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Abstract
Fork-decoupled search is a recent approach to clas-
sical planning that exploits fork structures, where
a single center component provides preconditions
for several leaf components. The decoupled states
in this search consist of a center state, along with
a price for every leaf state. Given this, when does
one decoupled state dominate another? Such state-
dominance criteria can be used to prune dominated
search states. Prior work has devised only a triv-
ial criterion. We devise several more powerful cri-
teria, show that they preserve optimality, and es-
tablish their interrelations. We show that they can
yield exponential reductions. Experiments on IPC
benchmarks attest to the possible practical benefits.

1 Introduction
Fork-decoupled search is a new approach to state-space de-
composition in classical planning, recently introduced by
Gnad and Hoffmann [2015]. The approach partitions the state
variables into disjoint subsets, factors, like in factored plan-
ning (e. g. [Amir and Engelhardt, 2003; Kelareva et al., 2007;
Fabre et al., 2010; Brafman and Domshlak, 2013]). While
factored planning is traditionally designed to handle arbitrary
cross-factor interactions, fork-decoupling assumes these in-
teractions to take a fork structure [Katz and Domshlak, 2008;
Katz and Keyder, 2012; Aghighi et al., 2015], where a single
center provides preconditions for several leaves. A simple
pre-process can determine whether such a fork structure ex-
ists, and extract a corresponding factoring if so.

Fork factorings identify a form of “conditional indepen-
dence” between the leaf factors: Given a fixed center path πC ,
the compliant leaf moves – those leaf moves enabled by the
preconditions supplied along πC – can be selected indepen-
dently for each leaf. The decoupled search thus searches only
over center paths πC . Each decoupled state in the search rep-
resents the compliant leaf moves in terms of a pricing func-
tion, mapping each leaf-factor state sL to the cost of a cheap-
est πC-compliant path achieving sL. As Gnad and Hoffmann
(henceforth: GH) show, this can exponentially reduce state
space size. It may also cause exponential blow-ups though.

The worst-case exponential blow-ups result from irrelevant
distinctions in pricing functions. One means to combat this,

and more generally to improve search, is dominance prun-
ing, pruning a state sF if a better state tF has already been
seen. But, given the complex structure of decoupled states,
when is one “better” than another? GH employ the trivial cri-
terion, where sF and tF must have the same center state and
tF needs to have cheaper prices than sF for all leaf states.
Here we introduce advanced methods, analyzing the struc-
ture of decoupled states to identify (and then, disregard) ir-
relevant distinctions. We devise several such methods, using
different sources of information. We show that the methods
preserve optimality, and we characterize their relative prun-
ing power. We show that they can yield exponential search
reductions. Experiments on International Planning Competi-
tion (IPC) benchmarks attest to the possible practical benefits.

For space reasons, we can only outline our proof argu-
ments. Full proofs will be made available in an online TR.

2 Background
We use finite-domain state variables [Bäckström and Nebel,
1995; Helmert, 2006]. A planning task is a tuple Π =
〈V,A, I, G〉. V is a set of variables, each associated with
a finite domain D(v). I is the initial state. The goal G is
a partial assignment to V . A is a finite set of actions, each
a triple 〈pre(a), eff(a), cost(a)〉 of precondition, effect, and
cost, where pre(a) and eff(a) are partial assignments to V ,
and cost(a) ∈ R0+. For a partial assignment p, we denote
with V(p) ⊆ V the subset of variables on which p is de-
fined. For V ⊆ V(p), we denote with p[V ] the assignment
to V made by p. We identify (partial) variable assignments
as sets of variable/value pairs, written as (var, val). A state
is a complete assignment to V . Action a is applicable in
state s if pre(a) ⊆ s. Applying a in s changes the value of
all v ∈ V(eff(a)) to eff(a)[v], and leaves s unchanged else-
where. We will sometimes write s a−→ t for a transition from
s to t with action a. A plan for Π is an action sequence π
iteratively applicable in I which results in a state sG where
G ⊆ sG. The plan is optimal if its summed-up cost, denoted
cost(π), is minimal among all plans for Π.

We next give a recap of GH’s definitions. A fork factoring
F is a partition of V identifying a fork structure. Namely,
(i) every action a ∈ A affects (touches in its effect) exactly
one element (factor) of F , which we denote F (a). And (ii)
there is a center FC ∈ F s.t., for every a ∈ A, V(pre(a)) ⊆



FC ∪ F (a). We refer to the factors FL ∈ FL := F \ {FC}
as leaves. We refer to actions affecting FC as center actions,
and to actions affecting a leaf as leaf actions. By construction
(each action affects only one factor) these two kinds of ac-
tions are disjoint. Center actions are preconditioned only on
FC , leaf actions may be preconditioned on FC and the leaf
they affect. In brief: the center provides preconditions for the
leaves, and there are no other cross-factor interactions.

As a running example, we use a Logistics-style planning
task with a truck variable t, a package variable p, and n lo-
cations l1, . . . , ln. I = {(t, l1), (p, l1)} and G = {(p, l2)}.
Action drive(x, y) moves the truck from any location x to
any other location y. The package can be loaded/unloaded at
any location x with actions load(x)/unload(x) respectively.
Then F = {{t}, {p}} is a fork factoring where {t} is the
center and {p} is the single leaf. If we have m packages pi,
we can set each {pi} as a leaf.

Not every task Π has a fork factoring. GH analyze Π’s
causal graph (e. g. [Knoblock, 1994; Jonsson and Bäckström,
1995; Brafman and Domshlak, 2003; Helmert, 2006]) in a
pre-process, identifying a fork factoring if one exists, else ab-
staining from solving Π. We follow this approach here. In
what follows, we assume a fork factoring F . Variable assign-
ments to FC are called center states, and for each FL ∈ FL

assignments to FL are leaf states. We denote by SL the set
of all leaf states, across FL ∈ FL. For each leaf, sLI denotes
the initial leaf state. For simplicity (wlog), we will assume
that every leaf has a single goal leaf state, sLG.

Decoupled search searches over sequences of center ac-
tions πC , called center paths, that are applicable to I . For
each πC , it maintains a compact representation of the leaf
paths πL that comply with πC . A leaf path is a sequence of
leaf actions applicable to I when ignoring preconditions on
FC . Intuitively, given the fork structure, a fixed center path
determines what each leaf can do (independently of all other
leaves, as they interact only via the center). This is captured
by the notion of compliance: πL complies with πC if it uses
only the center preconditions supplied along πC , i. e., if πL

can be scheduled alongside πC s.t. the combined action se-
quence is applicable in I . Decoupled search goes forward
from I until it finds a center path πC to a center goal state
where every leaf has a πC-compliant leaf path πL to its goal
leaf state. The global plan then results from augmenting πC

with the paths πL.
In detail: A decoupled state sF is given by a center

path cp(sF ). Its center state cs(sF ) and pricing function
prices(sF ) : SL 7→ R0+ are induced by cp(sF ), as follows.
cs(sF ) is the outcome of applying cp(sF ) to sLI . prices(sF )
maps each leaf state sL to the cost of a cheapest cp(sF )-
compliant leaf path ending in sL (or ∞ if no such path ex-
ists).1 The initial decoupled state IF has the empty center
path cp(IF ) = 〈〉. A goal decoupled state sFG is one with a
goal center state cs(sFG) ⊇ G[FC ] and where, for every leaf
factor FL ∈ FL, its goal leaf state sLG has been reached, i. e.,
prices(sFG)[sLG] <∞. The actions applicable in sF are those
center actions a where pre(a) ⊆ cs(sF ). Applying a to sF

1Pricing functions can be maintained in time low-order polyno-
mial in the size of the individual leaf state spaces. See GH for details.

results in tF where cp(tF ) := cp(sF ) ◦ 〈a〉, inducing cs(tF )
and prices(tF ) as above.

In the running example, cs(IF ) = {(t, l1)},
prices(IF )[(p, l1)] = 0, prices(IF )[(p, t)] = 1, and
prices(IF )[(p, li)] = ∞, for all i 6= 1. Observe that
prices(IF )[(p, t)] represents the cost of a possible package
move, not a move we have already committed to. The
actions applicable to IF are drive(l1, li). Applying any
such action, in the outcome decoupled state sF we have
prices(sF )[(p, li)] = 2, while all other prices remain the
same. If we apply drive(l1, l2), then sF is a goal decoupled
state. The global plan is then extracted from sF by aug-
menting the center path cp(sF ) = 〈drive(l1, l2)〉 with the
compliant goal leaf path 〈load(l1),unload(l2)〉.

A completion plan for sF consists of a center path πC lead-
ing from sF to some goal center state, augmented with goal
leaf paths compliant with cp(sF ) ◦ πC . That is, we collect
the postfix path for the center, and the complete path for each
leaf. The completion cost of sF , denoted hF∗(sF ), is defined
as the cost of a cheapest completion plan for sF . By dF∗(sF ),
we denote the minimum, over all optimal completion plans
πF , of the number of center actions (decoupled-state transi-
tions) in πF .

3 Decoupled State Dominance
A binary relation� over decoupled states is a decoupled dom-
inance relation if sF � tF implies that hF∗(sF ) ≥ hF∗(tF )
and dF∗(sF ) ≥ dF∗(tF ). In dominance pruning, given such
a relation�, we prune a state sF at generation time if we have
already seen another state tF (i. e., tF is in the open or closed
list) such that sF � tF and g(sF ) ≥ g(tF ). Intuitively, tF
dominates sF if it has an at least equally good completion
plan and center path. The center path condition is needed
only in the presence of 0-cost actions, and ensures that the
completion plan for tF does not have to traverse sF . If tF
can be reached with equal or better g-cost, pruning sF pre-
serves completeness and optimality of the search algorithm.

We derive practical decoupled dominance relations by effi-
ciently testable sufficient criteria. The relations differ in terms
of their pruning power. We capture their relative power with
two simple terms of two simple notions. First, we say that
�′ subsumes � if �′⊇�, i. e., if �′ recognizes every occur-
rence of dominance recognized by �. Second, we say that
�′ is exponentially separated from � if there exists a family
of planning tasks in which the decoupled state space is ex-
ponential in the size of the input task under dominance prun-
ing using � and polynomial when using �′.2 We will devise
several decoupled dominance relations, weaker and stronger
ones. Weaker relations are useful in practice (only) when they
cause less computational overhead.

Previous work only considered what we will refer to as the
basic decoupled dominance relation, denoted �B .

Definition 1 (�B relation) �B is the relation over decou-
pled states defined by sF �B tF iff cs(sF ) = cs(tF ) and,
for all sL ∈ SL, prices(sF )[sL] ≥ prices(tF )[sL].

2More precisely, as the pruning depends on the expansion order:
in which this statement is true for any expansion order.



This method simply does a point-wise comparison between
prices(sF ) and prices(tF ), whenever both have the same
center state. Basic dominance pruning often helps to reduce
search effort, but is unnecessarily restrictive in its insistence
on all leaf prices being cheaper. This is inappropriate in cases
where sF has some irrelevant cheaper prices. It may, indeed,
cause exponential blow-ups as, e. g., in our running example.

The standard state space in our running example is small,
since |V| = 2. Yet the decoupled state space has size
exponential in the number n of locations. Through the
leaf state prices, the decoupled states “remember” the lo-
cations visited by the truck in the past. For example,
the decoupled state reached through the center sequence
〈drive(l1, l3), drive(l3, l4)〉 has finite prices for (p, l1), (p, t),
(p, l3), and (p, l4), and price∞ elsewhere; while the decou-
pled state reached through the sequence 〈drive(l1, l4)〉 has fi-
nite prices for (p, l1), (p, t), and (p, l4). Intuitively, the differ-
ence between the two pricing functions does not matter, be-
cause, with initial location l1 and goal location l2, the prices
for (p, li), i > 2 are irrelevant. But without recognizing this
fact, the decoupled state space enumerates (pricing functions
corresponding to) every combination of visited locations.

It is remarkable here that the blow-up occurs in a simple
Logistics task. This is a new insight. GH already pointed out
the risk of blow-ups, but only in complex artificial examples.
On IPC benchmarks, empirically the decoupled state space
always is smaller than the standard one. Our insight here is
that this is not because blow-ups don’t occur, but because the
blow-ups (e. g. remembering truck histories) are hidden be-
hind the gains (e. g. not enumerating combinations of package
locations). Indeed, in the standard IPC Logistics benchmarks,
the blow-up above occurs for all non-airport locations within
every city, and these blow-ups multiply across cities. All our
advanced dominance pruning methods get rid of this blow-up
(though none guarantees to avoid blow-ups in general).

4 Frontier-Based Dominance
Our first dominance relation is based on the idea that dif-
fering prices on a leaf state sL do not matter if “sL has no
purpose”. In our running example, say that we are check-
ing whether sF � tF and prices(sF )[(p, l3)] = 2 while
prices(tF )[(p, l3)] = ∞, and thus sF 6�B tF . However, say
that prices(sF )[(p, t)] = 1. Then the cheaper price for (p, l3)
in sF does not matter, because the only purpose of having the
package at l3 is to load it into the truck. Indeed, the only
outgoing transition of the leaf state (p, l3) leads to (p, t).

We capture the relevant leaf states in sF in terms of its fron-
tier: those leaf states that are either themselves relevant (this
applies only to the goal leaf state), or that can still contribute
to achieving cheaper prices somewhere.
Definition 2 (Frontier) We define the frontier of a decoupled
state sF , F (sF ) ⊆ SL as F (sF ) := {sLG} ∪ {sL | ∃sL

a−→
tL : prices(sF )[sL] + cost(a) < prices(sF )[tL]}.

We now obtain a decoupled dominance relation by com-
paring prices only on the frontier of sF :
Definition 3 (�F relation) �F is the relation over decou-
pled states defined by sF �F tF iff cs(sF ) = cs(tF ) and,
for all sL ∈ F (sF ), prices(sF )[sL] ≥ prices(tF )[sL].

Theorem 1 �F is a decoupled dominance relation.
Comparing the prices on the frontier is enough because,

in any completion plan for sF , if a compliant leaf path πL

decreases the price of the goal leaf state (e. g., from ∞ to
some finite value), then πL must pass through a frontier state
sL. Hence, in a completion plan for tF , we can use the postfix
behind sL. This completion plan can only be better than that
for sF because prices(sF )[sL] ≥ prices(tF )[sL].

It is easy to see that �F is strictly better than �B :

Theorem 2 �F subsumes �B and is exponentially sepa-
rated from it.

The first part of this claim is trivial as both relations are
based on comparing prices, but �F does so on a subset of
leaf states. A task family demonstrating the second part of the
claim is our running example. The only leaf action applicable
in any leaf state (p, li) is load(li), leading to (p, t). However,
for any reachable sF , we have prices(sF )[(p, t)] = 1 because
this price is already achieved in the initial state, and prices can
only decrease. So the only possible frontier state, apart from
(p, t), is the goal (p, l2). But only two different prices are
reachable for (p, l2), namely∞ and 2. This shows the claim.

5 Effective-Price Dominance
Our next method appears orthogonal to frontier-based domi-
nance at first sight, but turns out to subsume it. The method is
based on replacing the prices in tF , i. e., the dominating state
in the comparison sF � tF , with smaller effective prices, de-
noted Eprices(tF ). We then simply compare all such prices:

Definition 4 (�E relation) �E is the relation over decou-
pled states defined by sF �E tF iff cs(sF ) = cs(tF ) and,
for all sL ∈ SL, prices(sF )[sL] ≥ Eprices(tF )[sL].

The modified comparison is sound because the effec-
tive prices are designed to preserve hF∗(tF ). Precisely:
(*) For any center path πC starting in tF , and for any
leaf state sL of leaf FL, if πL

s is a πC-compliant leaf
path from sL to sLG, then there exists a path πL from
sLI to sLG that complies with cp(tF ) ◦ πC such that
cost(πL) ≤ Eprices(tF )[sL] + cost(πL

s ). In other words,
if prices(tF )[sL] > Eprices(tF )[sL], then any completion
plan can be modified to use some other leaf state which does
provide a total price of Eprices(tF )[sL] + cost(πL

s ) or less.
It turns out that this can be ensured with the following sim-

ple definition. We define Eprices(tF ) as the point-wise min-
imum pricing function p that satisfies:

p[sL] =


prices(tF )[sL] if sL = sLG
min{prices(tF )[sL],

max
sL

a−→tL

(
p[tL]− cost(a)

)
} otherwise

For each FL, Eprices(tF ) can be computed by a simple
backwards algorithm starting at the goal leaf state sLG. To
illustrate the definition, consider any tF in our running exam-
ple. The price of (p, t) is 1, and its effective price also is 1
because its successor leaf state sLG = (p, l2) always has effec-
tive price ≥ 2. For any irrelevant location li, i > 2, however,
due to the transition to (p, t) whose effective price is 1, we get
Eprices(tF )[(p, li)] = 0 regardless of what the actual price



of (p, li) in tF is. The effective price 0 is sound because, in
any completion plan for tF starting with load(li), we can use
load(l1) instead to get (p, t) with price 1.

Theorem 3 �E is a decoupled dominance relation.
To prove Theorem 3, observe that, whenever sF �E

tF , given a completion plan for sF , we can construct an
equally good completion plan for tF by using the same
center path πC , and, with (*) above, constructing equally
good or cheaper compliant goal leaf paths. It remains to
prove (*). Consider any tF , center path πC , leaf state
sL, and πC-compliant goal leaf path πL

s starting in sL. In
our example, e. g., say tF is reached from IF by applying
drive(l1, l3); that πC = 〈drive(l3, l2)〉; that sL = (p, l3);
and that πL

s = 〈load(l3), unload(l2)〉. Then, exists πL =
〈load(l1), unload(l2)〉 that is compliant with cp(tF ) ◦ πC .

Formally, denote πL
s = 〈a1, . . . , an〉 and denote the leaf

states it traverses by sL = sL0 , . . . , s
L
n = sLG. Observe that,

as Eprices(tF )[sLn ] = prices(tF )[sLn ], πL
s necessarily passes

through a leaf state sLi whose effective and actual prices in
tF are identical. Let i be the smallest index for which that is
so. Then, for all j < i, Eprices(tF )[sLj ] 6= prices(tF )[sLj ],
and thus by the definition of effective prices we have that
Eprices(tF )[sLj ] ≥ Eprices(tF )[sLj+1]− cost(aj+1). Accu-
mulating these inequalities, we get (**) Eprices(tF )[sL0 ] ≥
Eprices(tF )[sLi ] −

∑i
j=1 cost(aj). Consider now the path

πL from sLI to sLG constructed as the concatenation of:
a cheapest cp(tF )-compliant path to sLi (in our example,
〈load(l1)); with the postfix of πL

s behind sLi (in our ex-
ample, 〈unload(l2)). Then cost(πL) = prices(tF )[sLi ] +∑n

j=i+1 cost(aj). As Eprices(tF )[sLi ] = prices(tF )[sLi ],
we get cost(πL) = Eprices(tF )[sLi ] +

∑n
j=i+1 cost(aj).

With (**), we get the desired property that cost(πL) ≤
Eprices(tF )[sL0 ] +

∑i
j=1 cost(aj) +

∑n
j=i+1 cost(aj) =

Eprices(tF )[sL] + cost(πL
s ), concluding the proof.

Theorem 4 �E subsumes �F and is exponentially sepa-
rated from it.

To prove the exponential separation, we extend our running
example with a teleport(li, lj) action, for i, j > 2, that moves
the package between irrelevant locations if the truck is at l2.
Then, as long as l2 and at least one such li have not been
visited yet, all leaf states (p, li) for i > 2 with finite price are
in the frontier, and�F suffers from the same blow-up as�B .
The effective prices of (p, li), however, remain 0 as before.

To see that �E subsumes �F , observe that the for-
mer can be viewed as a recursive version of the latter,
when reformulating the frontier condition to “∃sL a−→ tL :
p[sL] < p[tL] − cost(a)”. Formally, one can show that,
if Eprices(tF )[sL] ≤ prices(sF )[sL] holds for all frontier
states sL ∈ F (sF ), then it also holds for all non-frontier
states sL 6∈ F (sF ). This shows the claim as, for sF �F tF ,
we have prices(sF )[sL] ≥ prices(tF )[sL] on sL ∈ F (sF ),
and thus prices(sF )[sL] ≥ Eprices(tF )[sL] on these states.

Note that, with the above, to evaluate�E it suffices to com-
pare the price of sF vs. effective price of tF on F (sF ). This
is equivalent to, but faster than, comparing all prices.

6 Simulation-Based Dominance
We use the concept of simulation relations [Milner, 1971;
Gentilini et al., 2003] on leaf state spaces in order to iden-
tify leaf states tL which can do everything that another leaf
state sL can do.3 In this situation, suppose that we are check-
ing whether sF � tF , and prices(tF )[sL] > prices(sF )[sL],
but prices(tF )[tL] ≤ prices(sF )[sL]. Then tF can still dom-
inate sF , because if a solution for sF relies on sL, then start-
ing from tF we can use tL instead.
Definition 5 (Leaf simulation) Let FL be a leaf factor. A
binary relation �L on FL leaf states is a leaf simulation if:
sLG 6�L sL for all sL 6= sLG; and whenever sL1 �L tL1 , for
every transition sL1

a−→ sL2 either (i) sL2 �L tL1 or (ii) there

exists a transition tL1
a′−→ tL2 s.t. sL2 �L tL2 , pre[FC ](a′) ⊆

pre[FC ](a), and cost(a′) ≤ cost(a).
This follows common notions, except for (i) which, intu-

itively, “allows tL1 to stay where it is”, and except for allowing
in (ii) different actions a′ so long as they are at least as good
in terms of center precondition and cost.

It is easy to see that, whenever sL �L tL, if a leaf
path πL

s starting in sL complies with a center path πC , then
there exists a πC-compliant leaf path πL

t starting in tL s.t.
cost(πL

t ) ≤ cost(πL
s ). Consequently, we allow sL to take a

cheaper price from any leaf state that simulates it:
Definition 6 (�S Relation) The relation�S over decoupled
states is defined by sF �S tF iff cs(sF ) = cs(tF ) and, for
all sL ∈ SL, prices(sF )[sL] ≥ minsL�LtL prices(tF )[tL].

Theorem 5 �S is a decoupled dominance relation.
It is easy to see that this is strictly better than �B :

Theorem 6 �S subsumes�B and is exponentially separated
from it.

The first part of this claim holds simply because �L

is reflexive (and therefore minsL�LtL prices(tF )[tL] ≤
prices(tF )[sL]). For the second part, we use again our run-
ning example. Leaf simulation captures that (p, li) �L (p, t)
for all i > 2, since (p, t) is the only successor of any (p, li)
and naturally (p, t) �L (p, t). So, �S reduces the price of
such (p, li) to 1, avoiding the exponential blow-up.

Inspired by [Torralba and Kissmann, 2015], we also em-
ploy leaf simulation to remove superfluous leaf states and leaf
actions, discovering transitions that can be replaced by other
transitions, then running a reachability check on the leaf state
space (details are in the TR). This reduces leaf state space
size, and may sometimes improve the heuristic function due
to the removal of some actions.

7 Method Interrelations and Combination
We have already established the relation of our methods rela-
tive to �B , as well as the relation between �E and �F . We
next design a combination �ES of �E and �S , with their
respective strengths, and we establish the remaining method
interrelations. Figure 1 provides the overall picture.

3This is inspired by, but differs in scope and purpose from, the
use of simulation relations on the state space for dominance pruning
in standard search [Torralba and Hoffmann, 2015].
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Figure 1: Summary of method interrelations. “A → B”: B
subsumes A and is exponentially separated from it. “A 6↔
B”: A is exponentially separated from B and vice versa.

The combined relation �ES is obtained by modifying the
effective prices underlying �E , enriching their definition
with a leaf simulation, �L. We define ESprices(tF ) as the
point-wise minimum pricing function p that satisfies:

p[sL] =


prices(tF )[sL] if sL = sLG
min{minsL�LtL prices(tF )[tL],

max
sL

a−→tL

(
p[tL]− cost(a)

)
} otherwise

We integrate the information from a leaf simulation into
the effective prices by allowing sL to take cheaper prices
from simulating states tL. This amounts to substituting
prices(tF )[sL] with minsL�LtL prices(tF )[tL] in the equa-
tion. We thus obtain, again, a decoupled dominance relation:

Definition 7 (�ES Relation) �ES is the relation over de-
coupled states defined by sF �ES tF iff cs(sF ) = cs(tF )
and, for all sL ∈ SL, prices(sF )[sL] ≥ ESprices(tF )[sL].
Theorem 7 �ES is a decoupled dominance relation.

Theorem 7 is shown by adapting the property (*) under-
lying the proof of Theorem 3. Say πL

s = 〈a1, . . . , an〉
is a πC-compliant goal leaf path starting in sL, travers-
ing the leaf states sL = sL0 , . . . , s

L
n = sLG. Then, with

the same arguments as before, there exists i such that (a)
ESprices(tF )[sL0 ] ≥ ESprices(tF )[sLi ] −

∑i
j=1 cost(ai),

and (b) ESprices(tF )[sLi ] = minsLi �LtL prices(tF )[tL]. We
construct our desired path πL from sLI to sLG by a cheap-
est cp(tF )-compliant path to a tL minimizing the expression
in (b), concatenated with a πC-compliant goal leaf path πL

t
starting in tL where cost(πL

t ) ≤ cost(πL
s ). Such πL

t exists
by the properties of leaf simulation, as in Theorem 5.
�ES subsumes each of its components. The exponential

separations therefore follow directly from the individual ones:
Theorem 8 �ES subsumes�E and�S , and is exponentially
separated from each of them.

One can also construct cases where �ES yields an expo-
nentially stronger reduction than both�E and�S , i. e., where
�ES is strictly more than the sum of its components. We
complete our analysis by filling in the missing cases:
Theorem 9 �S is exponentially separated from �E , and
therefore also from �F . �F , and therefore also �E , is ex-
ponentially separated from �S .

8 Experiments
We implemented our dominance pruning methods within the
fork-decoupled search variant of FD [Helmert, 2006] by GH.
Our baseline is GH’s basic pruning �B . For simplicity,
we stick to the factoring strategy used by GH. This method

greedily computes a factoring that maximizes the number of
leaf factors. In case there are less than two leaves, the method
abstains from solving a task. The rationale behind this is that
the main advantage of decoupled search originates from not
having to enumerate leaf state combinations across multiple
leaf factors. Like GH, we show results on all IPC domains up
to and including 2014 where the strategy does not abstain.

We focus on optimal planning, the main purpose of
optimality-preserving pruning. We run a blind heuristic to
identify the influence of different pruning methods per se, and
we run LM-cut [Helmert and Domshlak, 2009] as a state-
of-the-art heuristic. GH introduced two decoupled variants
of A∗, “Fork-Decoupled” A∗ and “Anytime Fork-Root” A∗,
which to simplify terminology we will refer to as Decoupled
A∗ (DA∗) and Anytime Decoupled A∗ (ADA∗). DA∗ is a di-
rect application of A∗ to the decoupled state space. ADA∗ or-
ders the open list based on the heuristic estimate of remaining
center-cost, uses the heuristic estimate of remaining global-
cost for pruning against the best solution so far, and runs un-
til the open list is empty. Both algorithms result in similar
coverage, with moderate differences in some domains. Our
techniques turn out to be more beneficial for ADA∗, which
tends to have larger search spaces but less per-node runtime
than DA∗. We show detailed data for ADA∗, and include data
for baseline DA∗ (with�B) for comparison. All experiments
are run on a cluster of Intel E5-2660 machines running at 2.20
GHz, with time (memory) cut-offs of 30 minutes (4 GB).

Blind Heuristic LM-cut
ADA∗ DA∗ ADA∗

Domain # �B �F �E �S �ES �B �B �F �E �S �ES

Driverlog 20 11 11 11 11 11 13 13 13 13 13 13
Logistics00 28 22 22 22 22 22 28 25 25 27 26 28
Logistics98 35 4 4 5 5 5 6 6 6 6 6 6
Miconic 145 36 45 45 45 45 135 135 135 135 135 135
NoMystery 20 17 20 20 20 20 20 20 20 20 20 20
Pathways 29 3 3 3 3 3 4 4 4 4 4 4
Rovers 40 7 6 6 7 6 9 9 9 9 9 9
Satellite 36 6 6 6 6 5 7 9 9 8 9 9
TPP 27 23 23 22 23 22 18 23 23 22 22 22
Woodwork08 13 5 5 5 5 5 10 11 11 11 11 11
Woodwork11 5 1 1 1 1 1 4 5 5 5 5 5
Zenotravel 20 11 11 12 12 12 13 11 11 12 12 13∑

418 146 157 158 160 157 267 271 271 272 272 275

Table 1: Coverage data.

Table 1 shows the number of instances solved, comparing
to both baselines DA∗ and ADA∗. Data for DA∗ with the
blind heuristic is not shown as it is identical to that for ADA∗.
The main gain for blind search stems from Miconic (+9), and
NoMystery (+3). When using LM-cut, the advantage over
�B is much smaller. We still gain +3 (+2) instances in Logis-
tics00 (Zenotravel). In Satellite and TPP, we lose 1 instance
in some configurations due to overhead at no search space re-
duction. �ES reliably removes the disadvantages of ADA∗

relative to DA∗, and is best in the overall. We never strictly
improve coverage over both baselines, though. As we shall
see below, this is due to benchmark scaling, i. e., there are
domains where runtime is improved over both baselines.

We next analyze the search space size reduction (top part
of Table 2). In general, the blind heuristic has more margin
of improvement except in Logistics98, where the improve-



Expansions with Blind Heuristic: Improvement factor relative to�B Expansions with LM-cut: Improvement factor relative to�B

�F �E �S �ES �F �E �S �ES

Domain #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max
Driverlog 11 1.0 1.0 1.0 5.0 1.8 6.5 2.4 1.3 2.8 5.0 1.8 6.5 13 1.0 1.0 1.0 2.4 1.3 4.3 1.9 1.2 3.4 2.4 1.3 4.3
Logistics00 22 1.2 1.0 1.2 2.5 1.4 3.8 2.5 1.4 3.8 2.5 1.4 3.8 25 1.0 1.0 1.0 2.1 1.2 2.3 1.4 1.3 3.0 2.2 1.4 3.0
Logistics98 4 1.0 1.0 1.0 3.9 2.1 4.2 2.3 1.7 2.4 3.9 2.1 4.2 6 1.0 1.0 1.0 1.7 1.3 1.7 109.8 10.2 1245.2 134.7 10.8 1245.2
Miconic 36 3.3 1.7 5.2 3.3 1.7 5.2 3.3 1.7 5.2 3.3 1.7 5.2 135 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NoMystery 17 4.4 1.7 8.5 4.4 1.7 8.5 4.4 1.7 8.5 4.4 1.7 8.5 20 6.3 1.7 9.2 6.3 1.7 9.2 6.8 1.9 9.3 6.8 1.9 9.3
TPP 22 1.0 1.0 1.0 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.2 22 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Zenotravel 11 1.0 1.0 1.0 1.4 1.1 1.6 1.3 1.1 1.5 1.4 1.1 1.6 11 1.0 1.0 1.0 1.2 1.1 1.4 1.2 1.0 1.3 1.2 1.1 1.4

Runtime with Blind Heuristic: Improvement factor relative to�B Runtime with LM-cut: Improvement factor relative to�B

�F �E �S �ES �F �E �S �ES

Domain #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max
Driverlog 9 0.9 0.9 1.0 30.7 2.6 38.9 10.3 2.2 14.4 35.3 2.9 47.5 5 0.8 0.9 1.0 5.5 2.6 14.3 4.4 2.5 11.3 5.5 2.7 14.6
Logistics00 7 1.4 1.3 1.5 6.4 5.9 15.2 8.4 8.3 22.5 7.5 7.0 19.7 9 0.9 0.9 0.9 3.8 1.5 4.6 2.7 3.7 6.4 4.1 3.5 5.0
Logistics98 3 0.8 0.8 0.8 21.2 4.1 22.4 12.1 5.4 12.3 26.4 6.2 27.5 4 0.9 0.9 0.9 2.2 1.2 2.2 895.9 30.4 2643.9 750.2 26.2 2259.3
Miconic 19 24.0 10.0 53.9 24.3 9.0 47.9 22.6 8.6 45.7 23.5 8.8 47.0 81 0.9 1.0 1.2 1.0 0.9 1.1 1.0 1.0 1.2 0.9 0.9 1.0
NoMystery 9 47.3 5.6 157.1 36.2 4.1 118.8 64.2 7.4 210.2 53.7 6.0 182.7 12 13.3 3.0 21.0 12.6 2.9 22.4 16.2 3.8 28.9 14.6 3.6 26.0
Pathways 2 0.9 0.9 0.9 0.7 0.7 0.7 1.0 1.0 1.0 0.6 0.6 0.6 1 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.9 0.9 0.9
Rovers 2 0.8 0.8 0.8 0.5 0.5 0.6 1.0 1.0 1.0 0.5 0.5 0.5 5 0.9 0.9 0.9 0.7 0.7 0.8 1.0 1.0 1.0 0.7 0.7 0.8
Satellite 3 0.9 0.9 1.0 0.6 0.7 0.9 1.0 1.0 1.0 0.5 0.6 0.8 4 1.0 1.0 1.0 0.9 0.8 0.9 1.0 1.0 1.0 0.9 0.8 0.9
TPP 13 0.8 0.8 1.0 0.0 0.1 0.3 0.1 0.3 0.8 0.0 0.1 0.3 11 0.8 0.8 1.0 0.1 0.2 0.4 0.1 0.4 0.8 0.1 0.1 0.3
Woodwork08 2 1.5 1.2 1.5 0.7 0.8 1.0 1.5 0.3 1.5 1.0 0.3 1.0 8 1.0 1.0 1.1 1.0 1.0 1.0 1.2 0.9 1.7 1.1 0.8 1.4
Woodwork11 1 1.5 1.5 1.5 0.7 0.7 0.7 1.5 1.5 1.5 1.0 1.0 1.0 5 1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.2 1.3 1.3 1.2 1.3
Zenotravel 4 0.8 0.8 1.0 1.2 1.2 1.4 1.7 1.8 2.9 1.3 1.3 1.8 4 0.9 0.9 1.0 1.1 1.0 1.2 1.3 1.3 1.6 1.1 1.1 1.3

Table 2: Improvement factor on commonly solved instances relative to �B , using ADA∗. We show expansions up to last f -
layer (top), and runtime (bottom), with the blind heuristic (left) and LM-cut (right). In the top part, some domains are skipped
as all their factors are rounded to 1.0. In the bottom part, we only take into account the instances that are not trivially solved by
all planners (< 0.1s).

∑
D: Ratio over the per-domain sum. GM (max): geometric mean (maximum) of per-instance ratios.

ment with LM-cut gets magnified due to the relevance anal-
ysis performed when enabling �S . In that domain, remov-
ing irrelevant leaf states and leaf actions renders LM-cut a lot
stronger.4 Regarding the relative behavior of pruning tech-
niques, in two domains, namely Miconic and NoMystery,
already the simplest technique (�F ) gets the maximal im-
provement factor. In four domains, enabling effective-price
pruning on top of frontier pruning results in additional prun-
ing. Combining all techniques in �ES always inherits the
strongest search space reduction of its components and in Lo-
gistics with LM-cut, it often is strictly better.

Consider now runtime, Table 2 bottom. One key observa-
tion is that, whenever the search space is reduced, the same
holds for runtime, even for small search space reduction fac-
tors like, e. g., in Zenotravel. Remarkably, in some domains
(e. g. Woodworking) where no search reduction is obtained,
runtime decreases nevertheless for some simple methods such
as �F . This is due to the cheaper dominance check – prices
are compared only on frontier leaf states. There are also
some bad cases, though, mainly in TPP, but also in Pathways,
Rovers, and Satellite. These are also the domains in which
coverage slightly decreases. What makes these domains spe-
cial is the structure of their leaf state spaces. In Pathways,
Rovers, and Satellite, all leaves are single variables with a
single transition, sLI → sLG, so there is no room for improve-
ment. In TPP, the leaf state spaces are quite large (up to 5000
states), so our methods incur substantial overhead, but are un-
able to perform pruning. Presumably, this is because most of
the leaf states can play a role in optimally reaching the goal.

4It may be surprising that, elsewhere, the improvements in Logis-
tics are moderate, despite the inherent blow-up we explained earlier.
This is because, in the commonly solved instances, the number of
non-airport locations in each city is very small, mostly 1.

Coming back to our previous observation that coverage is
never improved over both baselines, the runtime analysis re-
veals an improvement over both baselines in several domains.
ADA∗ with�S is faster than DA∗ with�B in all domains ex-
cept Zenotravel, where the geomean per-instance runtime fac-
tor is 0.7. The other factors are: Driverlog 2.3; Logistics00
2.3; Logistics98 3.4; Miconic 2.7; NoMystery 3.2; Pathways
1.1; Rovers 2.1; Satellite 2.9; TPP 23.2; Woodworking08 1.4;
and Woodworking11 2.0. In particular, in Driverlog, both
Logistics domains, NoMystery, and Woodworking11, ADA∗

with �S improves runtime over both baselines.
Finally, consider the use of our pruning methods in DA∗.

For blind search, the numbers are almost identical to those for
ADA∗ in Table 2, as DA∗ and ADA∗ differ mainly in their
use of a (non-trivial) heuristic. With LM-cut, the pruning
methods do not work as well for DA∗. For example, for �S ,
the geomean per-instance runtime factors are: Driverlog 1.8;
Logistics00 and Logistics98 2.5; NoMystery 2.0; TPP 0.9;
Woodworking08 0.9; Woodworking11 1.3; Zenotravel 1.2;
and 1.0 in the other domains. The picture is similar for the
other pruning methods. The big runtime advantages observed
with ADA∗ vanish, but the method also becomes less risky,
i. e., the big runtime disadvantage in TPP vanishes as well.
This makes sense since DA∗ searches less nodes (it has less
potential for pruning) while spending more time on each node
(making the dominance-checking overhead less pronounced).

9 Conclusion
Dominance pruning methods can be quite useful for decou-
pled search. Our analysis of such methods is fairly complete,
although of course other variants may be thinkable. More
pressingly, the question remains whether there exist duplicate
checking methods guaranteeing to avoid all blow-ups.
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