merge strategies

Merge strategies can be classified into linear and non-linear

merge strategies. Linear merge strategies are characterized

by a variable ordering, merging an atomic abstraction at ev-
ery iteration of the algorithm. The first merge strategies were
linear merge strategies based on causal graph (Knoblock

1994; Helmert et al. 2007). Hoffmann er al. (2014) made

an empirical study of 81 different linear merge strategies for

proving unsolvability, based on the following criteria:

o Tr, TrOwn, TrGoal, TrOwnGoal: Maximize number of
transitions whose labels are relevant for both transition
systems. If own is activated, ignore transitions that are not
own-labeled. If goal is activated considers only transitions
going into a goal state.

o CG, CGRoot, and CGLeaf: Prefer variables with an out-
going causal graph arc to an already selected variable. If
there are several such variables prefer the one ordered be-
fore (CGRoot) or behind (CGLeaf) in the strongly con-
nected components of the causal graph. It may use the
complete causal graph (Com) or only pre-eff edges.

e LevelRoot and LevelLeaf: Derived from FD’s full linear
order (Helmert 2006). LevelRoot prefers variables “clos-
est to be causal graph roots”, and LevelLeaf prefers vari-
ables “closest to be causal graph leaves”.

e Goal: Prefer goal variables over non-goal variables.

Sievers et al. (2014) reformulated the M&S framework
and generalized label reduction to work with non-linear
merge strategies. They also introduced in planning the DFP
non-linear merge strategy, originally used in the context of
model-checking (Dréger et al. 2006). Other relevant non-
linear merge strategy is MIASM (Fan et al. 2014). A re-
cent analysis of linear and non-linear merging strategies was
made by Sievers et al. (2016).

Simulation-Based Dominance Pruning

Dominance pruning techniques aim to avoid the exploration
of some parts of the state space, if they are proven to
be worse than others (Hall er al. 2013). This is formal-
ized in terms of a relation on the state space of the plan-
ning task, =<, such that s < ¢ implies that ¢ is “at least
as close to the goal” as s. Our approach is based on the
well-known notion of simulation relations (Milner 1971;
Gentilini et al. 2003). A relation < is a simulation if for any
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two states s,t such that s < ¢ and any transition s — &/,

exists another transition ¢ — ' such that s’ =< t/. The coars-
est goal-respecting simulation relation can be computed in
polynomial time on the size of the state space, though this is
still exponential in the size of the planning task.

In order to compute a relation in polynomial time we
follow a compositional approach in which the dominance
relation is derived from simulation relations computed on
a partition of the planning task (Torralba and Hoffmann
2015). A partition of the planning task is a set of transition
systems, ©1, ..., 0 such that their synchronized product
equals the state space of the planning task. In order to derive
such partition, we use the M&S algorithm with bisimula-
tion shrinking, changing the stopping condition by forbid-
ding any merge that would exceed a maximum limit on the
number of transitions. The coarsest goal-respecting simula-
tions for each ©;, <;, can then be combined to define a dom-
inance relation on the state space of the planning task, s < ¢
iff a;(s) 2 «;(t) forall i € 1,. .., k. However, the number
of problems in which non-trivial simulation relations exist
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are limited because the transition ¢ — ¢’ has to use exactly

l
the same label as s — s’.
To overcome this limitation, we introduce a relation be-
tween the labels of the transition systems. A label I’ domi-

. . . . 1
nates [ in a transition system ©); iff for any transition s — s’

. v
exists another s — s” such that s’ < s”. Then, a label-
dominance simulation computes the simulation relation of
all transition systems =<1, ..., <} simultaneously, allowing

t 5 ¢ to simulate s %5 ' if s/ < t' and !’ dominates [ on
all other transition systems. Moreover, a noop action with
no preconditions and effects is introduced in order to cap-
ture the notion of “doing nothing”. Label-dominance simu-
lation with noop actions finds coarser relations that are able
to achieve pruning in many different benchmark domains.

Once a dominance relation has been computed, in order to
perform dominance pruning during search, we keep a Binary
Decision Diagram (Bryant 1986) that represents the set of all
states dominated by any expanded state. Anytime a state is
generated, it is pruned if it is contained in such set. To avoid
unnecessary overhead, we disable dominance pruning if no
state has been pruned after /000 expansions.

Irrelevance Pruning

Irrelevance pruning removes actions from the planning task
while preserving at least one (optimal) solution. Label-
dominance simulation relations can be used to detect such
irrelevant transitions. Subsumed transition pruning (Torralba



and Kissmann 2015) eliminates transitions s L> t from the
M&S transition systems if there exists another transition

from s, s Ly ¢ that simulates it, i.e. t < t' and !’ domi-
nates [ in all other transition systems. Removing such tran-
sitions might cause some parts of the abstract state space to
become unreachable, leading to additional pruning and sim-
plification of the M&S transition systems. If all transitions
corresponding to a planning action are removed, the action
can be completely removed from the planning task while
still preserving plan existence.

Subsumed transition pruning can be interleaved with
label reduction and bisimulation shrinking but not with
other shrinking strategies such as own-path shrinking. Even
though both subsumed transition pruning and own-path
shrinking preserve solvability (so their combination does as
well) the resulting abstraction cannot safely be used to de-
tect dead-ends on the original state space. Also, applying
label reduction is not always beneficial for subsumed tran-
sition pruning so we follow three different steps, where M
is a parameter that controls how large the transition systems
are:

1. M&S with subsumed transition pruning and a limit of M
transitions. Without label-reduction or any shrinking.

2. M&S with subsumed transition pruning, label-reduction
and bisimulation shrinking. Limit of M transitions.

3. M&S with label-reduction, and own-path + bisimulation
shrinking.

If dominance pruning is used, the label-dominance simu-
lation relation is computed after the second step.

IPC Configuration

We implemented the new merge and shrinking strategies on
top of the Fast Downward Planning System (Helmert 2006)
(version from July 16th, 2014). All our planners use h?
forward and backward relevance analysis in order to elim-
inate operators and simplify the planning task prior to the
search (Alcazar and Torralba 2015).

All runs of M&S use the exact label reduction by Sievers
et al. (Sievers et al. 2014), interrupting it if it takes more
than 60 seconds. To avoid overhead, if there are more than
200 labels, label-dominance is computed only with respect
to the noop action.

MS-unsat and MS-unsat-irr

We submit two different configurations MS-unsat and MS-
unsat-irr. MS-unsat uses the best configuration reported
by Hoffmann er al. (2014), using CGRoot-Goal-LevelLeaf
merge and own-label shrinking.

MS-unsat-irr uses two runs of M&S with irrelevance
pruning. In the first one, it uses the DFP non-linear merge
strategy with irrelevance pruning with a limit of M =
50 000 transitions and 300 seconds. If the task has not been
proven unsolvable by the first run, irrelevant operators are
removed from the problem. Afterwards, it performs another
M&S run using CGRoot-Goal-LevelLeaf, and subsumed
transition pruning up to a limit of 50 000 transitions.

SimulationDominance

The SimulationDominance planner performs a search using
dominance and irrelevance pruning, and the A™%" heuris-
tic (Bonet and Geffner 2001) and M&S abstractions as dead-
end detectors.

The dominance pruning relation is derived using the DFP-
merge strategy with a limit of 100 000 transitions. Then, it
uses M&S to generate a list of M&S abstractions, that are
used during the search to detect dead-ends. All M&S runs
use subsumption pruning up to M = 100000 transitions
and set a limit of 500000 abstract states for bisimulation
on the third step. Multiple linear merge strategies are used
in a sequential fashion: TrOwnGoal-CGLevCom-Goal, Tr,
TrOwnGoal, Tr, TrOwn, CG-Goal, CGLeaf-Goal, CGRoot-
Goal, CGComLeaf-Goal, TrOwnGoal-CGComLeaf-Goal.
All these strategies are run twice, using the LevelLeaf and
random tie-breaking, respectively. Each run of M&S may
take up to 300 seconds and the overall abstraction genera-
tion may take up to 1400 seconds, after which the search
starts.

Conclusions

In this paper, we have introduced three different papers
that participated in the 2016 edition of the unsolvability
IPC: MS-unsat, MS-unsat-irr, and SimulationDominance.
MS-unsat and MS-unsat-irr make use of M&S with a safe
shrinking strategy that allows to prove unsolvability with-
out searching the original state space. SimulationDominance
uses M&S to construct a set dead-end detection heuristics as
well as a label-dominance simulation relation used for dom-
inance and irrelevance pruning.

Acknowledgments We’d like to thank the Fast Downward
development team for sharing the latest version of their Fast
Downward Planning System and, in particular, to Silvan
Sievers, Martin Wehrle, and Malte Helmert for their work
on M&S (Sievers et al. 2014). This work was partially sup-
ported by the German Research Foundation (DFG), under
grant HO 2169/5-1, “Critically Constrained Planning via
Partial Delete Relaxation”.

References

Vidal Alcdzar and Alvaro Torralba. A reminder about
the importance of computing and exploiting invariants in
planning. In Ronen Brafman, Carmel Domshlak, Patrik
Haslum, and Shlomo Zilberstein, editors, Proceedings of the
25th International Conference on Automated Planning and
Scheduling (ICAPS’15). AAAI Press, 2015.

Christer Bickstrom, Peter Jonsson, and Simon Stéhlberg.
Fast detection of unsolvable planning instances using local
consistency. In Malte Helmert and Gabriele Roger, editors,
Proceedings of the 6th Annual Symposium on Combinatorial
Search (SOCS’13), pages 29-37. AAAI Press, 2013.

Blai Bonet and Héctor Geffner. Planning as heuristic search.
Artificial Intelligence, 129(1-2):5-33, 2001.



Randal E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers,
35(8):677-691, 1986.

Klaus Driger, Bernd Finkbeiner, and Andreas Podelski. Di-
rected model checking with distance-preserving abstrac-
tions. In Antti Valmari, editor, Proceedings of the 13th In-
ternational SPIN Workshop (SPIN 2006), volume 3925 of
Lecture Notes in Computer Science, pages 19-34. Springer-
Verlag, 2006.

Klaus Driger, Bernd Finkbeiner, and Andreas Podelski. Di-
rected model checking with distance-preserving abstrac-
tions. International Journal on Software Tools for Technol-
ogy Transfer, 11(1):27-37, 2009.

Gaojian Fan, Martin Miiller, and Robert Holte. Non-linear
merging strategies for merge-and-shrink based on variable
interactions. In Stefan Edelkamp and Roman Bartak, edi-

tors, Proceedings of the 7th Annual Symposium on Combi-
natorial Search (SOCS’14). AAAI Press, 2014.

Raffaella Gentilini, Carla Piazza, and Alberto Policriti.
From bisimulation to simulation: Coarsest partition prob-
lems. Journal of Automated Reasoning, 31(1):73—-103, 2003.

David Hall, Alon Cohen, David Burkett, and Dan Klein.
Faster optimal planning with partial-order pruning. In
Daniel Borrajo, Simone Fratini, Subbarao Kambhampati,
and Angelo Oddi, editors, Proceedings of the 23rd Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’13), Rome, Italy, 2013. AAAI Press.

Malte Helmert, Patrik Haslum, and Jorg Hoffmann. Flex-
ible abstraction heuristics for optimal sequential planning.
In Mark Boddy, Maria Fox, and Sylvie Thiebaux, editors,
Proceedings of the 17th International Conference on Au-
tomated Planning and Scheduling (ICAPS’07), pages 176—
183, Providence, Rhode Island, USA, 2007. Morgan Kauf-
mann.

Malte Helmert, Patrik Haslum, Jorg Hoffmann, and Raz Nis-
sim. Merge & shrink abstraction: A method for generating
lower bounds in factored state spaces. Journal of the Asso-
ciation for Computing Machinery, 61(3), 2014.

Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191-246, 2006.

Jorg Hoffmann, Peter Kissmann, and Alvaro Torralba. “Dis-
tance”? Who Cares? Tailoring merge-and-shrink heuristics
to detect unsolvability. In Thorsten Schaub, editor, Proceed-
ings of the 21st European Conference on Artificial Intel-
ligence (ECAI’14), Prague, Czech Republic, August 2014.
IOS Press.

Michael Katz, Jorg Hoffmann, and Malte Helmert. How
to relax a bisimulation? In Blai Bonet, Lee McCluskey,
José Reinaldo Silva, and Brian Williams, editors, Pro-
ceedings of the 22nd International Conference on Auto-
mated Planning and Scheduling (ICAPS’12), pages 101-
109. AAAI Press, 2012.

Craig Knoblock. Automatically generating abstractions for
planning. Artificial Intelligence, 68(2):243-302, 1994.

Robin Milner. An algebraic definition of simulation between
programs. In Proceedings of the 2nd International Joint

Conference on Artificial Intelligence (IJCAI’71), pages 481—
489, London, UK, September 1971. William Kaufmann.

Raz Nissim, Jorg Hoffmann, and Malte Helmert. Comput-
ing perfect heuristics in polynomial time: On bisimulation
and merge-and-shrink abstraction in optimal planning. In
Toby Walsh, editor, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI’11), pages
1983-1990. AAAI Press/IJCAI 2011.

Silvan Sievers, Martin Wehrle, and Malte Helmert. Gen-
eralized label reduction for merge-and-shrink heuristics. In
Carla E. Brodley and Peter Stone, editors, Proceedings of the
28th AAAI Conference on Artificial Intelligence (AAAI’14),
pages 2358-2366, Austin, Texas, USA, January 2014. AAAI
Press.

Silvan Sievers, Martin Wehrle, and Malte Helmert. An anal-
ysis of merge strategies for merge-and-shrink heuristics. In
Amanda Coles, Andrew Coles, Stefan Edelkamp, Daniele
Magazzeni, and Scott Sanner, editors, Proceedings of the
26th International Conference on Automated Planning and
Scheduling (ICAPS’16). AAAI Press, 2016.

Alvaro Torralba and Jorg Hoffmann. Simulation-based ad-
missible dominance pruning. In Qiang Yang, editor, Pro-
ceedings of the 24th International Joint Conference on Ar-
tificial Intelligence (IJCAI’'15), pages 1689-1695. AAAI
Press/IJCALIL 2015.

Alvaro Torralba and Peter Kissmann. Focusing on what re-
ally matters: Irrelevance pruning in merge-and-shrink. In
Levi Lelis and Roni Stern, editors, Proceedings of the Sth
Annual Symposium on Combinatorial Search (SOCS’15),
pages 122—-130. AAAI Press, 2015.



