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Abstract

Symbolic search using binary decision diagrams is a state-of-
the-art technique for cost-optimal planning. Heuristic search
in this context has been problematic as even a very informa-
tive heuristic can be detrimental in case it induces difficult-
to-represent state partitionings. It was recently shown that
operator-potential heuristics can address this issue in forward
search by computing a numeric potential for each operator
corresponding to the change of the heuristic value induced by
that operator.
Forward search is, however, not the best known variant of
symbolic search. Here we investigate the integration with
backward and bi-directional search instead. We prove that
forward search (distance-to-goal) operator-potential heuris-
tics can be turned into backward search (distance-to-initial-
state) heuristics elegantly in this context, by summing the
backward search path operator-potentials with the initial state
goal-distance estimate. We run exhaustive experiments on
IPC benchmarks, showing that significant performance im-
provements can be obtained over symbolic forward search
and other state-of-the-art techniques.

1 Introduction
In cost-optimal planning, A∗ search with admissible heuris-
tics and symbolic search are two complementary planning
techniques. Admissible heuristics aim at reducing the num-
ber of explored states during search by estimating the cost-
to-go from each state (e.g., Haslum and Geffner 2000;
Edelkamp 2001; Helmert and Domshlak 2009; Helmert et al.
2014). Symbolic search utilizes binary decision diagrams
(BDDs) (Bryant 1986) for an efficient representation of sets
of states which greatly improves an exhaustive (blind) search
as it allows to represent a large fraction of a state space effi-
ciently (Edelkamp and Reffel 1998; Edelkamp 2002). Com-
bination of admissible heuristics with symbolic search is,
unfortunately, not straightforward. Although there has been
some success with symbolic pattern databases (e.g., Kiss-
mann and Edelkamp 2011; Franco et al. 2017; Torralba,
López, and Borrajo 2018), it was also shown that even very
informative heuristics can be detrimental in the symbolic
search (Speck, Geißer, and Mattmüller 2020) as the heuris-
tics need to be not only informative, but they also need to
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induce a good partitioning of the state space so that sets of
states are efficiently represented as BDDs.

Recently, Fišer, Torralba, and Hoffmann (2022) showed
how to integrate potential heuristics (Pommerening et al.
2015) into symbolic forward search. Potential heuristics as-
sign a numeric value (a potential) to each fact of the plan-
ning task, and the sum of the potentials of the facts true
in a state is an admissible heuristic estimate. Fišer, Tor-
ralba, and Hoffmann (2022) showed that potentials of facts
can be easily transformed into operator-potentials, i.e., in-
stead of assigning a numerical value to each fact, we can
associate each operator with a numerical value (operator-
potential) corresponding to the change of heuristic value in-
duced by the operator. It turns out, operator-potential heuris-
tics can be easily integrated into the symbolic search us-
ing a method called GHSETA∗ (Jensen, Veloso, and Bryant
2008). In GHSETA∗, operators are partitioned into transi-
tion relations (TRs) by both their costs and the change of
heuristic values they induce. This results in a good partition-
ing of sets of states during search which in turn significantly
improves performance in the symbolic forward search.

Forward search is, however, not the best known variant of
symbolic search. Here, we focus on the backward and bi-
directional search instead. This is non-trivial because, to use
a forward-search heuristic function h in backward search, h
needs to be “reversed”. How this can be done differs widely
depending on the kind of heuristic function. A generally ap-
plicable technique is to reverse the planning task instead, by
enumerating individual goal states or by the transformation
to transition normal form (TNF) (Pommerening and Helmert
2015). Yet the former is obviously ineffective, and Fišer,
Torralba, and Hoffmann (2022) report that using TNF is of-
ten detrimental for symbolic search.

Our key insight here is that the operator-potentials are
constructed in a way so that, if we split a plan π into
two sub-sequences π′ and π′′, then the goal-distance esti-
mate plus the sum of operator-potentials over π′′ is a lower
bound on the cost of π′. Hence symbolic backward search
with operator-potentials can be done analogously to for-
ward search. This in turn extends to symbolic bi-directional
search where we can choose any combination of operator-
potential or blind heuristics for each search direction.

We run exhaustive experiments on IPC benchmarks, eval-
uating a large range of algorithm variants, considering mul-
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tiple search directions, and heuristic functions. Regarding
operator-potential heuristics in backward search, the results
show that these can improve performance in many domains,
though overall those are counter-balanced by losses in other
domains. However, the combination of bi-directional search
with potential heuristics turns out to be a clear win. The
best-performing configuration in our experiments combines
forward symbolic search using an operator-potential heuris-
tic with blind backward search. This manages to leverage
the benefits of bi-directional search where that is strong,
while suffering from only small losses where it is not. Con-
sequently this configuration beats the previous state of the
art in overall coverage.

2 Preliminaries
We consider the finite domain representation (FDR) of plan-
ning tasks (Bäckström and Nebel 1995). An FDR planning
task Π is specified by a tuple Π = 〈V ,O, I, G〉. V is a finite
set of variables, each variable V ∈ V has a finite domain
dom(V ). A fact 〈V, v〉 is a pair of a variable V ∈ V and one
of its values v ∈ dom(V ). The set of all facts is denoted by
F = {〈V, v〉 | V ∈ V , v ∈ dom(V )}, and the set of facts
of variable V is denoted by FV = {〈V, v〉 | v ∈ dom(V )}.
A partial state p is a variable assignment over some vari-
ables vars(p) ⊆ V . We write p[V ] for the value assigned
to the variable V ∈ vars(p) in the partial state p. We
also identify p with the set of facts contained in p, i.e.,
p = {〈V, p[V ]〉 | V ∈ vars(p)}. A partial state s is a state if
vars(s) = V . I is an initial state. G is a partial state called
goal, and a state s is a goal state iffG ⊆ s. Let p, t be partial
states. We say that t extends p if p ⊆ t.
O is a finite set of operators, each operator o ∈ O

has a precondition pre(o) and effect eff(o), which are par-
tial states over V , and a cost cost(o) ∈ R+

0 . An operator
o is applicable in a state s iff pre(o) ⊆ s. The result-
ing state of applying an applicable operator o in a state
s is another state oJsK such that oJsK[V ] = eff(o)[V ] for
every V ∈ vars(eff(o)), and oJsK[V ] = s[V ] for ev-
ery V ∈ V \ vars(eff(o)). We also assume that for every
V ∈ vars(pre(o)) ∩ vars(eff(o)) it holds that pre(o)[V ] 6=
eff(o)[V ].

Given non-negative integers k, n ∈ N0, [k, n] denotes
the set {k, . . . , n} for k ≤ n, and [k, n] is defined as an
empty set for k > n. Moreover, [n] denotes a shorthand for
[1, n]. A sequence of operators π = 〈o1, . . . , on〉 is appli-
cable in a state s0 if there are states s1, . . . , sn such that
oi is applicable in si−1 and si = oiJsi−1K for i ∈ [n].
The resulting state of this application is πJs0K = sn and
cost(π) =

∑n
i=1 cost(oi) denotes the cost of this sequence

of operators. A sequence of operators π is called an s-plan
iff π is applicable in a state s and πJsK is a goal state. An
s-plan π is called optimal if its cost is minimal among all
s-plans. A state s is reachable if there exists an operator se-
quence π applicable in I such that πJIK = s. Otherwise, we
say that s is unreachable. The set of all reachable states is
denoted by R. An operator o is reachable iff it is applica-
ble in some reachable state. A state s is a dead-end state iff
G 6⊆ s and there is no s-plan. A set of facts M ⊆ F is a

mutex if M 6⊆ s for every reachable state s ∈ R.
A heuristic h : R 7→ R∪ {∞} estimates the cost of opti-

mal s-plans. The optimal heuristic h?(s) maps each reach-
able state s to the cost of the optimal s-plan or to∞ if s is
a dead-end state. A heuristic h is called (a) admissible iff
h(s) ≤ h?(s) for every reachable state s ∈ R; (b) goal-
aware iff h(s) ≤ 0 for every reachable goal state s; and
(c) consistent iff h(s) ≤ h(oJsK) + cost(o) for all reach-
able states s ∈ R and operators o ∈ O applicable in s. It
is well-known that goal-aware and consistent heuristics are
also admissible. In the context of heuristic search, h-value of
a state node s refers to the heuristic value of s, g-value to the
cost of the sequence of operators leading to s, and f -value
is a sum of g-value and the maximum of h-value and zero
(since we allow negative h-values).

3 Background on Potential and
Operator-Potential Heuristics

Potential heuristics (Pommerening et al. 2015) assign a nu-
merical value to each fact, and the heuristic value for a state
s is then simply the sum of potentials of all facts in s.
Definition 1. Let Π denote a planning task with facts F . A
potential function is a function P : F 7→ R. A potential
heuristic for P maps each state s ∈ R to the sum of poten-
tials of facts in s, i.e., hP(s) =

∑
f∈s P(f).

We leverage prior work on disambiguation (Alcázar et al.
2013) to strengthen potential heuristics (Fišer, Horčı́k, and
Komenda 2020). A disambiguation of a variable V for a set
of facts p is a set of facts F ⊆ FV from V such that every
reachable state extending p contains one of the facts from F .
Definition 2. Let Π denote a planning task with facts F and
variables V , let V ∈ V denote a variable, and let p denote a
partial state. A set of facts F ⊆ FV is called a disambigua-
tion of V for p if for every reachable state s ∈ R such that
p ⊆ s it holds that F ∩ s 6= ∅ (i.e., 〈V, s[V ]〉 ∈ F ).

Moreover, we say that a mapping D : (O×V)∪V 7→ 2F

is a disambiguation map if (i) for every operator o ∈ O and
every variable V ∈ vars(eff(o)) it holds that D(o, V ) ⊆ FV
is a disambiguation of V for pre(o) such that |D(o, V )| ≥ 1;
and (ii) for every variable V ∈ V it holds that D(V ) ⊆ FV
is a disambiguation of V for G such that |D(V )| ≥ 1.

Clearly, if the disambiguation of V for p is an empty set
(for any V ), then all states extending p are unreachable.
Therefore, we can use empty disambiguations to determine
unsolvability of planning tasks (if G extends p), or to prune
unreachable operators (if a precondition of the operator ex-
tends p). So, from now on we will consider only non-empty
disambiguations in a form of disambiguation maps, which
simplifies the notation.

Now we can state sufficient conditions for the potential
heuristic to be admissible, which we will need later on.
Theorem 3. (Fišer, Horčı́k, and Komenda 2020) Let Π =
〈V ,O, I, G〉 denote a planning task with facts F , and let P
denote a potential function, and let D denote a disambigua-
tion map. If ∑

V ∈V
max

f∈D(V )
P(f) ≤ 0 (1)
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and for every operator o ∈ O it holds that∑
V ∈vars(eff(o))

max
f∈D(o,V )

P(f)−
∑

f∈eff(o)

P(f) ≤ cost(o), (2)

then the potential heuristic for P is admissible.
Potentials for the admissible potential heuristic can be ob-

tained by solving a linear program (LP) consisting of con-
straints corresponding to conditions from Theorem 3, i.e.,
P(f) for each f ∈ F corresponds to an LP variable and any
solution satisfying Eq. (1) and Eq. (2) gives us potentials for
an admissible potential heuristic.

Recently, Fišer, Torralba, and Hoffmann (2022) intro-
duced operator-potential heuristics that associate potentials
not with facts but with operators. An operator-potential Q(o)
for an operator o is defined as a left-hand side of Eq. (2) with
the opposite sign. The heuristic value for a state s reached
by a sequence of operators π is then the heuristic value
for the initial state of the corresponding potential heuristic
(
∑
f∈I P(f)) plus the sum of operator-potentials for opera-

tors in π.
Moreover, it was shown that if the potential heuristic for P

is admissible and, for each operator o ∈ O, preconditions on
all variables affected by o are known exactly, then the corre-
sponding operator-potential heuristic for Q is also admissible
and the heuristic values are equal for all reachable states.
Definition 4. Given a potential function P, and a disam-
biguation map D, a function Q : O 7→ R is called an
operator-potential function for P and D if

Q(o) =
∑

f∈eff(o)

P(f)−
∑

V ∈vars(eff(o))

max
f∈D(o,V )

P(f) (3)

for every operator o ∈ O.
Given an operator-potential function Q for P and D

such that |D(o, V )| = 1 for every o ∈ O and ev-
ery V ∈ vars(eff(o)), an operator-potential heuristic
hQ : R 7→ R ∪ {∞} for Q is defined as hQ(s) =∑
f∈I P(f) +

∑
i∈[n] Q(oi) for any sequence of operators

π = 〈o1, . . . , on〉 such that πJIK = s.
Theorem 5. (Fišer, Torralba, and Hoffmann 2022) Let D
denote a disambiguation map such that |D(o, V )| = 1 for
every o ∈ O and every V ∈ vars(eff(o)), let P denote a po-
tential function, and let Q denote an operator-potential func-
tion for P and D. Then hQ is well-defined, and hQ(s) = hP(s)
for every reachable state s, and hQ is admissible (goal-
aware, consistent) if hP is admissible (goal-aware, consis-
tent).

Note that the operator-potential heuristics are guaranteed
to be consistent only if the corresponding potential heuris-
tics are consistent, and |D(o, v)| = 1 for every o ∈ O
and every V ∈ vars(eff(o)), i.e., the preconditions on vari-
ables affected by each operator are known exactly. This may
require a transformation of the planning task. The experi-
mental evaluation by Fišer, Torralba, and Hoffmann (2022)
showed that the best-performing transformation is simply
enumerating all possible combinations of facts from all dis-
ambiguations D(o, V ) such that |D(o, V )| > 1 for all oper-
ators’ preconditions.

As we discuss in the next section, for a smooth integra-
tion of operator-potentials in symbolic search, the operator-
potentials Q(o) need to be integer values. Fišer, Torralba,
and Hoffmann (2022) showed that the naı̈ve rounding of
operator-potentials to the nearest smaller integer values can
result in a path-dependent (and thus inconsistent) heuris-
tics which can have a detrimental effect on the symbolic
search. However, this problem can be resolved by construct-
ing a mixed-integer linear program (MIP) whose solution
are integer-valued operator potentials. So, instead of using
LP with constraints Eq. (1) and Eq. (2), we can construct
a MIP with constraints Eq. (1), Eq. (2), and Eq. (3), where
P(f) for each fact f ∈ F corresponds to a real-valued vari-
able, and Q(o) for each operator o ∈ O correspond to an
integer-valued variable. Therefore, the solution to such MIP
will give us integer-valued operator potentials.

4 Background on Symbolic Search with
Operator-Potentials

Explicit state-space search operates on individual states,
whereas symbolic search (McMillan 1993) works on sets of
states represented by their characteristic functions. A char-
acteristic function fS of a set of states S is a Boolean func-
tion assigning 1 to states that belong to S and 0 otherwise.
Binary Decision Diagrams (BDDs) (Bryant 1986) are an ef-
ficient data-structure to represent Boolean functions as di-
rected acyclic graphs. The size of a BDD is the number of
nodes in this representation. The main advantage of using
BDDs is that often a BDD is much smaller than the number
of states it represents. In fact, BDDs can be exponentially
smaller (Edelkamp and Kissmann 2008), and most opera-
tions take only polynomial time in the size of the BDD.

The most prominent implementation of symbolic heuris-
tic search in the context of automated planning is
BDDA∗ (Edelkamp and Reffel 1998) which is a variant of
A? (Hart, Nilsson, and Raphael 1968) using BDDs to rep-
resent sets of states. In BDDA∗, operators of planning tasks
are represented as transition relations, also using BDDs. A
transition relation (TR) of an operator o is a characteristic
function of pairs of states (s, oJsK) for all states s such that o
is applicable in s. Having a TR To for every operator o ∈ O,
we can construct a TR of a set of operators with the same
cost c as Tc =

∨
o∈O,cost(o)=c To. As the size of Tc may be

exponential in the number of operators with cost c, in prac-
tice, it is often a good idea to use disjunctive partitioning
to keep the size at bay (Jensen, Veloso, and Bryant 2008;
Torralba et al. 2017). Moreover, mutexes can be used for a
more accurate approximation of reachable states (Torralba
et al. 2017).

Like A∗, BDDA∗ expands states in ascending order of
their f -value. To take advantage of the symbolic represen-
tation, BDDA∗ represents all states with the same g and h
value in a single BDD Sg,h (disjunctive partitioning of Sg,h
can also be used). Given a set of states Sg,h and a TR Tc,
image(Sg,h, Tc) computes the set of successor states reach-
able from any state in Sg,h by applying any operator rep-
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resented by Tc.1 The g-value of the resulting set of succes-
sor states is simply g + c. These successor states have to
be split according to their h value. This can usually be per-
formed efficiently (e.g., with symbolic PDBs (Kissmann and
Edelkamp 2011)) by representing the heuristic as a BDD Sh
per heuristic value that represents the set of states with that
value and performing a conjunction.

GHSETA∗ (Jensen, Veloso, and Bryant 2008) encodes the
heuristic function as a part of TRs by partitioning operators
not only by their cost but also by their impact on heuris-
tic values. If such partitioning is possible, i.e., it is possible
to precompute how each operator changes heuristic values,
then GHSETA∗ provides a very efficient way of evaluat-
ing heuristics within symbolic search. As it turns out, this
is the case for operator-potential heuristics (Fišer, Torralba,
and Hoffmann 2022).

In particular, instead of creating a TR Tc for all operators
o having cost(o) = c, we can create a TR Tc,q representing
all operators o such that cost(o) = c and Q(o) = q. For the
initial state, the g-value is set to zero, and the h-value is set
to

∑
f∈I P(f). For all subsequent states Sg,h expanded by

the TR Tc,q , the g-value and h-value of the resulting state
S′g′,h′ = image(Sg,h, Tc,q) is set to g′ = g + c and h′ =
h+ q, respectively.

Note that floating-point Q(o) values may result in many
small TRs that differ only slightly in their Q(o) values, which
in turn can lead to different BDDs for every state in the
search, greatly reducing the efficacy of the symbolic search.
This is why it is desirable to have integer-valued Q(o) values
as discussed in the previous section. Moreover, Fišer, Tor-
ralba, and Hoffmann (2022) showed that GHSETA∗ can also
be adapted to work with the path-dependent (and thus possi-
bly inconsistent) variant of the operator-potential heuristic.
In that case, we need to allow re-opening states that were
previously closed with a higher g-value by maintaining mul-
tiple BDDs representing closed states, each corresponding to
a specific g-value.

The symbolic backward search differs from the forward
search only in that we switch the initial and goal states and
use the function pre-image instead of image for comput-
ing successor sets of states. That is: (a) the backward search
starts from the BDD representing goal states and proceeds
towards the initial state; (b) the search terminates once a
BDD containing the initial state is popped from the prior-
ity queue; and (c) we use the function pre-image(S, T ) that
for the given set of states S and TR T returns the set of states
S′ such that image(S′, T ) = S.

The symbolic bi-directional search combines the forward
and backward search described above. It maintains a sep-
arate priority queue for each direction, and at each step it
decides whether to expand a set of states in forward or back-
ward direction. The decision is made based on the estimate
how long it takes to make the next step and the one with the
smaller estimate is taken. The estimate is computed based
on the size of the BDD and time needed for its expansion in
the previous step.

1We do not go into details here and in the rest of this section,
but Torralba et al. (2017) provide a detailed description.

The search terminates with the extraction of a plan when
a set of states Sf with the g-value gf is found in the forward
direction, and a set of states Sb with the g-value gb is found
in the backward direction, and Sf ∩ Sb 6= ∅, and gf + gb <
mf +mb where mf and mg denote the minimal g-value of
all sets of states in the open list in forward and backward
direction, respectively.

Note that if different operator-potentials are used in the
forward and backward direction, then they require a separate
partitioning of operators into TRs, i.e., in that case different
sets of TRs must be used for each search direction.

5 Operator-Potential Heuristics for
Backward Search

So far, we summarized prior research showing that it is pos-
sible to transform any potential function into an operator-
potential function and compute the heuristic value for the
state s reached in a forward search by a sequence of oper-
ators π by summing the operator-potentials of operators in
π. In this section, we focus on operator-potential heuristics
for the backward search, i.e., the question is whether we can
use a similar approach to compute admissible heuristic val-
ues for states that are reached by a search starting in goal
state(s) going backwards towards the initial state.

One straightforward way to do it might be to construct a
dual (reverse) planning task (Massey 1999; Pettersson 2005;
Suda 2013) and compute the potentials there. The resulting
heuristic would be a lower bound on the distance from the
initial state (of the reversed task) to each state, which can
be used to guide the backward search. In terms of the LP
used for the computation of potential functions (assuming
|D(o, V )| = 1 for every o ∈ O and every V ∈ vars(eff(o))),
this corresponds to switching the operands on the left hand
side of Eq. (2) and replacing Eq. (1) with the constraint∑
f∈I P(f) ≤ 0. This seems like a simple transformation,

because the resulting potentials would give us an admissible
heuristic for the backward search for any objective function.

However, the problem is that often the goal G does not
specify a single goal state, so it is not clear how to efficiently
compute the heuristic value for a set of goal states as a start-
ing point of the backward search. One option could be to
partition the set of goal states according to their heuristic
value, i.e., by the sum of their potentials. Unfortunately, this
is unfeasible in general, as there may be exponentially many
goal states, and potentially each of those could have a differ-
ent heuristic value. Another option might be to use a com-
pilation to the transition normal form (TNF) (Pommeren-
ing and Helmert 2015), where the goal always describes a
single state. But, as reported by Fišer, Torralba, and Hoff-
mann (2022), using TNF is often detrimental for the sym-
bolic search.

Here, we show that, surprisingly, operator-potentials pro-
vide an even simpler solution to this problem. It turns
out that the operator-potentials computed for the forward
search can also be used for the backward search without any
change. More precisely, assuming the potential function P
satisfies the conditions from Theorem 3 (and therefore hP is
consistent, goal-aware, and admissible) and |D(o, V )| = 1
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for every o ∈ O and every V ∈ vars(eff(o)), we show that:
(i) The heuristic value for the initial state hQ(I) =∑

f∈I P(f) is an admissible heuristic value for any goal
state sg ⊇ G in backward search. This is simply because
hQ(I) is a lower bound on the cost of the cheapest path
from the initial state to the closest goal state.

(ii) In the following Theorem 6 and Corollary 7, we show
that for any pair of sequences of operators π1 =
〈o1, . . . , ok〉 and π2 = 〈ok+1, . . . , on〉 such that π1JIK =
s and π2JsK ⊇ G is a goal state, it holds that hQ(I) +∑
i∈[k+1,n] Q(oi) ≤

∑
i∈[k] cost(oi). Or in other words,

hQ(I)+
∑
i∈[k+1,n] Q(oi) is an admissible heuristic value

for any state s reached in the backward search by a se-
quence of operators 〈o′n, . . . , o′k+1〉, where o′i denotes the
reverse counterpart of oi.

The main result of this section formulated in Theorem 6
is based on the following two observations. First, Q(o) is
equal to the left hand side of Eq. (2) with opposite sign, and
Eq. (2) is expressing a consistency of the corresponding po-
tential function. Therefore, it follows that −Q(o) ≤ cost(o)
for every operator o. Second, the goal-awareness ensures
that for any plan π it holds that hQ(I) +

∑
o∈π Q(o) ≤ 0.

So, if we split π into two sub-sequences π′ and π′′, then
hQ(I) +

∑
o∈π′ Q(o) ≤ −

∑
o∈π′′ Q(o) ≤

∑
o∈π′′ cost(o).

Therefore, hQ(I) +
∑
o∈π′ Q(o) is a lower bound on∑

o∈π′′ cost(o), i.e., we can use operator-potentials over the
sub-sequence π′ for the computation of the lower bound on
the cost of the sub-sequence π′′.
Theorem 6. Let D denote a disambiguation map such that
|D(o, V )| = 1 for every o ∈ O and every V ∈ vars(eff(o)),
let P denote a potential function such that Eq. (1) and
Eq. (2) hold, let Q denote an operator-potential function
for P and D and hQ the corresponding operator-potential
heuristic, and let π = 〈o1, . . . , on〉 denote a plan. Then
hQ(I)+

∑
i∈N Q(oi) ≤

∑
i∈[n]\N cost(oi) for anyN ⊆ [n].

Proof. Since Eq. (1) and Eq. (2) hold for P, it follows from
Theorem 3 that hP is consistent and goal-aware. And since
|D(o, V )| = 1 for every o ∈ O and every V ∈ vars(eff(o)),
it follows from Theorem 5 that hQ is also consistent and
goal-aware. So, for N = ∅, the theorem holds, because
hQ(I) =

∑
f∈I P(f) ≤

∑
i∈[n] cost(oi) is an admissible

estimate for the initial state.
For 1 ≤ |N | < n: From the goal-awareness of hQ, it

follows that hQ(I)+
∑
i∈[n] Q(oi) = hQ(I)+

∑
i∈N Q(oi)+∑

i∈[n]\N Q(oi) ≤ 0, and therefore

hQ(I) +
∑
i∈N

Q(oi) ≤ −
∑

i∈[n]\N
Q(oi).

Furthermore, from Definition 4 (Eq. (3)) and Eq. (2) it fol-
lows that

Q(o) =
∑

f∈eff(o)

P(f)−
∑

V ∈vars(eff(o))

max
f∈D(o,V )

P(f) ≥ cost(o)

and therefore −Q(o) ≤ cost(o) for every operator o. So it
follows that −

∑
i∈[n]\N Q(oi) ≤

∑
i∈[n]\N cost(oi), and

V = {v1, v2}, dom(v1) = {x, y}, dom(v2) = {A,B,C}
I = {〈v1, x〉, 〈v2, A〉}, G = {〈v2, C〉}
o ∈ O pre(o) eff(o) cost(o) Q(o)

o1 〈v1, x〉, 〈v2, A〉 〈v1, y〉, 〈v2, B〉 1 -1
o2 〈v2, B〉 〈v2, C〉 1 -1
o3 〈v1, y〉 〈v1, x〉 1 -1

f P(f)

〈v1, x〉 0
〈v1, y〉 1
〈v2, A〉 2
〈v2, B〉 0
〈v2, C〉 -1

hP(I) = hQ(I) = 2

xA yB

yC

xB xC

o1
o2

o3
o2

Figure 1: Example planning task Π = 〈V ,O, I, G〉 show-
ing that operator-potential heuristics can be inconsistent for
backward search even if |D(o, V )| = 1 for every o ∈ O
and every V ∈ vars(eff(o)). If we run the backward search
and we use the same heuristic value hQ(I) = 2 for both goal
states “xC” and “yC”, then we get a different heuristic value
for the state “yB”—the path from “xC” results in the value
hQ(I) + Q(o2) + Q(o3) = 0, but the path from “yC” results
in the value hQ(I) + Q(o2) = 1.

therefore

hQ(I) +
∑
i∈N

Q(oi) ≤ −
∑

i∈[n]\N
Q(oi) ≤

∑
i∈[n]\N

cost(oi),

which concludes the proof.

Corollary 7. Let Q, hQ, and π be as before. Then hQ(I) +∑
i∈[k+1,n] Q(oi) ≤

∑
i∈[k] cost(oi) for every k ∈ [n].

Proof. Follows directly from Theorem 6 as it is a special
case of N = [k + 1, n] (and thus [n] \N = [k]).

Let s be a state reached by a sequence of operators
〈o′1, . . . , o′n〉 in the backward search. It follows from Corol-
lary 7 that if s is reachable also in the forward direction, then
setting the heuristic value for s to hQ(I)+

∑
i∈[n] Q(o′i) gives

us an admissible estimate in the backward search. Moreover,
the same heuristic value can be used even if s is not reach-
able in the forward direction, because in that case s is a dead-
end in the backward direction, and therefore any heuristic
value is admissible.

Since we intend to use the operator-potential heuristics
in the backward symbolic search, the remaining question to
be answered is whether these heuristics are path-dependent
(inconsistent) in this context, i.e., whether we need to re-
open states during the backward search from a set of all goal
states. Unfortunately, the heuristics can be path-dependent
if the goal G specifies more than one goal state. Intuitively,
the set of goal states G = {s ⊇ G | s ∈ R} can con-
tain goal states with very different minimal distances to the
initial state, but we assign all of them the same heuristic
value hQ(I). So, if there exists a state s (backwards) reach-
able from two different goal states sg, s′g ∈ G, then we can
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Domain
←−
b
←−
I
←−−
A+I

←−−−
S1k+I

←−−
M2+I −→ b

-←− b

−− → A+
I

-←− b

−−
→

M
2
+I

-←− b

−−
−→

S
1
k
+I

-←− b

−−→ A+
I

-←
−−
A

+I

−−→ A+
I

-←
−−

M
2
+I

−→
b
−−→
A+I scrp comp2 potA+I ms lmc

agricola (20) 6 3 4 2 4 20 17 19 14 13 15 17 16 6 10 3 4 0
airport (50) 23 25 25 23 23 26 27 25 27 27 25 23 27 39 28 35 21 27
barman (34) 13 6 6 6 6 16 13 13 14 10 12 16 14 11 15 11 11 8
blocks (35) 24 32 23 22 23 33 31 31 31 32 32 22 31 28 31 28 21 28
caldera (20) 16 16 16 15 14 17 17 16 17 17 17 18 17 13 15 12 12 12
childsnack (20) 0 0 0 0 0 5 5 5 5 5 5 4 5 0 2 0 0 0
data-network (20) 8 3 4 4 4 13 13 13 12 13 13 11 13 14 13 9 12 13
depot (22) 4 5 4 4 4 8 10 10 10 11 11 6 11 14 8 11 10 7
driverlog (20) 9 10 10 10 10 14 14 14 13 14 14 11 14 15 15 13 13 14
elevators (50) 16 10 10 10 10 43 43 43 43 43 42 35 35 44 44 31 31 40
floortile (40) 34 27 31 31 31 34 34 34 34 31 31 18 17 16 33 11 16 34
freecell (80) 20 29 21 21 21 27 68 67 68 68 68 20 68 72 31 72 20 15
ged (20) 11 10 10 10 10 20 20 20 19 20 20 15 15 20 20 15 15 19
hiking (20) 15 11 12 14 12 18 15 15 16 15 15 16 15 15 20 14 14 11
logistics (63) 19 24 19 19 19 25 28 28 27 28 28 21 28 37 28 24 25 26
mprime (35) 12 11 13 10 13 16 16 17 17 16 16 27 30 31 24 24 23 25
mystery (30) 9 8 9 8 9 10 11 11 11 11 11 15 19 19 16 18 17 17
nomystery (20) 13 17 14 13 14 18 20 20 16 20 20 12 19 20 20 14 14 16
openstacks (100) 80 76 76 76 76 86 91 91 91 91 91 86 91 55 74 57 51 51
parcprinter (50) 41 35 33 33 32 37 46 43 44 37 37 40 48 50 43 47 41 39
parking (40) 0 4 0 0 0 6 15 15 15 14 14 0 13 16 5 16 2 9
pegsol (50) 22 27 25 26 25 48 48 48 48 48 48 46 48 50 48 48 46 48
petri-net-align (20) 16 1 1 1 1 19 15 15 13 8 8 15 11 0 19 13 7 9
pipesw-notank (50) 10 10 10 10 10 17 24 22 25 24 24 17 25 26 25 30 23 18
pipesw-tank (50) 6 6 6 7 6 15 19 18 19 21 21 17 20 18 19 19 16 13
rovers (40) 13 11 12 12 12 14 14 14 14 14 14 14 14 10 13 8 7 9
satellite (36) 10 7 10 10 10 11 11 11 11 11 11 7 10 10 10 6 6 7
scanalyzer (50) 21 23 23 23 23 21 23 23 23 23 23 21 23 33 22 23 23 31
snake (20) 0 0 0 0 0 7 11 11 11 11 11 7 11 15 14 15 9 7
sokoban (50) 43 38 38 38 38 48 49 49 49 50 49 48 50 50 48 50 50 50
spider (20) 0 0 0 0 0 7 13 11 11 13 13 7 13 16 13 16 6 11
storage (30) 14 14 14 14 14 15 16 16 16 16 16 15 16 16 15 16 15 15
termes (20) 9 7 7 8 7 18 18 18 17 16 16 12 12 14 16 12 12 6
tetris (17) 6 10 11 10 11 12 16 16 16 16 16 9 16 13 13 17 11 9
tidybot (40) 8 5 8 5 6 21 25 25 23 25 25 28 34 35 39 32 31 30
tpp (30) 8 8 8 8 8 8 12 12 12 12 12 8 12 8 14 8 7 7
transport (70) 17 13 13 13 13 33 33 33 31 30 29 27 24 38 37 24 24 23
trucks (30) 10 12 12 10 12 13 18 18 16 18 18 13 16 17 15 14 10 13
visitall (40) 16 18 19 18 19 18 22 22 23 22 22 18 22 30 33 30 29 18
woodwork (50) 49 33 36 36 36 49 47 48 49 46 46 38 46 50 48 29 29 39
zenotravel (20) 8 8 8 8 8 11 13 13 12 13 13 9 13 13 13 11 11 13
others (175) 126 126 126 126 126 128 127 127 127 127 127 127 127 115 127 114 114 114
Σ (1697) 785 739 727 714 720 1 025 1 128 1 120 1 110 1 100 1 099 936 1 109 1 112 1 096 1 000 859 901

Table 1: Number of solved tasks for selected domains and planning techniques; “others” sums results over domains with a
small difference between symbolic search methods.

get two different heuristic values depending on whether we
reach s from sg or s′g , because the path from sg to s may
differ from the path from s′g to s. A full example is provided
in Figure 1.

The application of operator-potential heuristics in sym-
bolic backward search is straightforward. We can compute
operator-potential heuristics as described in Section 3 and
use it in the GHSETA∗ algorithm as described in Section 4.
However, we must treat the heuristic as inconsistent, i.e.,
we need to apply re-opening of states. And similarly for
symbolic bi-directional search, where we can combine any
operator-potential heuristics for forward and backward di-
rection, but, as already mentioned in Section 4, we need to
use a different partitioning of operators into transition rela-
tions if the heuristics for the backward and forward direction
differ.

6 Experimental Evaluation
We implemented GHSETA∗ with operator-potential heuris-
tics in C.2 Operators and facts are pruned with the h2 heuris-
tic in forward and backward direction (Alcázar and Torralba
2015), and the translation from PDDL to FDR uses the in-
ference of mutex groups proposed by Fišer (2020). We used
all planning domains from the optimal track of International
Planning Competitions (IPCs) from 1998 to 2018 excluding
the ones containing conditional effects after translation. We
merged, for each domain, all benchmark suites across differ-
ent IPCs. This leaves 48 domains overall.

We used a cluster of computing nodes with Intel Xeon
Scalable Gold 6146 processors and CPLEX (I)LP solver
v12.10. The time and memory limits were set to 30 minutes
and 8 GB, respectively. We used a time limit of 30 seconds

2https://gitlab.com/danfis/cpddl, branch icaps22-symba-op-pot
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←−
b
←−
I
←−−
A+I

←−−
M2+I

←−−−
S1k+I tot

←−
b – 19 16 18 20 785
←−
I 13 – 8 10 13 739
←−−
A+I 10 12 – 4 11 727
←−−
M2+I 9 12 0 – 9 720
←−−−
S1k+I 7 8 4 6 – 714

Table 2: Summary of domain coverage for symbolic back-
ward search. A value in row x and column y is the number
of domains where x solved more tasks than y, it is bold if
higher than the value in row y and column x. “tot” shows
overall number of solved tasks.

for applying mutexes on the goal BDD and 10 seconds for
merging transition relation BDDs (Torralba et al. 2017).

The symbolic search with operator-potentials was evalu-
ated on tasks transformed by the method described in Sec-
tion 3 so that |D(o, v)| = 1 for every o ∈ O and every
V ∈ vars(eff(o)). We evaluated GHSETA∗ with the follow-
ing variants of the operator-potential heuristics:
• I: maximize the hQ-value of the initial state (Pommeren-

ing et al. 2015).
• A+I: maximize the hQ-value for the average (syntac-

tic) state while enforcing the maximum hQ(I) (Seipp,
Pommerening, and Helmert 2015; Fišer, Horčı́k, and
Komenda 2020).

• S1k+I: maximize the hQ-value for 1 000 states sam-
pled using random walks, while enforcing the maximum
hQ(I) (Seipp, Pommerening, and Helmert 2015; Fišer,
Horčı́k, and Komenda 2020).

• M2+I: maximize the hQ-value for reachable states approx-
imated with mutex pairs while enforcing the maximum
hQ(I) (Fišer, Horčı́k, and Komenda 2020).

We compare these to the blind search (b). We denote for-
ward search with −→· , and backward search by←−· . For exam-
ple, the blind forward search is denoted by

−→
b , the backward

search with the heuristic A+I is denoted by
←−−
A+I, and the bi-

directional search with A+I used in the forward direction,
and I in the backward direction is denoted by

−−→
A+I-
←−
I .

In the case of bi-directional search, we turn off backward
search if the application of mutexes on the goal BDD takes
longer than 30 seconds, i.e., in tasks where it is not possible
to apply mutexes on the goal BDD within the time limit, the
bi-directional search is switched to the forward search (this
happened in 141 out of 1 697 tasks).

Furthermore, we compare to other state-of-the-art plan-
ners. We ran A∗ with the LM-Cut (lmc) heuristic (Helmert
and Domshlak 2009), with the merge-and-shrink (ms)
heuristic with SCC-DFP merge strategy and non-greedy
bisimulation shrink strategy (Helmert et al. 2014; Sievers,
Wehrle, and Helmert 2016), and with the potential heuristic
(potA+I), i.e., a variant of A+I for A∗. We further compare
to two of the best-performing non-portfolio planners from
IPC 2018: Complementary2 (comp2) (Franco et al. 2017;
Franco, Lelis, and Barley 2018), and Scorpion (scrp) (Seipp

∅ ←−
b

←−−
A+I

←−
I
←−−−
S1k+I

←−−
M2+I

←−−−
oracle

∅ — 785 727 739 714 720 843
−→
b 936 1 025 950 961 934 951 1 047
−−→
A+I 1 109 1 128 1 100 1 087 1 093 1 099 1 139
−→
I 996 1 032 985 1 000 987 988 1 058
−−−→
S1k+I 1 081 1 110 1 073 1 066 1 062 1 074 1 121
−−→
M2+I 1 103 1 120 1 092 1 076 1 085 1 097 1 132
−−−→
oracle 1 131 1 151 1 111 1 103 1 112 1 114 1 162

Table 3: Overall coverage of different combinations of for-
ward and backward search. A value in row x and column y
is the overall number of solved tasks where x was used for
the forward direction and y for the backward direction of the
symbolic bi-directional search. ∅ means that no forward or
backward search was used. oracle refers to selecting the best
variant for each task for the respective search direction. The
highest coverage of all non-oracle variants is in bold.

2018; Seipp and Helmert 2018). Table 1 shows the num-
ber of solved tasks (coverage) for all variants of the sym-
bolic backward search, the five best-performing variants of
the symbolic bi-directional search with operator-potential
heuristics, and all baseline planners.

Symbolic Backward Search
The overall number of solved tasks by the symbolic back-
ward search is not improved by utilizing operator-potential
heuristics (Table 1). This is in contrast to the improvement
obtained by using operator-potential heuristics in symbolic
forward search as reported by Fišer, Torralba, and Hoffmann
(2022) (also columns

−→
b and

−−→
A+I in Table 1). However, there

is still a substantial number of domains where operator-
potentials are beneficial as can be observed in Table 2 com-
paring the number of domains where one method solved
more tasks than the other. In particular, the best-performing
variant

←−
I solved significantly more tasks in domains blocks,

freecell, logistics, nomystery, pegsol, and tetris, but also sig-
nificantly lacks behind the blind search (

←−
b ) in domains agri-

cola, barman, data-network, elevators, floortile, hiking, par-
cprinter, petri-net-alignment, transport, and woodworking.

Similarly to the symbolic forward search, using the
heuristics in backward search results in smaller BDDs rep-
resenting sets of states on average (see Figure 2a(top)), and
it expands more BDDs during the search (Figure 2b(top)) as
expected. The reason why this behavior does not result in
more solved tasks seems to be a slower expansion of BDDs
in contrast to the forward search, i.e., operator-potentials do
not always induce a good partitioning of symbolic states, and
the overhead caused by the fact that the operator-potential
heuristics in this case are path-dependent which requires re-
opening of states (see Figure 2d and 2e(top)). As mentioned
in Section 4, re-opening states requires maintaining multi-
ple BDDs to represent closed states, one for each g-value
observed during the search. An interesting observation is
that
←−
I seems to perform worse, compared to

←−
b , on do-
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Figure 2: Top row: Comparison of the symbolic backward blind search (
←−
b ) against the backward GHSETA∗

←−
I . Bottom row:

Comparison of the symbolic bi-directional blind search (
−→
b -
←−
b ) against the bi-directional GHSETA∗

−−→
A+I-
←−
b .

mains with more diverse action costs, possibly because this
increases the overhead for re-opening states.

In conclusion, it seems the results with and with-
out operator-potential heuristics are complementary, and it
would be beneficial to know in advance for each task (or
at least domain) whether it is better to use the operator-
potential heuristics or not (Cenamor, de la Rosa, and
Fernández 2016; Fawcett et al. 2014)—the overall number
of solved tasks for the oracle choosing the best results from
←−
b and

←−
I for each task results in 836 solved tasks overall

(843 for the oracle choosing from all variants of the sym-
bolic backward search). We leave this question for future
work.

Symbolic Bi-Directional Search
The picture significantly changes when we look at the sym-
bolic bi-directional search. Table 3 shows the comparison
of overall coverage for all evaluated combinations of for-
ward and backward symbolic search. The best performing
variant in terms of the overall coverage is

−−→
A+I-
←−
b , i.e., the

best-performing variant of the forward search (Fišer, Tor-
ralba, and Hoffmann 2022) and the blind backward search.
This is not surprising given the blind backward search per-
forms better than all variants of operator-potential heuristics
in overall coverage. A similar trend can be observed also
for any fixed configuration of the forward search, i.e., the
blind backward search seems to be the best choice for any
selection of the forward search. This can be observed also
in Figure 3a comparing runtime of

−−→
A+I-
←−
b and

−−→
A+I-
←−−
A+I.

Using blind backward search seems to be advantageous over
using operator-potential heuristics, although there are few
tasks where

←−−
A+I is beneficial. The picture changes only

slightly if we consider an oracle for the backward direc-
tion (1 139). Interestingly, choosing the best variant of the

forward search has a bigger impact (1 151 solved tasks for
blind backward search). Choosing the best variant for both
forward and backward direction results in 1 162 solved tasks
suggesting that better understanding which configuration fits
better which task (or using portfolios) would further improve
the performance of this planning technique.

So, it seems the improved performance obtained by us-
ing operator-potentials in forward search (Fišer, Torralba,
and Hoffmann 2022) translates also into the bi-directional
setting. Indeed, the plot in Figure 2a(bottom) shows that
the average size of BDDs is almost always smaller with
operator-potentials suggesting partitioning of operators us-
ing operator-potentials is reflected in an efficient partition-
ing of sets of states resulting in compact representations
of sets of states. The number of expanded BDDs is al-
most always higher for

−−→
A+I-
←−
b (Figure 2b(bottom)) as ex-

pected with more fine-grained partitioning of TRs using
operator-potentials. This reflects on the number of BDD
nodes from all expanded sets of states (Figure 2c(bottom)),
which is only slightly better for the bi-directional search
using operator-potentials. However, as can be seen in Fig-
ure 2e(bottom), the average time spent in expanding one
BDD is almost always decreased, often resulting in smaller
runtime of the whole search (Figure 2d(bottom)).

Comparison to State-of-the-Art
Table 4 summarizes the comparison to the state-of-the-art
planners in terms of the overall coverage, the number of do-
mains where one method solves more tasks than the other,
and the number of tasks solved by one method but not the
other. Our best variant (

−−→
A+I-
←−
b ) clearly performs better than

lmc and ms in overall coverage and there are only few do-
mains where these methods solve more tasks than

−−→
A+I-
←−
b .−−→

A+I-
←−
b also solves 128 more tasks than potA+I, but there
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−→ b
-←− b
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A
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−→ b l
m
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m
s ←− b ←− I total

−−→
A+I-
←−
b – 16 12 9 17 22 25 32 32 36 37 40 – 131 59 33 104 123 200 224 266 309 348 390 1 128

scrp 21 – 23 21 19 27 26 31 36 37 31 34 115 – 108 126 128 215 138 266 239 260 411 429 1 112
−−→
A+I 9 13 – 8 17 23 26 30 33 37 37 39 40 105 – 55 107 155 152 189 245 263 352 381 1 109
−−→
A+I-
←−−
A+I 4 15 11 – 16 21 24 31 30 35 36 40 5 114 46 – 95 120 180 209 246 284 338 361 1 100

comp2 15 16 16 17 – 22 27 32 33 38 36 38 72 112 94 91 – 112 188 190 218 245 322 367 1 096
−→
b -
←−
b 7 14 13 10 13 – 23 24 24 30 38 39 20 128 71 45 41 – 188 118 182 228 244 294 1 025

potA+I 14 5 9 14 13 18 – 23 24 22 29 28 72 26 43 80 92 163 – 178 169 151 321 334 1 000
−→
b 6 10 7 9 7 6 17 – 17 22 30 30 32 90 16 45 30 29 114 – 130 129 188 245 936
lmc 5 2 4 7 6 12 14 20 – 21 27 28 39 28 37 47 23 58 70 95 – 100 216 237 901
ms 5 1 1 6 4 11 4 16 15 – 24 26 40 7 13 43 8 62 10 52 58 – 191 218 859
←−
b 2 7 3 5 4 1 11 7 15 14 – 19 5 84 28 23 11 4 106 37 100 117 – 97 785
←−
I 1 7 2 0 4 2 9 9 12 14 13 – 1 56 11 0 10 8 73 48 75 98 51 – 739

Table 4: Left: Number of domains where one method solved more tasks than the other. A value in (x, y) (row x, column y) is
the number of domains where x solved more tasks than y, it is bold if higher than (y, x). Middle: Number of tasks solved by
one method but not the other. A value in (x, y) is the number of tasks solved by x, but not by y; it is bold if higher than (y, x).
Right: “total” shows overall number of solved tasks. Variants of GHSETA∗ introduced in this paper are highlighted.
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Figure 3: Per-task comparison of the runtime (in seconds) of selected planners against the best-performing variant of GHSETA∗

with operator-potential heuristic (
−−→
A+I-
←−
b ).

are still 14 domains where explicit state space search with
the potential heuristic A+I outperforms the bi-directional
symbolic search. One of the reasons seems to be the fact
that potA+I can be extremely fast (Figure 3c): Out of 1 000
solved tasks, potA+I solves 295 of them under 100 millisec-
onds whereas

−−→
A+I-
←−
b does not solve any task within this

time limit, and potA+I solves 556 tasks under one second
whereas

−−→
A+I-
←−
b solves only 430.

scrp and comp2 also seem to be complementary to our
method even though we solve 16 and 28 more tasks overall,
respectively. Unfortunately, the runtime comparison (Fig-
ure 3d and 3e) can be very misleading in this case, because
both scrp and comp2 use a long pre-computation phase for
construction of their heuristic functions.

The symbolic forward search with operator-potentials
(
−−→
A+I) also seems to be complementary when comparing the

number of domains where it dominates our method. The
runtime comparison in Figure 3b also shows that combin-
ing
−−→
A+I with the backward symbolic search instead of using

the forward-only search is detrimental in a sizeable amount
of tasks. This suggests that using a more clever way to turn
off the search in the backward direction would improve the
results (see also the oracle comparison in Table 3).

7 Conclusion

Combining heuristics with symbolic search is a notoriously
difficult task. Recently, it was shown that potential heuris-
tics transformed into operator-potential heuristics can be ef-
ficiently integrated into the symbolic forward search (Fišer,
Torralba, and Hoffmann 2022). Here, we show that the same
operator-potential heuristics can be used in the symbolic
backward search which can be beneficial in a substantial
number of domains. Moreover, we show that the observed
synergy between operator-potential heuristics and symbolic
forward search also translates into the symbolic backward
bi-directional search resulting in a state-of-the-art perfor-
mance over the standard benchmark set.
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