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Abstract
Dominance pruning methods have recently been
introduced for optimal planning. They compare
states based on their goal distance to prune those
that can be proven to be worse than others. In this
paper, we introduce dominance techniques for sat-
isficing planning. We extend the definition of dom-
inance, showing that being closer to the goal is not
a prerequisite for dominance in the satisficing set-
ting. We develop a new method to automatically
find dominance relations in which a state domi-
nates another if it has achieved more serializable
sub-goals. We take advantage of dominance rela-
tions in different ways; while in optimal planning
their usage focused on dominance pruning and ac-
tion selection, we also use it to guide enforced hill-
climbing search, resulting in a complete algorithm.

1 Introduction
Satisficing planning is the problem of, given an input plan-
ning task, finding a sequence of actions that go from the ini-
tial state to a state that satisfies the goal condition. Most sat-
isficing planners use search algorithms like Greedy Best-First
Search (GBFS) or Enforced-Hill Climbing (EHC) guided
with heuristics such as the delete-relaxation heuristic and
extensions thereof [Hoffmann and Nebel, 2001; Domshlak
et al., 2015] plus certain diversification techniques [Richter
et al., 2011; Röger and Helmert, 2010] and/or sub-goal se-
lection strategies [Chen et al., 2004; Porteous et al., 2001;
Hoffmann et al., 2004]. Both GBFS and EHC use heuristics,
but they use them in different ways. In GBFS, heuristics de-
termine the order in which states are expanded. EHC, on the
other hand, uses heuristics to compare newly generated states
against the initial state, restarting the search when it finds a
state with lower heuristic value than the initial state. The suc-
cess of EHC highly depends on the accuracy of the heuris-
tics. When the heuristic is accurate EHC finds solutions very
quickly, but it is incomplete in tasks with unrecognized dead-
end states, i.e., states that the heuristic finds promising but
have no solution [Hoffmann, 2005].

Dominance pruning techniques have recently been intro-
duced for optimal planning [Hall et al., 2013; Torralba and
Hoffmann, 2015]. They reduce the search space by pruning

states that are dominated by others. The definition of dom-
inance is based on goal distance: a state dominates another
state if it can be proven to be at least as close to the goal. In
this paper we explore the use of dominance methods to com-
pare states in satisficing search. We redefine the notion of
dominance for satisficing planning, substituting the optimal-
ity guarantee by a completeness guarantee that ensures that
at least one plan (not necessarily optimal) will be preserved.
We also consider how dominance relations can be used to re-
duce the size of the search space. Like in optimal planning,
one can prune states that are dominated by others, but lifting
any considerations with respect to the cost of reaching such
states. Also, a state s can be replaced by any of its successors
s′ if s′ strictly dominates s. Based on this, we define a variant
of EHC that is complete.

Our work builds on previous methods to automatically find
dominance relations for a given planning task. We strengthen
their reasoning and specialize them for satisficing search.
To do this, we define a new dominance relation that serial-
izes the planning task, inspired by sub-goal serialization ap-
proaches [Barrett and Weld, 1993]. Our experiments show
that these serialized dominance relations are able to identify
dominance in a number of domains to guide a dominance-
based EHC.

2 Background
A labeled transition system (LTS) is a tuple Θ =
〈S,L, T, sI ,SG〉 where S is a finite set of states, L is a finite
set of labels, T ⊆ S ×L×S is a set of transitions, sI ∈ S is
the start state, and SG ⊆ S is the set of goal states. A plan
for a state s is a path from s to some sG ∈ SG. A state s is
reachable if there exists a path from sI to s. A state is solv-
able if there exists a plan from s, otherwise we say that s is a
dead end. By h∗(s) (g∗(s)) we denote the length of a shortest
plan for s (path from sI to s). A plan for s is optimal iff its
cost equals h∗(s). Since our goal is to find solutions fast, re-
gardless of their cost, we assume unit-cost domains. We also
simplify the explanation of previous work on dominance for
optimal planning based on this assumption.

Following previous work on dominance pruning, we con-
sider a planning task as a set of LTSs on a common set of
labels, {Θ1, . . . ,Θn}. Given a planning task in the more
common SAS+ formalism [Bäckström and Nebel, 1995], the
atomic transition systems representation with one LTS for
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Figure 1: Example based on the Visitall domain where a robot must
visit all tiles in a square grid. The robot has two units of fuel which
are consumed when moving into striped cells so the robot must not
enter the square grid via the shortest path.

each SAS+ variable can be easily obtained [Helmert et al.,
2014]. The state space of the task is the synchronized prod-
uct of all the LTSs: Θ = Θ1 ⊗ · · · ⊗ Θn. The synchronized
product of two LTSs Θ1 ⊗ Θ2 is another LTS with states
S = {(s1, s2) | s1 ∈ Θ1 ∧ s2 ∈ Θ2}, transitions T =
{((s1, s2), l, (s′1s

′
2)) | (s1, l, s′1) ∈ T1 ∧ (s2, l, s

′
2) ∈ T2}, s.t.

(s1, s2) ∈ SG iff s1 ∈ SG1 and s2 ∈ SG2 . We write s l−→ s′

as a shorthand for (s, l, s′) ∈ Θ. Let τ be a set of labels, we
write s τ−→∗s′ to denote a path from s to s′ where all labels
belong to τ . We use subscripts to differentiate states in the
state space Θ (e.g., s, s′, t) and their projection into some Θi

(e.g., si, s′i, ti). We say that a transition s → s′ in Θ affects
Θi if it modifies its value, si 6= s′i.

Consider a planning task represented as a set of LTSs
{Θ1, . . . ,Θn} like our running example shown in Figure 1,
where a robot must visit all tiles in a square grid. There is
an LTS representing the position of the robot (A), an LTS for
each cell in the square grid that represents if the cell has been
visited or not (B), and an LTS describing the available fuel
(C). In (A) we depict the grid. The corresponding LTS has
a node for each cell, and transitions between adjacent cells.
Transitions moving the robot to cell i are labeled with label
mi. Only walking into stripped cells (x) consumes fuel. All
other labels have a self-loop transition in every state and they
are omitted.

A heuristic is a function h : S → N that estimates the dis-
tance from every state to the goal. A state is reachable if there
exists a sequence of actions from sI to it. A state is alive iff
it is solvable, reachable, and not a goal state. A heuristic h
is descending if all alive states have a successor with lower
heuristic value. A heuristic is dead-end aware if h(s) = ∞
for all dead-end states s. Most common search algorithms in
satisficing planning (e.g., hill-climbing or GBFS) will solve
the planning task with at most h(sI) expansions if h is a de-
scending and dead-end aware heuristic [Seipp et al., 2016].1

A relation � is a set of pairs of states. A relation � is a
preorder iff it is reflexive and transitive. We write s ≺ t as
a shorthand for s � t and t 6� s (i.e., ≺ is a strict partial-
order). We say that � approximates a heuristic h iff s � t
implies h(t) ≤ h(s). Dominance relations approximate the
goal distance; whenever s � t (t dominates s) then t must be

1Seipp et al. [2016] consider the more general case of dead-end
avoiding heuristics instead of dead-end aware heuristics.

at least as close to the goal as s (h∗(t) ≤ h∗(s)). Torralba and
Hoffmann [2015] introduced label-dominance simulation, a
method to compute a set of relations {�1, . . . ,�n} that can
be combined to derive a dominance relation � for Θ where
s � t iff si �i ti for all i. In a best-first search with open
list open and closed list closed , dominance pruning consists
of removing a state s from the open list without expanding it,
whenever there exists t ∈ open ∪ closed such that s � t and
g(t) ≤ g(s). If � is a dominance relation, then at least one
optimal plan is preserved.

Quantitative dominance extends the previous method by
considering numeric functions instead of relations [Torralba,
2017]. A function D : S × S → Q ∪ {−∞} is a quantita-
tive dominance function (QDF) if D(s, t) ≤ h∗(s) − h∗(t).
QDFs are computed as a set of functions {D1, . . . ,Dn} such
that D(s, t) =

∑
iDi(si, ti). To guarantee that the sum of all

Di is a QDF, they must fulfill the equation:

Di(si, ti) = min
si

l−→s′i

max
ui

l′−→u′i

Di(s′i, u′i)− hτ (ti, ui) +
∑
j 6=i

DLj (l, l′)

In words, whatever we can do from si (si
l−→ s′i), we can

do from ti via a path ti
τ−→∗ui

l′−→ u′i, taking into account
the comparison of the goal distance between the final result
of both paths (Di(s′i, u′i)), the cost from ti to ui (hτ (ti, ui)),
and how much cost we incur for applying l′ instead of l in all
other LTSs (

∑
j 6=iDLj (l, l′)). This requires to define hτ and

DLj :

• hτ accounts for transitions that only affect a single LTS
Θi. A label is a τ -label for Θi iff it can always be applied
to change the value of Θi without affecting other LTSs.
Formally, if l is a τ -label for Θi then sj

l−→ sj ∀Θj 6=
Θi, ∀sj ∈ Θj . The τ -distance from si to ti, written
hτ (si, ti), is the length of a shortest path from si to ti
in Θi using only transitions with τ labels or ∞ if no
such path exists. For example, moving the robot to a
non-striped cell outside the square part of the grid is a τ -
label because it changes the position of the robot without
affecting other variables.

• DLj (l, l′) measures how good it is to apply l′ instead of
l in Θj . If DLj (l, l′) ≥ 0, it means that any time we
can apply l to reach some sj , we can also apply l′ to
reach tj s.t. D(sj , tj) ≥ 0. For example, in the LTS that
represents the available fuel, DLF (mx,mi) = 0 for any
striped cell x and non-striped cell i.

In the example of Figure 1, we can obtain a QDF
{D1, . . . ,Dn} where each Di is comparing states only ac-
cording to their value in Θi. For the position of the robot
we obtain D(x, y) = −d(x, y) where d(x, y) is the distance
from cell x to cell y using only movements that do not con-
sume fuel. For the fuel, we obtain D(s, t) = 0 if t has at
least as much fuel than s or −∞ otherwise. For each cell, we
have a value of −∞ if the cell has been visited in s and not
in t and 0 otherwise. In optimal planning, t dominates s if∑
iDi(si, ti) ≥ 0. In our example this means that a state is

better if it has visited more cells, it has at least as much fuel
and the position of the robot is the same.
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Figure 2: Example with two alternative paths to the goal.

QDFs can be used, apart for dominance pruning, to per-
form action selection. Action selection is a type of pruning
where a state s ∈ open may be replaced by one of its im-
mediate successors t if D(s, t) ≥ c(s, t) where c(s, t) is the
cost of the transition from s to t. In that case, such transition
starts an optimal plan from s, so at least one optimal solution
is always preserved.

3 Satisficing Dominance
In optimal planning, a dominance relation is one where for
any s � t, t should be as close to the goal as s. How-
ever, this is sometimes too restrictive for satisficing search.
For example consider a problem where there are two paths to
the goal, one requires solving a hard combinatorial problem
and the other follows a straightforward, but potentially longer,
path. Assuming that providing any guarantees about the cost
of solving the combinatorial problem is hard, no dominance
can be proven for optimal planning. However, it is simple to
manually design a dominance relation where the states in the
simpler path dominate those related to solving the combina-
torial problem, directly guiding the search towards the goal.
With this aim, we define a satisficing dominance relation as
one that preserves solutions, no matter their cost or length.

Definition 1 (Satisficing Dominance Relation) A preorder
� is a satisficing dominance relation if there exists a descend-
ing and dead-end aware heuristic h� such that � approxi-
mates h� (s � t =⇒ h�(t) ≤ h�(s)).

Intuitively, h� should be dead-end aware so that unsolv-
able states do not dominate solvable states, and descending
to avoid the case where a state dominates all its successors,
hence rendering the search incomplete. Note that simply re-
quiring each state to not dominate one of its solvable suc-
cessors is not enough to guarantee that a plan is preserved.
Consider the example of Figure 2, where dominance pruning
with a relation where t′ � s and s′ � t could prune both s′
and t′, causing all solutions to be pruned.

This is a generalization of dominance relations used in op-
timal planning, since the perfect heuristic h∗ is descending
and dead-end aware. Note that any descending and dead-end
aware heuristic can be defined via computing h∗ after chang-
ing the cost of the transitions in Θ. Therefore, Definition 1
can also be interpreted as a dominance relation for an instance
with a different cost function.

In optimal planning, dominance relations have been used
in two different ways: for dominance pruning (eliminating
states that are dominated by others) and action selection prun-
ing (automatically applying an action if this action is guaran-
teed to start an optimal plan). Next, we adapt these types of

pruning to satisficing planning. Dominance pruning can be
applied in a similar way as in optimal planning, but slightly
stronger since the cost of reaching each state does not matter.

Theorem 1 Let� be a satisficing dominance relation. Then,
a best-first search with open list open , and closed list closed
in which a state s ∈ open may be pruned if there exists an-
other t ∈ open ∪ closed such that s � t is complete.

Proof Sketch: Let h� be the dead-end aware and descend-
ing heuristic approximated by �. s was pruned so there must
exist t ∈ open ∪ closed such that h�(t) ≤ h�(s). Let u
be the state with lowest h� value in the open list. Then,
h�(u) ≤ h�(t) since if t is closed, one of its successors
with lower h� value (h� is descending) was inserted in open .
Since h�(u) ≤ h�(s) <∞, u is solvable. As h� is descend-
ing, there exists a plan for u that does not contain any state
dominated by s. �

Action selection can also be adapted for the satisficing
case. In this case, we do not care about the solution cost so
quantitative dominance is not required anymore. Instead, we
consider strict dominance to avoid loops in which two states
that dominate each other are constantly replaced by one an-
other. We can also generalize action selection to consider
not only immediate successors, but also any successor that
is reached by a sequence of actions. This is far more useful
in satisficing than in optimal planning because the cost of the
action sequence can be ignored.

Theorem 2 Let ≺ be a strict satisficing dominance relation.
A best-first search where a state s ∈ open can be replaced by
some t such that t is the result of executing any sequence of
actions in s and s ≺ t is complete.

Proof Sketch: As h≺(t) ≤ h≺(s), and h≺ is descending, t
must have a solution that does not traverse s, since all states
ti in the solution have h≺(ti) < h≺(s) so ti 6= s and ti 6≺ s.
By transitivity neither t nor any state in its solution can be
substituted by s or any state s′ such that s′ ≺ s. �

It should be noted that both types of pruning can be applied
at the same time, but only if they use the same relation.

Theorem 3 Let� be a satisficing dominance relation. Then:
1. Let ≺ be a strict relation such that s ≺ t iff s � t and
t 6� s. Performing dominance pruning with � and ac-
tion selection with ≺ is always safe.

2. Let ≺′ be a different strict satisficing dominance rela-
tion. Then, there exist cases where performing domi-
nance pruning with � and action selection with ≺′ is
not safe.

Proof Sketch: To show (2.) consider again the example of
Figure 2. Let � be a relation such that s � s′ � sI � t �
t′ � sG and ≺′ be a strict relation such that t ≺′ t′ ≺′ sI ≺′
s ≺′ s′ ≺′ sG. Then, by Theorem 2, sI can be replaced by
t, and then later t′ could be pruned according to Theorem 1
because it is dominated by a previously expanded state (sI ).

To show (1.), if both relations � and ≺ approximate the
same heuristic h�, then the minimum h� value of any state
in the open list monotonically decreases. A loop like the one
in the example above cannot happen because the value of h≺
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can only decrease along the path to the goal. Since h≺(t′) <
h≺(t), t′ cannot be pruned by any state that has a larger h≺
value (e.g., any state that is replaced by t). �

4 Dominance-Based Enforced Hill-Climbing
Enforced Hill-Climbing (EHC) is a well-known search algo-
rithm for planning [Hoffmann and Nebel, 2001]. EHC per-
forms a breadth first search from the initial state sI until find-
ing a state s such that h(s) < h(sI). At that point, if s is a
goal state a plan has been found. Otherwise, the initial state
is replaced by s and the search is restarted.

According to Theorem 2, any time we find a state strictly
better than s according to a satisficing dominance relation �,
we can remove s and all other of its successors from con-
sideration. This may be expensive to do for all states in the
search, but can be easily done for the special case where s is
the initial state sI . In that case, the search is restarted from the
newly found state that dominates sI . This is a form of EHC,
where the search is restarted whenever a state better than sI
is found, substituting the heuristic function by a dominance
relation to determine which states are better than sI .

Also, while the original EHC algorithm used breadth-first
search to escape the current plateau, there is no reason to not
consider other best-first search algorithms with different pri-
ority functions as well. We define the dominance-based EHC
DEHC≺(X) algorithm relative to any best-first search algo-
rithm X and strict preorder ≺. DEHC≺(X) runs algorithm
X until finding a goal state or any state s such that sI ≺ s. In
the latter case, it restarts from s.

Theorem 4 Let X be a sound and complete best-first search
algorithm, and let ≺ be a strict preorder such that for any
pair of reachable states s, t, if s ≺ t and s is solvable then t
is solvable. Then DEHC≺(X) is sound and complete.

Proof: Soundness follows from soundness of X . Complete-
ness: If the instance is solvable, each run of X can finish
either finding a goal, or finding a state t such that sI ≺ t
and another instance of X is started from t. Then, as t must
be solvable, X can never be restarted on an unsolvable state.
The algorithm always terminates because ≺ is a strict pre-
order so the number of times X may be called is bounded by
the number of reachable states which is always finite. �

The conditions required for ≺ are weaker than what is re-
quired for a satisficing dominance relation. If ≺ is based on
a satisficing dominance relation �, then by Theorem 3, dom-
inance pruning can be used in X . In this case, any state dom-
inated by the initial state in each call of X can be pruned,
thereby ensuring that the search does not re-expand any pre-
vious initial state. However, DEHC can also be used with re-
lations defined from heuristic functions in the following way.

Definition 2 (Heuristic-based Relation for DEHC) Let D
be a quantitative dominance function and h be any heuris-
tic. We define ≺h as a relation such that s ≺h t if and only if
D(s, t) > −∞ and h(t) < h(s).

As D(s, t) > −∞ implies that h∗(s) − h∗(t) > −∞ this
means that if s is solvable, t must be solvable as well. This
results in a complete variant of EHC with any heuristic func-
tion that uses dominance only to avoid dead-ends. The role of

≺ in this context is to select when to be more or less greedy
following the heuristic advice, interpolating between GBFS
(when no dominance is found) and EHC.

5 Practical Methods for Computing
Satisficing Dominance Relations

In this section, we introduce a new method to compute dom-
inance relations for satisficing planning.

5.1 Serialized Dominance Relations
Consider the example of Figure 1. Dominance relations for
optimal planning will consider a state better if more cells have
been visited, the robot has at least as much fuel and the posi-
tion of the robot is the same. The latter condition is an impor-
tant limitation because, in order to find a state that dominates
the initial state, the robot must go back to the initial position
every time that it visits more cells. This is undesirable since
it will be harder to find a state that dominates sI and it will
result in longer plans.

Intuitively, we prefer states where more cells have been
visited, regardless of the position of the robot. This is possi-
ble because these sub-goals are serializable, i.e., no sub-goal
must be undone in order to achieve the rest. To obtain such
relation, we serialize the LTSs so that a state dominates an-
other if it is as good for the first j−1 LTSs (has not un-visited
any position), it is strictly better in Θj (has visited a new po-
sition), and there exists a solution for all other LTSs without
using any label that is “dangerous” for the previous LTSs. We
define a label as dangerous for an LTS Θi according to �i if
applying it on some state si requires to go to a potentially
worse state s′i s.t. si 6�i s′i.
Definition 3 (Dangerous label) Let �i be a relation for Θi.
We say that a label l is dangerous for�i if there exists a state
si ∈ Θi such that there exists si

l−→ s′i and there does not

exist si
l−→ ti s.t. si �i ti.

For example, labels associated with movements that con-
sume fuel are dangerous for the LTS that represents the
amount of available fuel. However, movements of the robot
are not dangerous for the LTSs that correspond to whether a
cell has been visited or not. Now, we can serialize the LTSs
that define our task. The serialized dominance gives prefer-
ence to those states that are better according to the first LTS,
as long as a solution can be found for the other LTSs without
using any label that is dangerous for the first LTS (i.e., the
sub-goals achieved do not need to be undone). To model this,
we re-define label dominance (i.e., the component DLj (l, l′)
used in the equation that defines a QDF) so that dangerous
labels do not dominate any label.

Definition 4 (Serialized Dominance) Let 〈�1, . . . ,�n〉 be
a label-dominance simulation for a list of LTSs 〈Θ1, . . . ,Θn〉
and 〈D1, . . . ,Dn〉 a list of functions that satisfy the equations
of a QDF whereDLj (l, l′) = −∞ for all l′ ∈ L and l ∈ L that
is dangerous for �i for any i < j. We define the serialized
dominance relation as s �S t iff sj �j tj for all j ∈ [1, n]
or exists i such that sj �j tj for all j ∈ [1, i), si ≺i ti and
D(sj , tj) > −∞ for all j ∈ (i, n].
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Theorem 5 A serialized dominance �S is a satisficing dom-
inance relation.

Proof Sketch: We show that �S approximates a descend-
ing and dead-end aware heuristic function h� (s �S t =⇒
h�(t) ≤ h�(s)). As h� is dead-end aware, if s is a dead-
end then h�(s) = ∞ and the condition holds. If s is not a
dead-end then t cannot be a dead end because s �S t implies∑
Di(si, ti) > −∞. Therefore, it suffices to consider the

case where s and t are both solvable.
We define h� as the perfect goal distance under a cost func-

tion constructed from � such that (i) costs of all transitions
affecting Θi cost more than those that only affect Θj for i < j
and (ii) if si ≺i ti transitions from si cost more than transi-
tions from ti. In both cases, the cost difference must be large
enough so that the most expensive transition dominates the
cost of the entire path.

To prove that s �S t =⇒ h�(t) ≤ h�(s), we assume
WLOG that s1 ≺1 t1.2 Then, for any path from s1, πs =

s1
l1−→ s11 . . .

lk−→ sk1 , there exists a path from t1, πt = t1
l′1−→

t11 . . .
l′k−→ tk1 such that si1 � ti1 for all i ∈ [1, k]. Then, the

cost of πt is lower than that of πs because the first transition
is more expensive from s1 (s1 ≺1 t1) and the rest are not.

Since Di(si, ti) > −∞ for all i ∈ [2, n], by the properties
of a QDF, the path πt can always be extended into a plan for
t by inserting additional actions. As DLi (l, l′) = −∞ these
additional actions are not dangerous for�1. Since in our cost
function the cost of the most expensive transition dominates
the overall cost, the complete path for t is still cheaper than
the one for s under this cost function so h�(t) < h�(s). �

The resulting dominance relation is heavily influenced by
the ordering chosen for the LTSs. To preserve complete-
ness, this order must be the same throughout the entire search.
However, one does not need to decide the order a priori, but
rather it can be dynamically chosen during the search. Ini-
tially, we keep a set with all {Θ1, . . . ,Θn} unsorted and the
list of serialized LTSs is initialized empty. When comparing a
state s against sI , we check whether si ≺i sIi for some i and
insert Θi in the list of serialized LTSs if and only if thanks
to this we get that sI ≺S s. Using this policy in our run-
ning example, the order in which the cells are serialized in
the dominance relation is exactly the order in which they are
found during the search.

5.2 Recursive and Positive τ -Labels
The method above is most interesting in situations where
dominance relations in optimal planning cannot prove t to be
closer to the goal than s, but where it can show that t is not
a dead-end, i.e., −∞ < D(s, t) < 0. For this, τ -labels are
of great importance. Having more τ -labels can only decrease
the tau distance between states (hτ ), which may in turn in-
crease the value of D. Previous work considered l a τ -label
for Θi if it has self-loop transitions for any state in all other
Θj . In other words, transitions labeled with l may be used

2Let j be the smallest index for which sj ≺j tj . If j > 1, we
can consider instead the synchronized product Θ1 ⊗ · · · ⊗ Θj . By
the properties of label-dominance simulation, (s1, . . . , sj) ≺1,...,j

(t1, . . . , tj).

to modify the value of Θi in any state without affecting the
value of other LTSs. Hence, all τ -labels had to fulfill two
properties:

1. They do not have preconditions on other LTSs so it is
always applicable, and

2. They do not have side effects on other LTSs.

Here, we extend the notion of τ -labels in two different
ways, relaxing each of these assumptions in order to find
coarser dominance relations.

Recursive τ -labels Some labels are not τ -labels because
they have preconditions on other LTSs. For example, in a typ-
ical logistics transportation task, loading a package at some
location is not a τ -label for the position of the package be-
cause it is not applicable in all states (the truck must be at
the same location). However, the truck can always be driven
from any given location to the position of the package, load
it, and then drive back to the original position, reaching a
state where the package is in the truck without affecting any
other variable. Hence, we could introduce new transitions
that correspond to those macro-actions. We use this in order
to redefine the set of τ -labels for each LTS.

For every si such that there exists Θj with a path

πτl (si, sj) = (si, sj)
τ−→∗(si, s′j)

l−→ (s′i, s
′
j)

τ−→∗(s′i, sj) for

all sj ∈ Θj , we may introduce a new transition sj
l−→ sj . The

cost of this new transition is equal to the cost of the τ actions
in πτl (si, sj). Thanks to these self-loops, l may become a τ
label. In that case, we do not introduce these transitions to
the definition of the planning task. Instead, we simply con-
sider label l to be a τ label with a cost equal to the maximum
πτl (si, sj) for any (si, sj). After introducing new τ -labels,
the process can be repeated.

Positive τ -labels Some labels are not τ -labels because they
have side effects. In our running example movements are not
τ -labels for the LTSs representing the position of the robot
because they have the side-effect of marking a cell as vis-
ited. However, these side-effects are always positive accord-
ing to our dominance relation so they can be ignored for the
computation of τ labels. A label is a positive τ -label for Θi

iff ∀Θj 6= Θi, ∀sj ∈ Θj , there exists sj
l−→ tj ∈ Θj s.t.

Dj(sj , tj) ≥ 0.
When using this definition one must be careful, due to the

circular dependency between the values of D and the set of
τ -labels. D is typically computed by assuming a very coarse
dominance relation and then iteratively refining it until a fix-
point is reached. However, the values of D during this com-
putation have not been proven correct until it ends, so posi-
tive τ -labels cannot be defined in terms of the D that is being
computed. Hence, to avoid such circular dependencies we
first compute D based on the previous notion of τ -labels, and
then compute a new set of τ -labels and re-compute D. This
process can be repeated until no more labels are added to the
set of τ labels.
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Baseline Pruning
Domain GBFS L M DEHC(hB) DEHC(hFF ) GBFS(hFF )

(hFF ) �D �S �D �S �D �S

Logistics (63) 54 63 63 43 43 57 58 53 53
Miconic (150) 150 150 150 150 150 150 150 150 150

Openstacks (30) 30 30 30 7 7 30 30 30 30
Rovers (40) 23 40 40 14 12 22 24 23 23

Satellite (36) 30 36 36 10 10 21 25 22 26
Scanalyzer (50) 44 50 50 46 46 44 44 44 44

Visitall (40) 5 40 40 3 31 6 31 4 4
Woodwork (50) 49 50 50 6 6 49 49 49 49
Zenotravel (20) 20 20 20 13 13 20 20 20 20∑

405 479 479 292 318 399 431 395 399

Floortile (40) 8 8 8 8 8 14 14 14 14
Maintenance (20) 5 2 7 0 0 6 6 6 6

Nomystery (20) 9 13 15 20 11 20 17 20 16
Parking (40) 29 40 40 0 0 26 28 27 28

Pathways (30) 11 24 30 4 4 12 12 12 12
Pipes-NT (50) 30 43 44 15 14 29 29 29 29

Tidybot (20) 14 16 14 1 1 7 13 7 12
TPP (30) 22 30 30 6 6 23 22 21 23∑

128 176 188 54 44 137 141 136 140

Total (1636)
∑

1231 1462 1491 624 640 1217 1252 1212 1219

Table 1: Coverage on IPC instances. We highlight the best config-
uration apart from LAMA (L) and Mercury (M). At the top are do-
mains containing an instance where DEHC restarts from a state that
dominates the initial state at least 10 times in a single instance. At
the bottom, domains where dominance pruning has a non-negligible
effect on coverage.

6 Experiments
We run experiments on all satisficing-track STRIPS plan-
ning instances from the international planning competitions
(IPC’98 – IPC’14). All experiments were conducted on a
cluster of Intel Xeon E5-2650v3 machines with time (mem-
ory) cut-offs of 30 minutes (4 GB). Our goal is to evalu-
ate the potential of current dominance techniques to enhance
search in satisficing planning. As a simple baseline, we use
lazy GBFS in Fast Downward [Helmert, 2006] with the hFF

heuristic [Hoffmann and Nebel, 2001], and compare the re-
sults against dominance-based EHC guided with blind search
(hB) and the hFF heuristic. We also include the performance
of LAMA [Richter and Westphal, 2010] and Mercury [Katz
and Hoffmann, 2014; Domshlak et al., 2015] as representa-
tives of more modern planners.

We run several configurations comparing our new serial-
ized dominance (�S) against quantitative dominance rela-
tions (�D) used in previous work on optimal planning [Tor-
ralba, 2017]. However, satisficing planning benchmarks are
much larger than those for optimal planning so we change
the dominance pruning setting in two important aspects. On
the one hand, previous work considered using merge and
shrink [Helmert et al., 2014] to reduce the number of LTSs.
But, as the overhead is too large for these benchmarks, we
consider instead only the atomic transition systems. This re-
duces the number of domains in which state-of-the-art meth-
ods are effective to find dominance. On the other hand, pre-
vious work considered pruning states that are dominated by
any previously expanded state. This check is too expensive
in satisficing planning so instead we only compare each state
against its parent and the initial state.

Table 1 shows coverage results on domains where dom-
inance has a non-negligible effect either by restarting the
search from states that dominate the initial state (top part of
the table) or by pruning states (bottom part). The results show
that our dominance techniques are able to find useful domi-
nance relations in a number of IPC domains, even when only
considering atomic transition systems. Compared to the base-
line, the results are quite good in most domains. Results could
be even better but our implementation is not able to finish
the preprocessing in the largest tasks of some domains (e.g.
Logistics, Rovers, Satellite, and Visitall). This explains why
not all instances of Visitall are solved by DEHC(hB) and the
difference wrt. the baseline in domains where no dominance
pruning occurs.

The general trend is that serialized dominance relations
(�S) are most useful to compare states against the initial state
in the context of DEHC (domains in the upper part of the ta-
ble), while the dominance relation based on the distance to
the goal �D is more effective for dominance pruning and ac-
tion selection. The reason is that the serialization is global for
the entire search, slightly reducing the ability of dominance
pruning and action selection.

Focusing on domains where dominance is useful for
DEHC, one can observe that there is no much synergy with
heuristics and they can even be harmful, like in Scanalyzer.
The reason is that the heuristic is not aware of the dominance
relation so it may guide the search in a direction where no
states dominating the initial state can be found.

Even though the results of DEHC are quite good on these
domains compared to the baseline, they are still far behind
LAMA and Mercury, which easily solve all instances in
those domains. LAMA uses landmarks in order to achieve
sub-goals very greedily so is extremely effective in domains
where all sub-goals are serializable. Therefore, one may won-
der whether there are cases where DEHC can beat LAMA.
One example is Nomystery, where action selection pruning
is specially effective. But our running example illustrates the
strengths of dominance even better.

Figure 3 shows the comparison of DEHC�S against
LAMA in our running example. The particular feature of our
running example is that it combines sub-goals that are easily
serializable (visiting normal cells), with others that are not
(visiting stripped cells). Heuristic approaches that greedily
try to maximize the number of achieved sub-goals fall into
a dead-end trap and are unable to solve the task. However,
�S is able to identify which sub-goals are safe and which
ones could potentially be dangerous. As the heuristics are not
aware of the dominance relation, this only works in combi-
nation with blind search. Otherwise the search is guided by
the heuristic towards a part of the state space where no dom-
inance can be found (correctly so, because it is a dead-end
trap). DEHC�D (hB) also beats LAMA in this domain, but
it is still worse than DEHC�S (hB) because using dominance
purely based on goal distance the robot needs to go back to
the initial state every time it visits a new cell, which is hard
to do without any heuristic guidance towards there.
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Figure 3: Total time of DEHC and LAMA in our running example.

7 Related Work
The notion of dominance is related to approaches that char-
acterize when a task can be solved in polynomial time. Our
serialized dominance relation reminds of serializable sub-
goals [Korf, 1987; Barrett and Weld, 1993]. A set of sub-
goals is serializable if they can always be achieved sequen-
tially without undoing any of them. Our dominance relation
also imposes a serialization on the LTSs that form the plan-
ning task. This is slightly different from sub-goals in that
we may obtain dominance if progress has been made in an
LTS (e.g. a package being in the truck is better than at the
initial position) while sub-goals only consider its goal value
(the package being at its destination). If a problem has several
serializable sub-goals, we can always construct a dominance
relation that represents this information. Up to the best of our
knowledge, there are no automatic algorithms to prove that a
set of sub-goals is serializable. Serialized dominance could
be tailored for this purpose.

There is a long list of works that identify tractable frag-
ments of the optimal and satisficing planning problem [Bäck-
ström and Klein, 1991; Jonsson and Bäckström, 1998; Braf-
man and Domshlak, 2003; Giménez and Jonsson, 2008;
Katz and Domshlak, 2008; Chen and Giménez, 2010]. Our
dominance techniques can capture some of the structure
exploited by these tractable fragments, like acyclic causal
graphs (using recursive τ -labels). But, at the same time, we
are not limited by such features of the planning tasks (e.g. the
causal graph of our running example is not acyclic). More-
over, dominance relations can be useful in tasks where plan-
ning is intractable but some part of the problem is easy to
solve. In those cases, the use of dominance techniques can
still dramatically reduce the search space.

There are several parametrized search algorithms that run
in polynomial time in a width parameter w. These algorithms
are based on a substantial amount of pruning either by only
allowing to change the value of up to w variables [Chen and
Giménez, 2007] or pruning states with a novelty greater than
w [Lipovetzky and Geffner, 2012]. In both cases, these al-
gorithms do not solve the entire planning task, but are used
to find a state “better” than the initial state in terms of the
achieved sub-goals. Dominance relations offer an alternative
way to compare states, which is more general than the cri-
terion used by Chen and Giménez and offers completeness
guarantees unlike simple sub-goal based criteria suggesting
potential in combining these approaches.

Seipp et al. [2016] introduced another notion of width

based on how hard is to represent a dead-end aware and
descending potential heuristic [Pommerening et al., 2015].
Many typical domains have a width of 2, meaning that it
is easy to represent a heuristic that solves them in polyno-
mial time. No method to automatically find such heuristic is
known yet but, satisficing dominance relations approximate
these kind of heuristics so any such algorithm could poten-
tially be used to obtain dominance relations as well.

A question that naturally comes up is what is the advantage
of using dominance relations over heuristic functions. Dom-
inance relations are more expressive than heuristics because
they are partial preorders while heuristics are total preorders.
For example, we may have relations where s � t and s′ � t′,
but the relation between s, t and s′, t′ remains unknown (e.g.
s 6� t′ and s′ 6� t). However, no assignment of heuristic
values can represent this relation. In practice, this matters
most in cases where dominance is able to discover some local
information that can be exploited independently of the rest
of the problem. Consider the Nomystery domain, where a
truck transports a set of packages using a limited amount of
fuel. The use of dominance allows us to identify that having a
package at its destination is always good so we can unload it
directly without considering any other alternative. The prob-
lem with heuristics is that they aggregate all estimations into
a single value, making it very difficult to identify in which
parts of the state space the heuristic is wrong. In Nomystery,
most heuristics will correctly estimate that all packages need
to be loaded and unloaded exactly once, but underestimate
the number of truck movements. However, the search will
equally explore the possibility of loading/unloading packages
in different locations due to the heuristic inaccuracies.

Our Dominance-Based Enforced Hill-Climbing algorithm
uses quantitative dominance functions to guarantee complete-
ness by ensuring that the search is never restarted from a dead
end. Recently, there have been other approaches based on
heuristic refinement that also devise a variant of EHC that
preserves completeness [Fickert and Hoffmann, 2017].

8 Discussion
In this paper, we have introduced the notion of dominance
for satisficing planning. Dominance can be used for dom-
inance pruning as well as to identify states that are strictly
better than others. This allows the search algorithm to be ex-
tremely greedy, restarting the search from any state that dom-
inates the initial state, but still preserving completeness. We
have adapted the algorithms to automatically find dominance
relations for these purposes. Dominance can be a very pow-
erful instrument to compare states, specially in instances with
a mixture of complex and simple sub-goals.

Our experiments show the ability of dominance to guide
EHC search. However, there is still a gap when compared
against state-of-the-art planners. Our results also point out
some limitations of current dominance techniques that may
be worth exploring in future work. Considering more than
one variable at a time could help to find stronger dominance
relations in many domains. Also, heuristics could use the
information captured by the dominance relation, increasing
the synergy between them.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4850



Acknowledgments
This paper has been supported by the German Research Foun-
dation (DFG), under grant HO 2169/6-1, “Star-Topology De-
coupled State Space Search”.

References
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The more, the merrier: Combining heuristic estimators for sat-
isficing planning. In Ronen I. Brafman, Hector Geffner, Jörg
Hoffmann, and Henry A. Kautz, editors, Proc. of the 20th In-
ternational Conference on Automated Planning and Scheduling
(ICAPS’10), pages 246–249, 2010.

[Seipp et al., 2016] Jendrik Seipp, Florian Pommerening, Gabriele
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