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Álvaro Torralba and Carlos Linares López and Daniel Borrajo
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Abstract

Symbolic PDBs and Merge-and-Shrink (M&S) are
two approaches to derive admissible heuristics
for optimal planning. We present a combination
of these techniques, Symbolic Merge-and-Shrink
(SM&S), which uses M&S abstractions as a re-
laxation criterion for a symbolic backward search.
Empirical evaluation shows that SM&S has the
strengths of both techniques deriving heuristics at
least as good as the best of them for most domains.

1 Introduction
One of the most successful approaches to cost-optimal plan-
ning is the use of abstraction heuristics as admissible estima-
tions in an A∗ search. Abstraction heuristics use the optimal
cost in a simplified abstract state space as an admissible esti-
mation of the cost of the original problem. Merge-and-Shrink
(M&S) is a flexible approach to derive abstractions [Helmert
et al., 2007]. It has been shown to be more general than other
approaches such as Pattern Databases (PDBs) [Culberson and
Schaeffer, 1998; Edelkamp, 2001] and it is able to derive the
perfect heuristic for some domains [Nissim et al., 2011a].
Moreover, it has shown impressive practical results, being the
runner-up in the optimal sequential track of the 2011 Interna-
tional Planning Competition1 (IPC) and a component of the
portfolio winning the competition [Helmert et al., 2011].

On the other hand, symbolic search performs state space
exploration by representing sets of states in the form of
Binary Decision Diagrams (BDDs) [Bryant, 1986]. The
GAMER planner uses symbolic variants of bidirectional blind
search and A∗ [Kissmann and Edelkamp, 2011]. GAMER
won the optimal track of IPC-2008 and, even though it was
not among the best performing planners in the IPC-2011, it
showed potential being the best planner in some particular
domains. GAMER generates heuristics in the form of Sym-
bolic Pattern Databases by performing a symbolic backward
Dijkstra’s search on the abstracted state space. When the
state space is not abstracted, a perimeter around the goal is
explored. Thus, symbolic backward search and M&S may
both generate perfect heuristics in a symbolic representation.

1www.ipc.icaps-conference.org

Indeed, they have been shown to have equivalent represen-
tational power under the assumption of a linear merge strat-
egy [Edelkamp et al., 2012]. The difference lies on how they
generate the heuristic. While M&S considers an abstract state
space and iteratively adds more variables, symbolic search
performs regression on the original state space.

We present Symbolic M&S (SM&S), a new algorithm to
derive admissible heuristics for optimal planning. SM&S
uses M&S abstractions as a relaxation criterion for a sym-
bolic backward search. Thus, SM&S generates more accu-
rate heuristics by combining the strengths of both techniques.
The next section gives a formal definition of symbolic search
and M&S. Then, SM&S is presented along with its theoreti-
cal properties. Finally, SM&S has been empirically evaluated
and compared to previous state-of-the-art M&S strategies.

2 Background
Following the notation of [Katz et al., 2012] a planning task
is a tuple Π = (V,O, s0, s?) where V is a set of finite-
domain variables υ with domains Dυ , O is a set of opera-
tors o = (pre, eff , c ∈ N0) composed of its preconditions,
effects and cost, s0 is an assignment of values to variables in
V representing the initial state and s? is a partial-assignment
of values to a subset of variables denoted as the goal. A plan-
ning task defines a state space as a labeled transition sys-
tem Θ = (S,L, T, s0, S?), where S is the set of all states.
L is a set of transition labels corresponding to the operators
of the planning task. T is the set of transitions, where each
transition is a tuple (s, l, s′) with s, s′ ∈ S and l ∈ L and
(s, l(o), s′) ∈ T if o is applicable in s, giving s′ as result.
Finally, s0 is the initial state and S? is the set of states sat-
isfying s?. A plan is an operator sequence describing a path
from s0 to any state in S?. A plan is optimal iff the summed
costs of its operators is minimum. A heuristic is a function h:
s → N0 which estimates the cost to reach a state of S? from
a state s. The heuristic is perfect if it equals the optimal cost
h∗(s) for all s ∈ S. It is admissible if it never overestimates
the optimal cost, ∀s h(s) ≤ h∗(s). It is consistent if for every
(s, l, s′) ∈ T , h(s) ≤ h(s′) + c(l).

An abstraction is a function α: S → Sα mapping
states in S to abstract states in Sα. The abstract state
space of α is defined as a tuple Θα = (Sα, L, Tα, sα0 , S

α
? )

where Sα is the set of abstract states, L is a set of la-
bels, Tα = {(α(s), l, α(s′)) | (s, l, s′) ∈ T}, sα0 = α(s0)

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

2394



and Sα? = {sα|∃s ∈ S?, s
α = α(s)}. An abstraction

heuristic hα uses the cost of the cheapest path from α(s)
to Sα? . The set of relevant variables for α is denoted as
Vα and represents all the variables on which α depends,
i. e., variables needed to describe its abstract states. A
projection of the planning task over a subset of variables
V ∈ V is defined by restricting the initial state, goals and
preconditions/effects of the operators to V . An atomic ab-
straction wrt variable υ, Πυ , is the projection of the prob-
lem Π over that variable. The synchronized product of
two abstractions α1 and α2 is a standard operation deriv-
ing a new state space Θα1⊗α2 = (S′, L, T ′, s′0, S

′
?) where

S′ = Sα1 × Sα2 , T ′ = {((s1, s2), l, (s′1, s
′
2))|(s1, l, s′1) ∈

Tα1 and (s2, l, s
′
2) ∈ Tα2}, s′0 = (sα1

0 , sα2
0 ) and S′? =

{(s1, s2)|s1 ∈ Sα1
? ∧ s2 ∈ Sα2

? }.
Pattern Databases (PDBs) derive an abstraction as the pro-

jection of the problem over a subset of variables. Then,
the abstract state space is traversed by backward Dijkstra’s
search [Sievers et al., 2012] to precompute the distance from
every abstract state to the closest abstract goal state. Selection
of good variable subsets has been carefully analyzed [Haslum
et al., 2007; Edelkamp, 2007; Kissmann and Edelkamp,
2011]. Partial PDBs [Anderson et al., 2007] aim at search-
ing larger abstract state spaces at the expense of not fully
traversing them. The backward search is truncated at goal
distance d so that the distance of any expanded abstract state
is known. States that were not expanded are assigned the next
value larger than d. If the partial PDB takes into account
all the problem variables, it searches a perimeter around the
goal [Dillenburg and Nelson, 1994; Manzini, 1995]. Perime-
ter search has been combined with PDBs for heuristic search
domains, by storing the distance to states in the perimeter in-
stead of the distance to the goal state [Felner and Ofek, 2007;
Linares López, 2008].

2.1 Symbolic Pattern Databases
Binary Decision Diagrams (BDDs) [Bryant, 1986] and Alge-
braic Decision Diagrams (ADDs) [Bahar et al., 1997] are data
structures to efficiently represent boolean and integer func-
tions, respectively. Symbolic search uses BDDs to represent
sets of states as their characteristic functions. Finite-domain
state variables are represented in the BDDs with a logarith-
mic number of binary variables. In the rest of the paper we
assume that all variables are binary without loss of general-
ity. Given a variable ordering, there is a unique reduced rep-
resentation of every set of states, which may be exponentially
smaller than an explicit representation. Variable ordering is
decided before starting the search and remains fixed [Kiss-
mann and Edelkamp, 2011]. Moreover, the representation
of planning operators as transition relations allows symbolic
search to efficiently compute the successor/predecessor sets
with the image/pre-image operations [Torralba et al., 2013].

Symbolic PDBs take advantage of a symbolic representa-
tion to succinctly represent the heuristic as an ADD [Ball and
Holte, 2008], so that it becomes feasible to explore larger ab-
stract state spaces [Edelkamp, 2005]. The optimal cost of
abstract states is determined by a symbolic backward Dijk-
stra’s search. A symbolic Dijkstra’s search is characterized as
a tuple (Open,Closed, d) where Open and Closed are sets of

BDDs representing the sets of states that have been reached or
expanded and d is the current frontier cost. Open and Closed
stand for generated and expanded states, respectively, while
buckets Openc and Closedc stand for the sets of states reached
or expanded with cost c. The backward search is initialized
with Open0 = S?, Closed = {∅} and d = 0. At each step,
Opend is expanded, removed from Open, inserted in Closed
and its successors are inserted in Open. Then d is updated
to the minimum cost in Open. The closed list of a symbolic
backward search can be used as an admissible heuristic for
the original planning task. Since Closed separately stores the
set of states with each h-value, every state in Closed has a
known h-value. If the search is completed, states not appear-
ing in Closed are dead-ends (h = ∞). If the search is still in
progress, the cost of all non-expanded states is set to the next
frontier cost.

2.2 Merge-and-Shrink
M&S is a flexible way to derive abstractions taking into ac-
count all the problem variables. M&S is initialized with the
set of atomic abstractions of a planning problem (one for
each variable) and iteratively replaces a pair of abstractions
by their synchronized product (merge). When the abstract
state space is too large to explicitly represent it, M&S reduces
it by unifying pairs of states (shrink). The performance of
M&S greatly depends on the policies chosen. A merge policy
decides which two abstractions to merge next. We say it is a
linear merge strategy if, at each merge step, at least one of the
two abstractions to be merged is an atomic abstraction (single
variable abstraction). Throughout this paper, a linear merge
strategy is assumed since it guarantees an efficient symbolic
representation of the heuristic as an Algebraic Decision Dia-
gram [Edelkamp et al., 2012]. Therefore, the merge strategy
can be characterized by the ordering by which variables are
merged. A shrinking policy unifies abstract states, consider-
ing them equivalent. Thus, it induces an equivalence rela-
tion; a mapping from abstract states to buckets. A shrinking
policy is h-preserving wrt a state space Θ iff it only unifies
states with the same goal distance in Θ. Given an abstraction
α, an equivalence relation is locally h-preserving iff it is h-
preserving wrt to its state space Θα and globally h-preserving
if it is h-preserving wrt Θα ⊗ ΠV\Vα (i. e., the synchronous
product of the abstraction and its non-relevant variables). Pre-
vious work on M&S mainly focused on defining shrinking
policies. DFP2 strategies unify states with the same g and h-
values in the abstract state space. Bisimulation [Nissim et al.,
2011a] approaches unify abstract states with equivalent tran-
sitions (to the same states and with the same labels). Relaxed
variants of bisimulation take only into account a transition
subset. Greedy bisimulation ignores all the transitions go-
ing to states further from the goal (i. e., (s, l, s′) such that
hα(s) < hα(s′)). Label-catching bisimulation only takes
into account transitions labelled with a previous selected set
of relevant-labels [Katz et al., 2012]. All the previous strate-
gies are locally h-preserving and non-greedy bisimulation is
a globally h-preserving policy.

2Named after Dräger, Finkbeiner and Podelski [Dräger et al.,
2006].
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Figure 1: SM&S example with binary variables, unary cost operators and a limit of six abstract states for M&S.

3 Symbolic Merge-and-Shrink

Our proposed technique, SM&S, derives a symbolic heuristic
using M&S abstractions to relax a symbolic backward search.
Figure 1 represents a high level view of the interaction be-
tween symbolic search and M&S abstractions in the SM&S
algorithm. SM&S starts computing a symbolic perimeter,
Exp(α0). The first BDD with h = 0 contains the goal states
and by successive pre-image operations SM&S generates the
sets of states with h = 1, h = 2, etc. This search is in-
tractable for general planning domains so when memory or
time bounds are surpassed, it is truncated (h = 2 in Fig-
ure 1). The minimum distance to the goal of the expanded
state sets is stored, transforming the list of BDDs represent-
ing the search to an ADD representing the heuristic, hExp(α0).

Then, M&S is used to derive an abstraction, α1. M&S
merges variables, applying shrinking if needed to fit the max-
imum number of abstract states (in Figure 1, α1 must have at
most three abstract states before merging the next variable).
SM&S uses α1 to relax the top levels of all the BDDs in the
exploration Exp(α1). All partial states related to the same
abstract state are considered equivalent so that when one is
reached, all of them are. In Figure 1, abstract state e1 repre-
sents partial states 00 and 10. During the exploration, if state
10010. . . is reached, then state 00010. . . is also reached and
vice versa. Hence, BDD nodes pointed to by 00 and 10 are
equivalent, making the top part of any BDD in the exploration
equal to its M&S representation. Also, M&S abstractions are
cumulative, so the top levels of α2 coincide with those of pre-
vious abstractions. SM&S continues interleaving symbolic
explorations and M&S iterations until an exploration is com-
pleted or time/memory bounds are violated. When finished,
it returns the list of ADDs representing the heuristic.

Algorithm 1 shows the SM&S algorithm. It receives as
input a planning task Π and some parameters to bound the
memory and time resources. The output is a heuristic H
represented as a list of ADDs. Each ADD is the result of
a backward symbolic exploration over a M&S abstraction α.
If SM&S reaches the time limit TSM&S a last ADD is included
(line 16). This last ADD represents the minimum cost from

each abstract state to the closest abstract goal state, computed
as the original M&S heuristic, with an explicit traversal of the
abstract state space. SM&S starts initializing the symbolic
backward search as usual to (Open = S?,Closed = ∅, d =
0) and α is empty. Symbolic search progresses following the
relaxation imposed by α (line 7).
Definition 1. Let α be an abstraction with relevant variables
Vα and a subset of non-relevant variables V ′ ⊆ V \Vα. A V’
symbolic exploration on α, Exp(α,V ′), is a backward search
over the synchronized product of α and the projection of the
planning task over V ′: αV′

= α ⊗ ΠV′ . When all the non-
relevant variables are considered in the exploration, V ′ =
V\Vα, we say it is a full symbolic exploration. When V ′ = ∅,
the exploration searches the abstract state space, Θα.

SM&S uses full symbolic explorations, always considering
all the non-relevant variables for the abstraction. In the rest
of the paper any mention of a symbolic exploration Exp(α)
stands for a full symbolic exploration Exp(α,V \ Vα). The
Explore procedure performs a full symbolic exploration of
α, updating the open and closed lists and the frontier cost,
d. At each step, the current frontier Se is extracted from
Opend, removing already expanded states (line 20). Before
applying non-zero cost operators, a breadth-first search ap-
plying only 0-cost operators is performed in order to obtain
all states reachable with cost d (lines 23 - 25). Those states
are stored in the closed list and their successors are gener-
ated and inserted in the corresponding bucket of the open list.
pre-imagec computes the set of predecessor states in the state
space α ⊗ ΠV\Vα with operators of cost c. The exploration
finishes when the open list is empty or the search is truncated.
The heuristic derived from its closed list is stored in H as an
ADD (line 8).
Definition 2. Given a symbolic exploration Exp(α) whose
contents are {Open,Closed, d}. Let b(Open) > d be the
cost of the next bucket in Open, and the next frontier cost be
d′ = min{b(Open), d+mino∈O c(o)}, the minimum between
the next bucket in the open list and the current frontier plus
the cost of the cheapest operator. The exploration heuristic is
defined as in partial PDBs, setting not expanded states either
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Algorithm 1: Symbolic Merge-and-Shrink.
Input: Task Π, Memory bounds: N, NF

Time bounds: TSM&S , TSym , TExp , TI
Output: List of ADDs: H

1 H ← ∅
2 abs ← {πυ|υ ∈ V}
3 α← ∅
4 (Open,Closed, d)← (s?,∅, 0)
5 while Open 6= ∅ and ts < TSM&S:
6 if |Opend| ≤ NF and ts < TSym :
7 Explore(α,Open,Closed, d,NF , TExp , TI)
8 H ← H ∪ ADD(Closed, d)
9 Select πυ ∈ abs

10 abs ← abs \ πυ
11 E ← Shrink(α, N

size(πυ)
)

12 Open← Open∃E

13 Closed← Closed∀E

14 α← αE ⊗ πυ // Merge next variable

15 if Open 6= ∅:
16 H ← H ∪ Explicit-Search(α)
17 return H

18 Procedure Explore(α,Open,Closed, d,NF , TExp , TI)
19 while Open 6= ∅ and texp < TExp:
20 Se ← Opend ∧ ¬Closed
21 Opend ← ∅
22 Closedd ← Se

// Breadth First Search with 0-cost operators

23 while Se 6= ∅ and |Se| < NF and t < TExp:
24 Se ← pre-image0(Se, α, TI) ∧ ¬Closed
25 Closedd ← Closedd ∨ Se

// Apply cost operators

26 if |Closedd| < NF and texp < TExp:
27 for c = 1, . . . , C:
28 Opend+c ← Opend+c∨
29 pre-imagec(Closedd, α, TI)
30 d← minc Openc 6= ∅

to d′ or ∞, depending on whether the exploration success-
fully finished or not:

hExp(α)(s) =


c s ∈ Closedc
d′ s /∈ Closed and Open 6= ∅
∞ s /∈ Closed and Open = ∅

Several parameters bound the memory and time used by
the algorithm. Memory is controlled by the maximum num-
ber of M&S abstract states N and the maximum number of
nodes NF to represent the search frontier. Four different pa-
rameters limit the time spent by the algorithm ts or by the ex-
ploration texp . TM&S aborts the heuristic generation to guar-
antee termination. TSym prevents SM&S from performing
more symbolic explorations to focus on completing the M&S
abstraction. TExp fixes a maximum time for each individual
exploration to avoid consuming all the time in one single ex-
ploration. Finally, TI limits the maximum allotted time in

one pre-image. If TI is exceeded, not only the image but
the whole exploration is halted. In order to avoid starting
another image as hard as the halted one, the maximum num-
ber of nodes in the frontier search is reduced to NF = |Se|

2 .
All these parameters are set independently of the domain and
only depend on the memory and time resources available to
the planner.

After an exploration is truncated, abstraction α is shrunk
in order to merge a new variable. Instead of restarting the
search from scratch in the new abstract state space, the new
exploration continues from the current frontier, relaxing the
open and closed lists. That way, the exploration is more in-
formed since the first steps were performed on less-relaxed
state spaces. Besides, it prevents SM&S from starting a new
exploration per each variable merged, which could cause re-
dundant work in case that most searches were truncated at
the same frontier cost. SM&S keeps including variables into
the abstraction until the search has been simplified enough,
i. e., the relaxed frontier is smaller than the parameter NF .
We define existential and universal shrinking wrt equiva-
lence relation E, to perform the relaxation over the open and
closed lists, respectively. The new exploration is initialized
to (Open∃E ,Closed∀E , d). To avoid pruning valid states, the
relaxed open list must keep all the states and no states can be
added to the closed list so that the following inequality holds
for any state set SB : S∀EB ⊆ SB ⊆ S∃EB .
Definition 3. Let SB be a state set and E an equivalence
relation over Vα ⊂ V . Each bucket e ∈ E represents a set
of equivalent abstract states se, and it is described as their
disjunction: e =

∨
s∈se s. Existential/universal shrinking of

SB wrt E is defined as:

S∃E=
∨
e∈E

(
∃Vα(SB ∧ e)

)
∧ e

S∀E=
∨
e∈E

(
∀Vα(SB ∧ e) ∨ e

)
∧ e

For every bucket e, SB∧e is the subset of SB , which corre-
sponds to any abstract state in e. Then, Existential/Universal
quantification is a standard BDD operation which removes
variables Vα keeping the values of other variables reached for
any/every abstract state in e, respectively. Finally, the value of
Vα is set to e. Disjunction with e is necessary to ignore other
buckets in the universal quantification. After relaxing the ex-
ploration, the search continues over the new abstract state
space so the pre-image generates predecessor states in the
new abstract state space. To avoid recomputing the transition
relation for each exploration, we compute the pre-image with
the transition relation of the original problem and then apply
existential shrinking to relax the result. Existential shrinking
is not the computational bottleneck, though transformations
of the transition relation could optimize image computation.

Once the heuristic is computed as a list of ADDs, it can be
used in the search to solve the planning problem. One must
be careful to preserve admissibility when combining heuris-
tic estimates of ADDs coming from different explorations.
In particular, if a state was expanded by an exploration, lat-
ter explorations may return inadmissible estimations for it.
When relaxing the closed list, the state may be removed by
universal shrinking and re-expanded with higher cost in latter
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explorations. Thus, the heuristic is computed as the maxi-
mum estimation of each exploration, but ignoring those ex-
plorations after the first one that expanded the state. Let s
be a state, and I be the first exploration in which the s was
expanded, I = min{i|s ∈ ClosedExp(αi)}. Then, we define
hSM&S(s) = maxi=0,IhExp(αi)(s).

3.1 Theoretical Properties
Theorem 1. hSM&S heuristic is admissible and consistent.

Proof. h is consistent iff h(s) ≤ h(s′) + c(l) ∀(s, l, s′).
Given the definition of hSM&S, (1) if s′ was not expanded
in any exploration, then its h-value equals ∞ or the larger
frontier cost. In either case, hSM&S(s) ≤ hSM&S(s′) ∀s.
(2) Otherwise, let Exp(αi) be the first exploration expand-
ing s′, and doing so with cost c. Then hSM&S(s′) ≥ c. As
s′ was expanded, necessarily s was inserted in Openc+c(l).
hSM&S(s) ≤ c + c(l) holds if Openc+c(l) is expanded by any
exploration, since s remains in Open (or has been expanded
with a lower cost) because existential shrinking preserves all
the states in the open list and universal shrinking prevents
states from being closed if they are not expanded. If SM&S
finishes before reaching c+c(l) (the search is truncated), h(s)
will be the next frontier cost d′ ≤ c+ c(l).

Admissibility is derived from consistency, given that the
heuristic is perfect for goal states: ∀s? ∈ S?, h(s?) = 0.

One of the advantages of M&S is that it is possible to
control its time and memory usage by appropriately setting
the maximum number of abstract states, N . Assuming that
N is polynomially bounded, computing the abstraction has
polynomial complexity [Helmert et al., 2007]. SM&S does
not ensure that the full symbolic exploration over an abstrac-
tion has a more concise BDD representation than the original
problem. Also, relaxing the search frontier with existential
shrinking could actually enlarge it. Fortunately, we can de-
rive a bound on the maximum number of BDD nodes needed
to represent any set of states in the exploration.

Theorem 2. Let α be a M&S abstraction with relevant vari-
ables Vα, generated with a maximum number of abstract
states N . Let SB be a BDD describing a set of states on
Θα⊗ΠV\Vα using a variable order whose first/top variables
correspond to Vα. Then, the size of SB is bounded by:

|SB | ≤ N
(
|Vα|+ 2|V\Vα|+1

)
Proof. SB may be divided in its top and bottom parts. Each
top layer corresponds to an intermediate M&S abstraction,
with one node per abstract state. As M&S imposes the limit
on the number of abstract states for every intermediate ab-
straction, each layer has at most N nodes. Thus, the number
of nodes in the top part of SB is bound by N |Vα|. The bot-
tom layers correspond to functions over V \ Vα describing
which values are reachable for each abstract state. Each of
these functions is described as a BDD with |V \Vα| levels. In
the worst case, they do not share any node, and each one has
2|V\Vα|+1 nodes. Since there are N different functions, the
size of the bottom part of SB is bound by N2|V\Vα|+1.

As variables are merged into the abstraction, the complex-
ity of its full symbolic exploration decreases. The bound on
the top part of the BDD grows linearly onN , while the bound
on its bottom part is exponentially reduced. Thus, eventu-
ally the full symbolic exploration of the abstraction will be
tractable. In the limit, the exploration is performed over a lin-
ear sized state space and can be explicitly explored, just as
the original M&S algorithm does. Theorem 2 requires rele-
vant variables for the abstraction to be placed in the top lev-
els of exploration BDDs. For this to hold in every symbolic
exploration, the symbolic search must use the same variable
ordering as the M&S merge strategy. Since changing the vari-
able ordering of a BDD may cause an exponential blow-up,
we use the same variable ordering in order to guarantee an
efficient computation of SM&S.

4 Experimental Evaluation
We compare the performance of SM&S heuristics against
the two methods it combines: M&S and symbolic perime-
ter search (SP). The heuristics are implemented in the FAST
DOWNWARD planning system (FD) [Helmert, 2006]. BDD
operations are implemented in Fabio Somenzi’s CUDD li-
brary 2.5.0.3 Experiments were run and validated with the
IPC-2011 software on a single core of an Intel Xeon X3470
processor at 2.93 GHz. We compare the coverage of A∗
search, as implemented in FD, with every heuristic. The ex-
perimental setting is the same as in IPC-2011: 1800 seconds
per problem and 6 GB of available memory. SM&S parame-
ters were manually set to fit the competition setting: the max-
imum number of nodes to represent the state set to expand
is NF = 10,000,000. A maximum time is set to each indi-
vidual image (TI = 30s), exploration (TExp = 300s) and
symbolic search (TSym = 900s). Both SP and SM&S take
1200 seconds to generate the heuristic (TSM&S = 1200s).

We use the two shrinking strategies used by the M&S plan-
ner entering the competition [Nissim et al., 2011b]: bisimula-
tion (bop) with N = 200,000 and greedy bisimulation (gop)
withN =∞. After applying the bisimulation criterion, if the
number of abstract states is greater than N , a DFP strategy is
applied. We also use the same strategies with a more restric-
tive threshold of N = 10,000 to avoid memory exhaustion
while generating the heuristic. Also, in order to analyze the
relevance of shrinking strategies, we introduce SM&S-all, a
naı̈ve variant of shrink which considers equivalent all abstract
states (N = 1). Thus, SM&S-all abstracts away all the vari-
ables in the abstraction, and explorations are just symbolic
PDBs ignoring the top variables.

Variable ordering has a relevant impact on the performance
of both M&S and symbolic search. There are two pro-
posed variable ordering optimization criteria by the planners
FD and GAMER. FD places variables before those that de-
pend on them, so that the goal variables are usually placed
at the end. GAMER ordering attempts to put together vari-
ables that depend on each other, so that goal variables are
usually placed in the middle. No order dominates the other.
Indeed, they have been shown to work best for different do-
mains and techniques. FD ordering seems better for M&S

3http://vlsi.colorado.edu/˜fabio/CUDD
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FAST DOWNWARD Ordering GAMER Ordering
M&S SM&S M&S SM&S

bop gop bop gop all bop gop bop gop all
10k 200k 10k ∞ 10k 200k 10k ∞

SP

10k 200k 10k ∞ 10k 200k 10k ∞

SP

BARMAN 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ELEVATORS 9 12 9 0 18 18 18 2 18 18 12 14 12 4 19 19 19 4 18 19
FLOORTILE 4 7 3 3 12 12 12 12 12 12 2 3 2 3 12 12 12 10 12 12

NOMYSTERY 18 19 13 14 18 17 16 16 14 14 14 16 14 14 15 16 14 16 14 14
OPENSTACKS 16 16 16 4 15 15 15 4 15 4 16 16 16 4 16 16 16 15 16 15

PARC-PRINTER 12 13 12 11 12 13 12 11 9 7 12 12 12 11 12 12 12 11 8 7
PARKING 3 0 7 7 6 0 7 7 7 0 6 0 1 0 6 0 1 0 1 0

PEG-SOLITAIRE 19 19 19 0 19 19 20 0 19 19 17 19 17 0 19 19 19 0 19 19
SCANALYZER 9 11 10 6 9 9 10 9 10 9 9 6 9 3 9 9 9 9 9 9

SOKOBAN 19 19 19 1 19 19 19 1 18 10 20 20 20 3 20 16 20 7 19 16
TIDYBOT 12 0 12 13 12 0 12 13 12 8 11 0 6 13 12 0 6 13 10 8

TRANSPORT 6 7 6 6 7 8 7 7 7 7 6 6 6 6 8 8 8 8 9 8
VISITALL 9 9 9 16 12 12 12 17 12 12 10 9 10 11 13 10 13 12 12 12

WOODWORKING 6 6 9 9 7 6 9 9 7 6 7 8 9 9 12 12 13 13 11 12
TOTAL 146 142 148 94 170 152 173 112 164 130 146 133 138 85 177 153 166 122 162 155

Table 1: Coverage results for problems of the sequential optimal track of IPC-2011.

while GAMER ordering produces better results with symbolic
search [Edelkamp et al., 2012]. We report experiments with
both variable orderings to see their impact on SM&S.

Table 1 shows coverage results of all the planner config-
urations in IPC-2011 domains, using the IPC problem set
with 20 problems per domain. Results show that SM&S suc-
cessfully combines the two techniques, obtaining a heuris-
tic usually as good as the best of them. In some domains
there is a synergy between the M&S relaxation and the sym-
bolic search. Besides, SM&S gradually relaxes the search
frontier, helping to decide how many variables should be re-
laxed. Remarkably, different configurations of SM&S-gop
are able to solve more problems in PEG-SOLITAIRE (20)
and VISITALL (17) than all the other versions and IPC-2011
planners. Overall, the best SM&S configuration solves 177
problems, using GAMER ordering and bisimulation shrink-
ing with N = 10,000. The few cases where SM&S solves
less problems are due to memory failures caused by the sym-
bolic search overhead. SM&S-all results show that relaxing
the perimeter search is helpful in some domains, especially
OPENSTACKS and PARKING. However, SM&S-all ignores
all variables in the abstraction. This can be improved by us-
ing a better shrinking policy. Bisimulation shrinking does not
help much when relaxing the frontier search, since bisimilar
abstract states are always represented with the same nodes in
the BDDs. Thus, improvement from SM&S-all to SM&S-
bop can be attributed to the DFP strategy (bisimulation might
help to merge more variables before applying DFP shrinking).
Finally, greedy bisimulation helps in some domains, such
as PEG-SOLITAIRE or WOODWORKING, allowing SM&S to
obtain more solutions. Still, the gap between different shrink-
ing versions is not too large in most domains. The compar-
ison of variable orderings in SM&S-all gives more insights
about why FD ordering is better for M&S abstractions. Even
though GAMER ordering is better for SP, FD ordering has
an advantage when relaxing the top variables. The reason is
that most relevant variables (goal variables) are placed at the
bottom so they are not affected by shrinking.

Heuristic generation time is also relevant for the heuristic
comparison. In our setting, SM&S takes more time to gener-
ate the heuristic than M&S and the latter does not take advan-
tage of the extra time in the search, since A∗ rapidly exhausts
the available memory when using a precomputed heuristic
such as PDBs, M&S or SM&S. Hence, SM&S generates bet-
ter heuristics at the expense of taking more time. Still, most
of the improvement from M&S to SM&S can be attributed to
the combination of symbolic search and M&S and not to the
extra time used for computing the heuristic.

5 Conclusions

In this work we introduced SM&S, a novel combination of
symbolic search and M&S abstractions to generate better ad-
missible heuristics for optimal planning. SM&S uses M&S
abstractions to relax a symbolic backward search, keeping
only partial information about some variables of the problem.
Experimental results show that SM&S successfully obtains
results at least as good as the best of either one of the two
techniques it combines. Even though M&S abstractions are
highly dependent of the shrinking policy, SM&S improves
the performance of a symbolic perimeter even with a simple
shrinking strategy, SM&S-all. Moreover, it improves M&S
results for all shrinking policies used. On the other hand,
bisimulation shrinking derives good abstractions for SM&S
in some domains but not in others. This suggests there is
still room for improvement with new shrinking policies spe-
cific for SM&S (i. e., taking into account the symbolic search
frontier and not preserving information about states already
expanded by previous explorations).
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