
Pattern Databases for Goal-Probability Maximization in Probabilistic Planning

Thorsten Klößner 1, Jörg Hoffmann 1, Marcel Steinmetz 1, Álvaro Torralba 2

1Saarland University, Saarland Informatics Campus, Germany
2 Aalborg University, Department of Computer Science, Denmark

{kloessner, hoffmann, steinmetz}@cs.uni-saarland.de, alto@cs.aau.dk

Abstract

Heuristic search algorithms for goal-probability maximiza-
tion (MaxProb) have been known since a decade. Yet prior
work on heuristic functions for MaxProb relies on deter-
minization, not actually taking the probabilities into account.
Here we begin to fix this, by introducing MaxProb pattern
databases (PDB). We show that, for the special case of PDBs
in contrast to more general abstractions, abstract transitions
have a unique probability so that the abstract planning task
is still an MDP. The resulting heuristic functions are admissi-
ble, i.e., they upper-bound the real goal probability. We iden-
tify conditions allowing to admissibly multiply heuristic val-
ues across several PDBs. Our experiments show that even
non-probabilistic PDB heuristics often outperform previous
MaxProb heuristics, and that our new probabilistic PDBs
can in turn yield significant performance gains over non-
probabilistic ones.

Introduction
Heuristic search is a prominent approach to probabilistic
planning (e. g. (Hansen and Zilberstein 2001; Bonet and
Geffner 2003, 2006; Trevizan et al. 2017), in various forms.
Here we address goal-probability maximization, MaxProb,
the problem of finding an MDP policy maximizing the prob-
ability of reaching the goal. Heuristic search algorithms for
MaxProb have been known since a decade (Kolobov et al.
2011). Yet the current MaxProb heuristic functions are lack-
ing: they do not actually take the probabilities into account.

Heuristic functions that do take probabilities into account
are known for probabilistic conformant planning (Bryce,
Kambhampati, and Smith 2006; Domshlak and Hoffmann
2007); for finding a maximum-likelihood sequential plan,
which can be compiled into a classical planning problem
(Keyder and Geffner 2008; E-Martı́n, Rodrı́guez-Moreno,
and Smith 2014); and, most closely related to our work,
for MDP planning in the stochastic shortest path problem
(SSP) setting where Trevizan et al. (2017) design the occu-
pancy heuristics hpom and hroc. Yet for MaxProb, the cur-
rent heuristic functions all rely on determinization and clas-
sical planning heuristics (Little and Thiébaux 2006; Stein-
metz, Hoffmann, and Buffet 2016b,a; Trevizan, Teichteil-
Königsbuch, and Thiébaux 2017; Klauck et al. 2020). This

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach only employs dead-end detection: the heuristic
function is

hMaxProb(s) =

{
0 h(s) =∞
1 otherwise

where h is the classical planning heuristic. Yet, states with
goal probability between one and zero cannot be meaning-
fully estimated by such heuristics. Here we begin to address
this deficiency, adapting pattern databases (PDB) to Max-
Prob planning.1

PDB heuristics in classical planning admissibly estimate
(provide lower bounds on) cost-to-goal (Culberson and
Schaeffer 1998; Edelkamp 2001). This is done through a
particular type of abstraction, where the planning task is pro-
jected onto a subset P of its state variables (the pattern).
This yields an abstract state space where states that agree on
P are not distinguished. PDB heuristics (Haslum et al. 2007;
Franco et al. 2017; Rovner, Sievers, and Helmert 2019) and
other more general abstraction heuristics (Helmert et al.
2014; Seipp and Helmert 2018) are of paramount impor-
tance for effective cost-optimal classical planning.

Abstraction heuristics have, however, not yet been ex-
plored in probabilistic planning (except for the limited spe-
cial case of single-variable projections employed as part of
hpom and hroc). Part of the reason for this might be that, when
the original state space is an MDP, an abstraction of that
state space is not, in general, an MDP anymore: transitions
between abstract states may not have a unique probability
as transitions between different member states may have
different probabilities. This complicates the computation of
heuristic functions (e. g. through bounded-parameter MDPs
(Givan, Leach, and Dean 2000)), and it leads to pathologies
where refining the abstraction may result in worse heuristic
estimates (Tagorti et al. 2013).

Here we introduce MaxProb pattern databases (MaxProb
PDB), as an abstraction method to admissibly estimate goal
probability, i. e., provide an upper bound on the maximum
probability to reach the goal. Like PDBs, MaxProb PDBs
project the task onto a subset of state variables, so that we
get a probabilistic abstraction. We show that, in contrast to
more general abstractions as discussed above, this abstract

1We also adapt Trevizan et al.’s (2017) SSP heuristics hpom and
hroc to MaxProb as part of our experiments, see below.

Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS 2021)

201

planning task is still an MDP. We show that MaxProb PDB
heuristics are admissible, and that they do not suffer from
the aforementioned refinement pathologies.

A crucial element of the success of PDB heuristics in
classical planning is the ability to admissibly combine mul-
tiple patterns. A trivial means to accomplish this is tak-
ing the maximum, but often much stronger estimates can
be obtained by taking the sum. The latter is admissibly
possible under certain conditions, where the PDBs are or-
thogonal and thus additive (Felner, Korf, and Hanan 2004;
Haslum et al. 2007).2 Here we devise a similar methodol-
ogy for MaxProb PDBs, where the corresponding opera-
tors are minimum and product. The minimum of two upper-
bounding probabilities trivially remains an upper bound; for
their product that is not so in general. We identify conditions
under which a collection of MaxProb PDBs is multiplica-
tive, i. e., the product of heuristic functions is admissible.
Specifically, we identify three syntactic criteria, that we call
orthogonality, weak orthogonality and independence, which
provide sufficient conditions for multiplicativity.

For comparison, we also implement MaxProb versions
of hpom and hroc (Trevizan, Thiébaux, and Haslum 2017),
where the necessary changes are relatively straightforward.
We furthermore implement non-probabilistic PDB heuristics
based on determinization, to directly assess the impact of
taking the probabilities into account. We run experiments on
a large collection of MaxProb benchmarks. The results show
that even the non-probabilistic PDBs often outperform pre-
vious MaxProb heuristics as well as our adaptations of hpom

and hroc. Our new probabilistic PDBs dominate their non-
probabilistic counterparts almost universally, and can yield
additional significant performance gains.

Preliminaries
We represent planning tasks in probabilistic SAS+ nota-
tion (Trevizan, Thiébaux, and Haslum 2017). A probabilistic
SAS+ task is a tuple Π = 〈V,A, sI ,G〉. V denotes the vari-
ables, each v has a finite domain Dv . A variable assignment
is a function σ : V 7→

⋃
v∈VDv ∪ {⊥} with σ(v) ∈ Dv ,

if defined. We write σ(v) = ⊥ in case that v has not been
assigned any value. We denote by V(σ) the set of all vari-
ables v with σ(v) 6= ⊥. σ is complete if V(σ) = V. For a
set of variables U ⊆ V(σ), we denote by σ|U the projec-
tion of σ onto U . Slightly abusing notation, we denote the
composition of two variable assignments as σ2 ◦ σ1 where
(σ2 ◦ σ1)(v) = σ2(v) for all v ∈ V(σ1) ∩ V(σ2), and
(σ2 ◦ σ1)(v) = σ1(v) for all v ∈ V(σ1) \ V(σ2). The ini-
tial state sI is a complete variable assignment. The goal G
is a variable assignment. A is the set of actions. An action
a specifies its precondition prea and a set of effects eff a,
all variable assignments, as well as a probability distribu-
tion Pa over the effects. The states S of Π are all complete
variable assignments. An action a is applicable in state s if
prea(v) = s(v) for all v ∈ V(prea).A(s) denotes the set of
all actions applicable in s.

2A more advanced method is to apply cost partitioning (Katz
and Domshlak 2010; Pommerening et al. 2015; Seipp, Keller, and
Helmert 2020).

Π induces the MDP M = 〈S, T , sI ,SG〉 whose states
and initial state are those of Π. The goal states SG are
all states sG where sG(v) = G(v) for all v ∈ V(G).
T : S × A × S 7→ [0, 1] is the transition function. For
every state s and action a ∈ A(s), T (s, a) yields a proba-
bility distribution over the possible successors states t where
T (s, a, t) =

∑
e∈eff a,t=(e◦s) Pa(e). Whenever T (s, a, t) >

0, we say thatM has an a-transition from s to t. We say that
a transition is deterministic if T (s, a, t) = 1; otherwise it is
stochastic. An action a is stochastic if there is a stochastic
a-transition.

We are interested in MaxProb analysis. For simplicity, we
assume that A(s) 6= ∅ for all states s.3 MaxProb is given by
the piecewise minimal function V∗ : S 7→ [0, 1] that satisfies
the following equation

V∗(s) =

{
1 if s ∈ SG
maxa∈A(s)

∑
t∈S T (s, a, t)V∗(t) else

V∗(sI) can be computed in many different ways. Relevant
for this paper are in particular value iteration (VI) (Puter-
man 1994) and heuristic search (Kolobov et al. 2011; Stein-
metz, Hoffmann, and Buffet 2016a). The details of MaxProb
heuristic search are not of interest here. It suffices to know
that these algorithms assume an initial estimate of V∗, the
heuristic, h : S 7→ [0, 1] as input. They guarantee to find
V∗(sI) upon termination if h is admissible, i. e., optimisti-
cally bounds V∗, h(s) ≥ V∗(s) for all states s.

VI will play an important role to automatically derive ad-
missible heuristics. In a nutshell, VI computes a sequence
of value functions V0,V1, . . . ,Vn,Vn+1 until convergence,
i.e., Vn = Vn+1. At this point, it is guaranteed that Vn = V∗.
The sequence starts with V0(sG) = 1 for all goal states
sG ∈ SG , and V0(s) = 0 for all others. At each iter-
ation i, Vi(sG) remains 1 for goal states, and Vi(s) =
maxa∈A(s)

∑
t∈S T (s, a, t)Vi−1(t) for the others.

As running example, we consider a variant of logistics,
depicted in Figure 1, where roads may become blocked. A
truck (T) moves over three locations L1, L2, L3 connected
by roads R1, R2. A package (P) must be delivered to L3.
The roads can be blocked, making them impassable. Ini-
tially, each road has an unknown status. Trying to use a road
(try drive) has a probabilistic effect setting the (then im-
mutable) status of the road. The road becomes clear with a
probability of 80%, and becomes blocked with a probabil-
ity of 20%. The agent can use (drive) on clear roads. The
package can be delivered using drop. To keep the exam-
ple simple, the package cannot be picked up. Obviously, the
maximum goal probability is 0.8 ∗ 0.8 = 0.64.

MaxProb Pattern Databases
We first define what a projection of the induced MDPM is.
Assuming a subset V ⊆ V of variables, we define the state
set SV as the set of complete variable assignments to V only,
like in classical planning. The set of goal states is defined by
SGV := {sG |V | sG ∈ SG}. We define TV (σ, a, τ) = 0 if

3This can easily be achieved by introducing an artificial self-
loop action.

202

L1 L2 L3

T (P1) deliver P1

R1 R2

sI = {P 7→ T, T 7→ L1, R1,2 7→ unknown}
G = {P 7→ L3}

drive(lx, r, ly) :

pre : {T 7→ lx, r 7→ clear}
P : {T 7→ ly} 7→ 100%

drop(l, p) :

pre : {T 7→ l, p 7→ T}
P : {p 7→ l} 7→ 100%

try drive(lx, r, ly) :

pre : {T 7→ lx, r 7→ unknown}
P : {r 7→ blocked} 7→ 20%, {r 7→ clear, T 7→ ly} 7→ 80%

Figure 1: Logistics-style running example.

prea|V * σ. Otherwise, we choose any representative s ∈
S with σ = s|V and a ∈ A(s) and define TV (σ, a, τ) =∑
t∈S. τ=t|V T (s, a, t). This transition function TV is well-

defined, the transition probability is the same for any chosen
representative. To see this, observe that we can rewrite the
term used on the right hand side to a term independent of s:∑
t.τ=t|V

T (s, a, t) =
∑

t.τ=t|V

∑
e∈eff (a)
t=e◦s

Pa(e) =
∑

e∈eff (a)
τ=e|V ◦σ

Pa(e)

where in the last step, we substitute t|V with (e ◦ s)|V =
e|V ◦ σ. The transition function can thus also be stated as

TV (σ, a, τ) =

{∑
e∈eff a.τ=e|V ◦σ

Pa(e) if prea|V ⊆ σ
0 else

As advertised in the introduction, the projected task is hence
still an MDP in contrast to more general abstractions.

We say that the MDP MV = 〈SV ,A, TV ,SGV 〉 is the
projection ofM onto V . We henceforth denote with V∗V and
VVi the MaxProb value function V∗ ofMV , and the ith VI
value function Vi ofMV respectively. We define the Max-
Prob PDB heuristic for pattern V as hV (s) := V∗V (s|V).
A fundamental observation is that hV is indeed an upper-
bounding MaxProb-heuristic for any pattern V ⊆ V:

Theorem 1 hV is admissible for any V ⊆ V.

Proof (sketch). Show Vn(s) ≤ VVn (s|V) by induction on n.
The only non-trivial case is the induction step with s /∈ SG :

Vn+1(s) = max
a∈A(s)

∑
t∈S
T (s, a, t)Vn(t)

≤ max
a∈A(s)

∑
t∈S
T (s, a, t)VVn (t|V)

= max
a∈A(s)

∑
τ∈SV

∑
t∈S.t|V =τ

T (s, a, t)VVn (τ)

= max
a∈A(s)

∑
τ∈SV

TV (s|V , a, τ)VVn (τ)

≤ max
a∈A(s|V)

· · · = VVn+1(s|V)
�

Consider the example of Figure 1 and the pattern P =
{T, P,R1}. A determinized PDB finds out that all states
where R1 = clear have the V∗ value 1, and all states
where R1 = blocked have V∗ value 0. On the cases where
R1 = unclear, however, a determinized PDB returns 1
while the MaxProb PDB provides the more informative es-
timate 0.8.

Like in classical planning, it is possible to characterize
the projected MDPMV syntactically at the level of the in-
put task Π, and therewith provide a means to computeMV

without computing the full state space, i. e., the inducedM,
beforehand. Namely, we define the syntactic projection ΠV

of Π to have variables V , preconditions preVa := prea|V ,
and effect probabilities PVa (ε) :=

∑
e∈eff a.e|V =ε Pa(e).

Theorem 2 The MDP induced by ΠV is identical toMV .

Proof (sketch). Let T ′ be the transition function of this
MDP. We show T ′ = TV . If prea|V = preVa * σ then
T ′(σ, a, τ) = 0. Otherwise if prea|V = preVa ⊆ σ:

T ′(σ, a, τ) =
∑

ε∈eff V
a

τ=ε◦σ

∑
e∈eff a

e|V =ε

Pa(e) =
∑
e∈eff a

τ=e|V ◦σ

Pa(e)

�

Hence, to build a MaxProb PDB for V , we can construct
MV from the syntactic projection ΠV of the planning task.
Afterwards, we compute the maximal goal probability V∗V
of each abstract state σ ∈ SV , and store the outcome values
in a lookup table. The MaxProb PDB heuristic hV for s is
computed by looking up the value of s|V in that table.

By Theorem 1, hV is admissible for arbitrary V . Given a
collection C of patterns, we can obviously define an admis-
sible heuristic as hCmin(s) := minV ∈C h

V (s).
In contrast to the aforementioned pathologies of general

abstractions where refinements can lead to worse heuristic
estimates (Tagorti et al. 2013), larger patterns will always
result in tighter goal probability bounds: if V ⊆ W then
V∗ ≤ hW ≤ hV . This is simply becauseMV can be cast as
a projection ofMW , showing hW ≤ hV by admissibility.

Multiplicative MaxProb PDBs
Inspired by additive PDBs, we now investigate whether in-
dividual MaxProb PDB heuristics can be combined in better
ways than taking the minimum. In the classical setting, this
can be done if the participating patterns are orthogonal (Fel-
ner, Korf, and Hanan 2004; Haslum et al. 2007) or via cost-
partitioning (Katz and Domshlak 2010; Pommerening et al.
2015; Seipp, Keller, and Helmert 2020), and allows to sum
over individual PDB heuristics. In the MaxProb setting, this
translates to multiplicative patterns.

Given a pattern collection C, we define the multiplicative
heuristic hCmul(s) :=

∏
V ∈C h

V (s). In what follows we de-
vise three conditions on C sufficient to ensure admissibility
of the multiplicative heuristic.

203

Orthogonality
First, we consider classical orthogonality and cast it to a
multiplicativity criterion for MaxProb PDBs. We say that an
action a ∈ A affects a pattern V ⊆ V, iffMV contains non-
loop a-transitions, i.e. iff TV (σ, a, τ) > 0 for some σ 6= τ .
Similarly to the classical case, this property can be checked
syntactically on the planning task: a affects V if and only if
there is an effect e with Pa(e) > 0 which assigns a variable
v ∈ V to a value different from prea(v).

The classical notion of orthogonality requires that no ac-
tion affects more than one pattern. For MaxProb PDBs, it
is sufficient to consider stochastic actions, i. e. actions with
two distinct possible effects.

Definition 1 (Orthogonality) Let C be a pattern collection.
Then C is called orthogonal if every stochastic action in A
affects at most one V ∈ C.

Note that we still allow deterministic actions to affect
multiple patterns. Therefore, contrary to additive pattern
databases, orthogonality of multiplicative MaxProb PDBs
does not imply disjointness. In our case, two orthogonal pat-
terns may contain the same variable if actions affecting that
variable are deterministic.

Theorem 3 If C is orthogonal then hCmul is admissible.

We omit the proof since this theorem is implied by admis-
sibility of a more permissive notion (proved in Theorem 4
below). Namely, one can relax orthogonality further by iden-
tifying stochastic actions that behave as if they were deter-
ministic. There are two possible reasons for this. First, we
say that a stochastic action is pseudo-deterministic if, for all
s, there exists only a single t 6= s such that T (s, a, t) > 0;
otherwise, we say that a is fully stochastic. For MaxProb,
pseudo-deterministic actions are effectively deterministic
because one can reach t from s with probability 1 by repeat-
edly applying a. Second, an action may be fully stochastic
on the original task but not within the PDB. Given a variable
subset V , we say that a is fully stochastic on V iff there are
two effects e, e′ of a such that prea|V ′ , e|V ′ and e′|V ′ are
pairwise distinct, where V ′ = V ∩ (V(e) ∪ V(e′)).

Definition 2 (Weak Orthogonality) Let C be a pattern col-
lection. Then C is called weakly orthogonal if every action
in A is fully-stochastic on at most one V ∈ C.

The benefits of weak orthogonality can be observed in our
running example. Consider the patterns P1 = {T, P,R1}
and P2 = {T, P,R2}. Under each of these, the initial state
has goal probability 0.8. The two patterns are not orthog-
onal because the stochastic try drive(lx, r, ly) actions af-
fect both of them through their effect on the truck. However,
all actions of the form try drive(lx, R2, ly) are pseudo-
deterministic in P1 because their only effect is T 7→ ly; and
similarly all actions of the form try drive(lx, R1, ly) are
pseudo-deterministic in P2. Therefore P1 and P2 are weakly
orthogonal, allowing us to admissibly derive the correct goal
probability 0.8∗0.8 = 0.64 with the multiplicative heuristic.

Theorem 4 If C is weakly orthogonal, hCmul is admissible.

Proof. W.l.o.g. we assume that pseudo-deterministic actions
do not exist in any projection. This is justified by converting
these actions to deterministic actions selecting the non-loop
successor immediately with probability 1 without changing
the optimal value function. Hence, every action is stochastic
on at most one pattern, and deterministic on all others by
weak orthogonality.

We show Vn(s) ≤
∏
V ∈C VVn (s|V) by induction on n.

Only the case s /∈ SG in the induction step is non-trivial:

Vn+1(s) = max
a∈A(s)

∑
t∈S
T (s, a, t)Vn(t)

Now, let ā ∈ A(s) be an action maximizing the right hand
side term. By weak orthogonality, we have that ā is stochas-
tic on at most one patternW ∈ C. By applying the induction
hypothesis

Vn+1(s) ≤
∑
t∈S
T (s, ā, t)

∏
V ∈C
VVn (t|V)

We only need to consider t such that T (s, ā, t) > 0 in this
sum. For such t we also have TV (s|V , ā, t|V) > 0 and since
ā is deterministic on V 6= W , we conclude that t|V must be
the unique a-successor of s|V inMV for V 6= W . It follows
that VVn (t|V) ≤ VVn+1(s|V) for V 6= W , hence

Vn+1(s) ≤
∑
t∈S
T (s, ā, t)VWn (t|W)

∏
V ∈C\{W}

VVn+1(s|V)

Lastly, the term
∑
t∈S T (s, ā, t)VWn (t|W) is bounded by:

. . . =
∑
τ∈SW

∑
t∈S.t|W=τ

T (s, ā, t)VWn (τ)

=
∑
τ∈SW

TW (s|W , ā, τ)VWn (τ)

≤ max
a∈A(s|W)

∑
τ∈SW

TW (s|W , a, τ)VWn (τ)

= VWn+1(s|W) �

Observe finally that, similarly as in the classical case, the
multiplicative heuristic is dominated by the heuristic derived
from the union of the underlying patterns. We henceforth
denote U :=

⋃
· V ∈C V .

Corollary 1 If C is weakly orthogonal, hU ≤ hCmul.

This follows directly from Theorem 4 because we can per-
ceive C as a collection of projections on U .

We utilize orthogonality by finding the maximal (weakly)
orthogonal subcollections of a generated pattern collection.
The max-clique approach is analogous to the one for classi-
cal planning (Haslum et al. 2007) and remains sound. Build-
ing the compatibility graph with respect to (weak) orthog-
onality is reduced to inspection of the syntactic projections
as outline above. The resulting admissible heuristic is called
the canonical (weak) orthogonality heuristic.

204

v = ⊥
w = ⊥

v = 0
w = 0

v = 1
w = 1

a 50%a50%

Figure 2: {v} and {w} are disjoint but not independent.

Definition 3 Let C be a pattern collection and let Q be the
set of max-cliques in the compatibility graph of C with re-
spect to (weak) orthogonality. The canonical (weak) orthog-
onality heuristic hC(w)orth is defined as

hC(w)orth(s) := min
D∈Q

hDmul(s) = min
D∈Q

∏
V ∈D

hV (s)

Independence
Lastly, we identify a different form of multiplicativity that
arises from probabilistic independence, namely when the
probability of an effect on V ∪ W equals the product of
the individual sub-effect probabilities on each of V and W .
Since a variable always depends on itself, we want V andW
to be disjoint. We call C disjoint if all its patterns are pair-
wise disjoint. In what follows, denote again U :=

⋃
· V ∈C V .

Definition 4 (Independence) Let C be a pattern collec-
tion. Then C is called independent if C is disjoint and
TU (σ, a, τ) =

∏
V ∈C TV (σ|V , a, τ |V).

Disjointness on its own is not enough for hCmul to be ad-
missible. Figure 2 gives a simple counter example. The goal
probability is 50%, but the goal probability in each pattern
is also 50% leading to the inadmissible product 25%.

When C is independent, this cannot happen. We prove this
by showing that hCmul is dominated by hU , so that admissi-
bility of hCmul follows from admissibility of hU .

Theorem 5 If C is independent, hU ≤ hCmul.

Proof (sketch). Show VUn (s) ≤
∏k
i=1 VVi

n (s|Vi
) by induc-

tion on n. The only non-trivial case is the induction step
where s /∈ SG . Here we have

VUn+1(s) = max
a∈A(s)

∑
t∈SU

TU (s, a, t)VUn (t)

≤ max
a∈A(s)

∑
t∈SU

∏
1≤i≤k

TVi(s|Vi , a, t|Vi)VVi
n (t|Vi)

by independence and induction hypothesis. Furthermore, a
state t ∈ SU can be split into the k substates 〈t1, . . . , tk〉 ∈
SV1

, . . . , SVk
where ti = t|Vi

because U is a disjoint union.
Hence we may sum over these substates instead:

· · · = max
a∈A(s)

∑
〈t1,...,tk〉∈
SV1
×···×SVk

∏
1≤i≤k

TVi(s|Vi , a, ti)VVi
n (ti)

Next, we use the following fact, which is easy to prove by
induction over k. Let fi : Si → R be a family of functions.∑

〈t1,...,tk〉∈
S1×···×Sk

∏
1≤i≤k

fi(ti) =
∏

1≤i≤k

∑
t∈Si

fi(t)

This allows us to swap the sum and the product, obtaining

. . . = max
a∈A(s)

∏
1≤i≤k

∑
t∈SVi

TVi
(s|Vi

, a, t)VVi
n (t)

≤
∏

1≤i≤k

max
a∈A(s)

∑
t∈SVi

TVi(s|Vi , a, t)VVi
n (t)

=
∏

1≤i≤k

VVi
n+1(s|Vi

)
�

Corollary 2 If C is independent, hCmul is admissible.

While these results are positive, it turns out that finding
maximal independent pattern collections is not straightfor-
ward. There exist pattern collections for which all patterns
are pairwise independent, but the collection itself is not.
Therefore, maximal independence cannot be computed us-
ing a compatibility graph.

Theorem 6 There exist non-independent pattern collections
C where all pairs Pi, Pj ∈ C are pairwise independent.

Proof. Consider the following planning task with three vari-
ables v1, v2, v3, each with two values 0 and 1, and a single
action a which has no precondition and the effects:

Pa([1, 0, 0]) = 1
4 Pa([0, 1, 0]) = 1

4

Pa([0, 0, 1]) = 1
4 Pa([1, 1, 1]) = 1

4

To acknowledge that the patterns are pairwise independent,
observe that for any two variables vi, vj ∈ V, i 6= j:

T{vi,vj}([di, dj], a, [d
′
i, d
′
j]) = 1

4

T{vi}([di], a, [d
′
i]) · T{vj}([dj], a, [d

′
j]) = 1

2 ·
1
2 = 1

4

However, there are impossible transitions when considering
all variables: In particular, T ([0, 0, 0], a, [0, 0, 0]) = 0 but∏

1≤i≤3 T{vi}([0], a, [0]) = 1
8 , refuting independence. �

Given this, in our current implementation we consider or-
thogonality and weak orthogonality only. It remains an open
question how to operationalize the notion of independence.

Relation between Multiplicativity Criteria
Trivially, orthogonality is a special case of weak orthogonal-
ity. To clarify the relation to independence, we observe:

Theorem 7 If C is weakly orthogonal and disjoint, then C is
independent.

Proof (sketch). Define U :=
⋃
· V ∈C V and let a ∈ A and

σ, τ ∈ SU . The equation to prove is:

TU (σ, a, τ) =
∏
V ∈C
TV (σ|V , a, τ |V)

205

By weak orthogonality, a is stochastic on at most one W ∈
C. That means for V 6= W , there is only one a-successor τV
and TV (σ|V , a, τV) = 1. If τ |V 6= τV for some V 6= W
then both sides are zero. If τ |V = τV , it remains to show
that TU (σ, a, τ) = TW (σ|V , a, τ |V). We have

TU (σ, a, τ) =
∑

e∈eff a,τ |U=e|U◦σ|U

Pa(e)

Since a is deterministic on V 6= W , every effect e already
satisfies τ |V = τV = e|V ◦ σ|V for V 6= W . Therefore:

· · · =
∑

e∈eff a,τ |W=e|W ◦σ|W

Pa(e) = TW (σ|W , a, τ |W)
�

Without disjointness, independence and weak orthogonal-
ity are incomparable notions. In the example underlying the
proof of Theorem 6, every variable pair is independent but
not weakly orthogonal. Vice versa, in our running example
the patterns P1 = {T, P,R1} and P2 = {T, P,R2} are
weakly orthogonal but not independent.

Note that Theorem 7 is of a purely theoretical interest.
One can use it to identify independent pattern collections C
in practice, but these are weakly orthogonal anyhow and so
nothing is gained over the use of that latter notion.

Experiments
We run experiments on a large collection of MaxProb bench-
marks, evaluating a range of competing algorithms. We first
describe the latter, then the benchmark collection, then sum-
marize the results. All our source code, benchmarks, and re-
sults are publicly available (Klößner et al. 2021).

Competing Algorithms
For heuristic search on MaxProb, an important distinction is
whether or not the MDP contains cycles. If not, then SSP al-
gorithms like LRTDP (Bonet and Geffner 2003) can be used,
and LAO∗ (Hansen and Zilberstein 2001) simplifies to AO∗.
If there are cycles, then the FRET outer loop (Kolobov et al.
2011) must be used, iterating these algorithms until there
are no more “traps” under the found policy. We hence dis-
tinguish acyclic vs. cyclic benchmarks in our experiments,
and run the corresponding algorithms on each sub-class. All
algorithms are run until the Bellman residual of the initial
state becomes less than ε, where ε = 10−5. When selecting
greedy actions, all algorithms stick to the previous choice if
possible and choose an arbitrary greedy action otherwise.

Regarding heuristic functions, previous work experi-
mented mostly with dead-end pruning heuristics using de-
terminization and hmax (Bonet and Geffner 2001). To nev-
ertheless compare against prior work on heuristic functions
taking probabilities into account, we implemented MaxProb
versions of hpom and hroc (Trevizan, Thiébaux, and Haslum
2017). In a nutshell, the adaptations to the underlying LP
encodings consist in changing the optimization condition to
maximize the flow reaching goal states, and allowing flow to
sink at arbitrary states. We run these heuristics in (1) LAO∗,
LRTDP, and FRET like for the other heuristics, (2) their na-
tive i-dual (Trevizan et al. 2017) framework where an LP en-
coding of the MDP state space is incrementally built, and (3)

i2-dual (Trevizan, Thiébaux, and Haslum 2017) where that
LP is conjoined with the LP encoding the heuristic func-
tion. We remark that hpom and hroc were designed for dif-
ferent kinds of MDPs and are not particularly well suited
to MaxProb due to limited dead-end detection capabilities.
The reader should keep this in mind when comparing across
heuristics in the results below.

From our own results presented here, we run MaxProb
PDB configurations which minimize over all patterns (min)
as well as multiplicative variants leveraging orthogonality
(orth) and weak orthogonality (weak). To obtain a direct
evaluation of the benefit of taking the probabilities into ac-
count, we also run the exact same PDB heuristics using de-
terminization (thus limiting them to dead-end pruning).

The design of intelligent methods for finding good pat-
tern collections C is a complex and ongoing research chal-
lenge, which we plan to address in depth in future work.
For now, we adopt previous work suggesting to systemat-
ically enumerate “interesting” patterns up to a given size
limit K (Pommerening, Röger, and Helmert 2013). We ex-
periment with K ∈ {2, 3, 4}. For MaxProb PDBs, we dis-
card a projection if every abstract state has goal probability
1. We do the same for the determinized PDBs if no dead-
end is found. The computed pattern collections are identical
across all PDB configurations in our experiments.

Our implementation is based on the probabilistic exten-
sion of Fast Downward (Helmert 2006; Steinmetz, Hoff-
mann, and Buffet 2016a), using PPDDL (Younes et al. 2005)
as the front-end language. All experiments were run using
the Downward Lab toolkit (Seipp et al. 2017) on a cluster of
Intel Xeon E5-2650 v3 processors @2.30GHz, with a time
limit of 30 minutes and a memory limit of 4 GB. For config-
urations requiring an LP solver, we used Soplex 3.1.1.

Benchmarks
Our benchmark collection is based on that of Steinmetz,
Hoffmann, and Buffet (2016a), which consists of (a) do-
mains from IPPC 2006 and 2008, (b) these same domains
but with a consumed budget, (c) probabilistic resource-
constrained planning, RCP in short (canadian-nomystery-
rcp, canadian-rovers-rcp, canadian-tpp-rcp), and (d) simu-
lated penetration testing (coresec). The acyclic benchmarks
encompass (b) and (c), where every action consumes a
non-zero discrete amount of budget/resource (encoded into
PPDDL); as well as (d) which is acyclic by nature. The
cyclic benchmarks encompass (a) as well as variants of (b)
without resource consumption. For domains (a) and (b) that
appeared in multiple IPPC iterations, we use the instances of
all editions. From (a) we excluded domains without unavoid-
able dead-ends (blocksworld, elevators, random, sysadmin,
zenotravel), where the goal probability is universally 1.

In addition to these benchmarks, we created a new
cyclic testbed with many unavoidable dead-ends. Such sit-
uations arise naturally in resource-constrained planning
(RCP) when some but not all actions consume a resource,
leading to cycles such as loading/unloading packages re-
peatedly at the same location. We created such bench-
marks (canadian-nomystery-rcp-cyclic, canadian-rovers-
rcp-cyclic, canadian-tpp-rcp-cyclic) by starting from the

206

100 101 102 103
100

101

102

103
t.o.

hmax

100 101 102 103
100

101

102

103
t.o.

pdb (size 3)

Figure 3: Total runtime (sec). MaxProb PDBs (y-axis) with
weak orthogonality and pattern size 3 vs. hmax (x-axis, left)
and determinized PDBs (x-axis, right).

RCP benchmarks (c) and limiting resource consumption to
actions like driving which are the primary consumers of re-
sources in the underlying applications.

Results
Table 1 shows coverage results, Table 2 shows the num-
ber of generated states. For acyclic planning, PDBs achieve
highest coverage, beating all competing algorithms con-
siderably. On the cyclic non-resource-constrained bench-
marks, hmax performs best. However, PDBs outperform hmax

in the cyclic resource-constrained setting. Without a bud-
get/resource variable available, PDBs tend to require large
patterns to derive impactful estimates, which becomes infea-
sible with the pattern generation we employ. Figure 3 (left)
corroborates this picture, depicting the runtime of hmax vs.
MaxProb PDBs with weak orthogonality.

The occupation measure heuristics hpom and hroc perform
poorly across all of our benchmarks. In the MaxProb set-
ting, the cost of repeatedly solving linear programs does not
pay off. The encoded atomic projections (i. e. projections in-
cluding a single variable) almost always induce a V∗ esti-
mate of 1 in the MaxProb setting, and the tying constraints
rarely compensate for this. Like we said before, these re-
sults should not be over-interpreted as hpom and hroc were
designed for different classes of MDPs.

Even determinized PDBs already achieve much of the
above described advantage over competing techniques. Nev-
ertheless, our MaxProb PDBs can achieve significantly bet-
ter performance than determinized PDBs, especially on
acyclic and cyclic-RCP domains. The number of generated
states is reduced in about half of the domains. The advan-
tage tends to increase with pattern size, which makes sense
as larger patterns retain more probabilistic information. This
sometimes pays off in coverage. Figure 3 (right) shows that,
similarly, it can pay off in runtime, though we can also see
the larger overhead of constructing MaxProb PDBs.

Evaluating lastly the impact of multiplicativity, we find
that its benefits here are often marginal, but are significant in
some domains, especially coresec and some benchmarks re-
lating to resource-constrained planning. These results seem
to be largely a function of how we select the patterns: on

bl
oc
ks
w

ca
n-
no
m
ys

ca
n-
ro
ve
rs

ca
n-
tp
p

co
re
se
c

dr
iv
e

ele
va
to
rs

ex
pl
-b
lck
s

ra
nd
om

re
ct
-ti
re

sc
he
du
le

se
ar
ch tir

e

tr
i-t
ireze

no al
l

100

102

104
Orth Weak

Figure 4: Average number of generated cliques, on acyclic
benchmarks with pattern size 4.

bl
oc
ks
w

ca
n-
no
m
ys

ca
n-
ro
ve
rs

ca
n-
tp
p
dr
iv
e

ele
va
to
rs

ex
pl
-b
lck
s

ra
nd
om

re
ct
-ti
re

sc
he
du
le

se
ar
ch

tr
i-t
ire ze

no al
l100

101

102

103 PDB Min Orth Weak

Figure 5: Average PDB construction time, on acyclic bench-
marks with pattern size 4. Instances with time < 1 second
are excluded (all instances of coresec and tireworld).

the one hand, each pattern is small, limiting the amount of
information gained by multiplicativity; on the other hand,
there are many patterns which can result in substantial effort
for multiplicativity analysis. In the good cases, small pat-
terns yield sufficient information to outweigh this overhead.
In coresec, e. g., an attacker tries to compromise a system
by executing exploits. Individual exploits can be captured
in small patterns, and most exploits can be used indepen-
dently. Multiplicativity across several patterns thus captures
the joint success probability of combinations of exploits.

Figures 4 and 5 provide data elucidating the computa-
tional overhead of creating the PDB heuristics. This over-
head is a combination of PDB construction effort plus, in
some domains, substantial effort spent on multiplicativity-
clique computations. Regarding the latter, note in Figure 4
that some domains reach well over 1000 generated cliques
on average. This often results in timeouts.

Conclusion
We have introduced PDB heuristics for MaxProb planning,
and shown that the basic concepts and properties from clas-
sical planning – admissibility and orthogonality – transfer
naturally. The results show that significant empirical benefits
are possible even when just systematically generating pat-
terns of a fixed size. Our next step will be to investigate more
intelligent pattern selection strategies. Interesting questions
for the longer term concern PDB heuristics for stochastic
shortest-path problems, as well as more general abstraction
heuristics for probabilistic planning, beyond PDBs.

207

AO* / FRET-π + LAO* i-dual
Pattern Size K = 2 Pattern Size K = 3 Pattern Size K = 4

Domain N blind hmax hpom hroc pdb min orth weak pdb min orth weak pdb min orth weak hpom hroc

ac
yc

lic

canadian-nomys-rcp 120 76 57 2 7 74 74 74 74 96 98 98 98 109 112 111 112 0 0
canadian-rovers-rcp 120 104 100 47 64 103 103 103 103 103 103 103 103 107 106 106 106 21 21
canadian-tpp-rcp 120 57 45 3 7 56 56 56 56 70 73 73 74 70 81 81 84 1 3
coresec 30 12 12 14 14 12 14 16 16 12 14 17 17 12 14 17 17 8 8
budget-blocks 180 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54
budget-drive 90 90 90 54 60 90 90 90 90 90 90 90 90 71 74 74 72 54 60
budget-elevators 90 81 77 52 61 81 81 81 81 78 77 77 77 60 60 60 60 42 42
budget-expl-blocks 150 68 91 58 63 103 103 103 103 99 101 101 101 89 89 89 89 54 58
budget-random 72 42 42 48 48 43 43 43 43 43 44 44 44 30 31 31 16 37 45
budget-rectangle-tire 36 12 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 11 12
budget-schedule 138 60 60 56 60 60 60 60 60 60 60 60 60 54 59 59 59 53 56
budget-search&rescue 90 66 57 37 42 66 66 66 66 72 72 72 72 74 78 73 74 28 28
budget-tireworld 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
budget-triangle-tire 120 48 44 30 30 58 58 58 58 58 61 61 61 54 57 57 57 30 30
budget-zenotravel 78 37 25 8 11 42 36 36 35 44 42 42 41 46 47 47 47 6 7
Σ 1542 897 856 564 623 944 940 942 941 981 991 994 994 932 964 961 949 489 514

cy
cl

ic

canadian-rovers 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 8
canadian-tpp 10 5 7 5 5 5 5 5 5 5 6 6 6 6 9 9 9 2 2
drive 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
exploding-blocks 30 9 21 9 9 17 17 17 17 17 17 17 17 16 17 17 17 8 8
rectangle-tireworld 14 14 14 12 14 14 14 14 14 14 14 14 14 14 14 14 14 13 14
schedule 30 5 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 8 8
search&rescue 15 4 5 4 4 5 5 5 5 5 5 5 5 5 5 5 5 3 3
tireworld 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
triangle-tireworld 10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 6 6
Σ 174 81 101 84 86 95 95 95 95 95 96 96 96 95 99 99 99 79 78

cy
c-

rc
p can-nomys-rcp-cyclic 120 10 25 8 9 9 9 10 9 46 45 45 45 67 72 72 66 0 0

can-rovers-rcp-cyclic 120 98 103 96 97 98 98 98 98 98 98 98 98 106 106 106 106 76 76
can-tpp-rcp-cyclic 120 58 69 26 20 61 61 61 61 78 79 79 79 89 96 96 101 6 9
Σ 360 166 197 130 126 168 168 169 168 222 222 222 222 262 274 274 273 82 85

Table 1: Coverage. Best results highlighted in boldface. Omitted results: i2-dual, which performs much worse than i-dual;
LRTDP, whose results are very similar to those for AO∗ and LAO∗; domains with 0 coverage for all planners (budget-boxworld,
boxworld, canadian-nomystery).

Pattern Size K = 2 Pattern Size K = 3 Pattern Size K = 4
Domain Scale pdb min orth weak pdb min orth weak pdb min orth weak

ac
yc

lic

canadian-nomystery-rcp 104 7529.0 7529.0 7529.0 7529.0 1957.5 1672.3 1672.3 1644.4 1601.2 824.4 824.4 796.4
canadian-rovers-rcp 104 6025.7 6025.7 6025.7 6025.7 4898.8 4898.8 4898.8 4898.8 1075.9 1064.5 1064.5 1064.5
canadian-tpp-rcp 105 927.0 927.0 927.0 927.0 1021.5 572.7 572.7 468.6 598.0 159.0 159.0 109.6
coresec 104 1998.4 404.9 61.3 61.3 1998.4 404.9 61.3 61.3 1998.4 404.9 61.3 61.3
budget-blocksworld 103 2676.7 2269.9 2269.9 2429.5 1054.0 598.2 598.2 677.0 530.6 113.9 113.9 126.5
budget-drive 103 8345.0 7999.1 7999.1 7999.1 8039.1 8390.9 8390.9 8343.3 1428.2 1608.0 1608.0 1578.0
budget-elevators 104 8202.0 8202.0 8202.0 8202.0 3805.5 5955.0 5955.0 5955.0 194.9 1037.7 1037.7 1037.7
budget-exploding-blocks 104 1757.8 1757.8 1757.8 1757.8 316.4 316.4 316.4 316.4 73.2 73.2 73.2 73.2
budget-random 104 1058.5 1103.6 1103.6 973.5 82.47 36.95 36.95 27.62 2.65 0.25 0.25 0.25
budget-rectangle-tireworld 10 1134.2 1134.2 1134.2 1134.2 264.3 264.3 264.3 264.3 264.3 19.47 19.47 19.47
budget-schedule 100 1283.4 1283.4 1283.4 1283.4 595.0 595.0 595.0 595.0 167.6 167.6 167.6 167.6
budget-search&rescue 104 5413.5 5413.5 5413.5 5413.5 5473.2 4531.7 4531.7 4531.7 2238.2 360.7 360.7 360.7
budget-tireworld 1 378.4 378.4 378.4 378.4 201.1 108.7 108.7 108.7 164.1 97.8 97.8 97.8
budget-triangle-tireworld 104 2052.0 2052.0 2052.0 2052.0 1356.5 302.1 302.1 302.1 304.1 1.36 1.36 1.36
budget-zenotravel 105 799.5 2234.4 2234.4 2617.8 739.2 1895.0 1895.0 2225.0 1242.6 950.6 950.6 970.3
All 104 3494.5 4342.9 4320.0 4568.0 2560.8 2913.4 2890.4 3038.8 1735.1 998.1 975.2 953.4

cy
cl

ic

canadian-rovers 104 4717.5 4717.5 4717.5 4717.5 4717.5 4717.5 4717.5 4717.5 4717.5 4717.5 4717.5 4717.5
canadian-tpp 105 4743.8 4743.8 4743.8 4743.8 4736.8 4260.2 4260.2 4260.2 5594.3 3859.3 3859.3 3826.3
drive 10 1736.8 1588.2 1588.2 1588.2 1736.8 1523.6 1523.6 1523.6 1736.7 1490.1 1490.1 1490.1
exploding-blocks 104 5111.4 5111.4 5111.4 5111.4 5111.4 5111.4 5111.4 5111.4 477.9 477.9 477.9 477.9
rectangle-tireworld 103 1851.2 1851.2 1851.2 1851.2 1629.5 1629.5 1629.5 1629.5 1629.5 1629.5 1629.5 1629.5
schedule 10 6238.2 6238.2 6238.2 6238.2 6238.2 6238.2 6238.2 6238.2 6238.2 6238.2 6238.2 6238.2
search&rescue 105 3466.8 3466.8 3466.8 3466.8 3466.8 2672.4 2672.4 2672.4 3466.8 1334.1 1334.1 1334.1
tireworld 104 6274.6 6274.6 6274.6 6274.6 4436.0 4436.0 4436.0 4436.0 3081.1 3140.0 3140.0 3140.0
triangle-tireworld 103 5447.3 5447.3 5447.3 5447.3 4951.1 4951.1 4951.1 4951.1 1233.7 1231.8 1231.8 1231.8
All 104 9999.7 9999.7 9999.7 9999.7 9805.4 8534.4 8534.4 8534.4 9922.6 6060.8 6060.8 6027.7

cy
c-

rc
p can-nomystery-rcp-cyclic 105 8648.2 8648.2 8648.2 8648.2 3528.3 3448.7 3448.7 3446.3 2502.9 1870.1 1870.1 1810.7

can-rovers-rcp-cyclic 104 8551.5 8551.5 8551.5 8551.5 7506.6 7506.6 7506.6 7506.6 6086.0 5942.0 5942.0 5941.9
can-tpp-rcp-cyclic 105 2740.9 2740.9 2740.9 2740.9 1629.0 1537.8 1537.8 1525.9 1185.0 770.7 770.7 725.3
All 105 4081.4 4081.4 4081.4 4081.4 1969.3 1912.4 1912.4 1907.6 1432.2 1078.3 1078.3 1043.4

Table 2: Number of generated states (average over commonly solved instances) for PDB approaches, separated by pattern
size K as coverage often varies with K. Best results within each category highlighted in boldface. Scale gives a common
multiplication factor for each row, to reduce table width.

208

Acknowledgments
This work was funded by DFG grant 389792660 as part of
TRR 248 (see https://perspicuous-computing.science). Spe-
cial thanks to Bob Givan for his help in analyzing the IPPC
Random domain.

References
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic Search. AI
129(1–2): 5–33.

Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improving
the Convergence of Real-Time Dynamic Programming. In Proc.
ICAPS’03, 12–21.

Bonet, B.; and Geffner, H. 2006. Learning Depth-First Search: A
Unified Approach to Heuristic Search in Deterministic and Non-
Deterministic Settings, and Its Application to MDPs. In Proc.
ICAPS’06, 142–151.

Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Sequential
Monte Carlo in probabilistic planning reachability heuristics. In
Proc. ICAPS’06, 233–242.

Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases. Com-
putational Intelligence 14(3): 318–334.

Domshlak, C.; and Hoffmann, J. 2007. Probabilistic Planning via
Heuristic Forward Search and Weighted Model Counting. JAIR 30:
565–620.

E-Martı́n, Y.; Rodrı́guez-Moreno, M. D.; and Smith, D. E. 2014.
Progressive heuristic search for probabilistic planning based on in-
teraction estimates. Expert Systems - The Journal of Knowledge
Engineering 31(5): 421–436.

Edelkamp, S. 2001. Planning with Pattern Databases. In Proc.
ECP’01, 13–24.

Felner, A.; Korf, R.; and Hanan, S. 2004. Additive Pattern Database
Heuristics. JAIR 22: 279–318.

Franco, S.; Torralba, A.; Lelis, L. H.; and Barley, M. 2017. On
Creating Complementary Pattern Databases. In Proc. IJCAI’17,
4302–4309.

Givan, R.; Leach, S. M.; and Dean, T. 2000. Bounded-parameter
Markov decision processes. AI 122(1–2): 71–109.

Hansen, E. A.; and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loops. AI 129(1-2): 35–62.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig, S.
2007. Domain-Independent Construction of Pattern Database
Heuristics for Cost-Optimal Planning. In Proc. AAAI’07, 1007–
1012.

Helmert, M. 2006. The Fast Downward Planning System. JAIR 26:
191–246.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge & Shrink Abstraction: A Method for Generating Lower
Bounds in Factored State Spaces. JACM 61(3): 16:1–16:63.

Katz, M.; and Domshlak, C. 2010. Optimal admissible composition
of abstraction heuristics. AI 174(12–13): 767–798.

Keyder, E.; and Geffner, H. 2008. The HMDP Planner for Planning
with Probabilities. In IPC 2008 planner abstracts.

Klauck, M.; Steinmetz, M.; Hoffmann, J.; and Hermanns, H. 2020.
Bridging the Gap Between Probabilistic Model Checking and
Probabilistic Planning: Survey, Compilations, and Empirical Com-
parison. JAIR 68: 247–310.

Klößner, T.; Steinmetz, M.; Hoffmann, J.; and Torralba, Á.
2021. Code and Benchmarks of the ICAPS’21 submission ”Pat-
tern Databases for Goal-Probability Maximization in Probabilistic
Planning”. https://doi.org/10.5281/zenodo.4604720.

Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011. Heuristic
Search for Generalized Stochastic Shortest Path MDPs. In Proc.
ICAPS’11.

Little, I.; and Thiébaux, S. 2006. Concurrent Probabilistic Planning
in the Graphplan Framework. In Proc. ICAPS’06, 263–273.

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J. 2015.
From Non-Negative to General Operator Cost Partitioning. In
Proc. AAAI’15, 3335–3341.

Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting the
Most Out of Pattern Databases for Classical Planning. In Proc.
IJCAI’13.

Puterman, M. L. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley Series in Probability
and Statistics. Wiley. ISBN 978-0-47161977-2. doi:10.1002/
9780470316887.

Rovner, A.; Sievers, S.; and Helmert, M. 2019. Counterexample-
Guided Abstraction Refinement for Pattern Selection in Optimal
Classical Planning. In Proc. ICAPS’19, 362–367.

Seipp, J.; and Helmert, M. 2018. Counterexample-Guided Carte-
sian Abstraction Refinement for Classical Planning. JAIR 62: 535–
577.

Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost Parti-
tioning for Optimal Classical Planning. JAIR 67: 129–167.

Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M. 2017.
Downward Lab. https://doi.org/10.5281/zenodo.790461.

Steinmetz, M.; Hoffmann, J.; and Buffet, O. 2016a. Goal Proba-
bility Analysis in MDP Probabilistic Planning: Exploring and En-
hancing the State of the Art. JAIR 57: 229–271.

Steinmetz, M.; Hoffmann, J.; and Buffet, O. 2016b. Revisit-
ing Goal Probability Analysis in Probabilistic Planning. In Proc.
ICAPS’16.

Tagorti, M.; Scherrer, B.; Buffet, O.; and Hoffmann, J. 2013. Ab-
straction Pathologies in Markov Decision Processes. In Proceed-
ings of the 8th Journées Francophones Planification, Décision, et
Apprentissage (JFPDA-13).

Trevizan, F. W.; Teichteil-Königsbuch, F.; and Thiébaux, S. 2017.
Efficient solutions for Stochastic Shortest Path Problems with Dead
Ends. In Elidan, G.; Kersting, K.; and Ihler, A. T., eds., Proc. the
33rd Conference on Uncertainty in Artificial Intelligence (UAI’17).
AUAI Press.

Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Occupation
Measure Heuristics for Probabilistic Planning. In Proc. ICAPS’17,
306–315.

Trevizan, F. W.; Thiébaux, S.; Santana, P. H.; and Williams, B.
2017. I-dual: Solving Constrained SSPs via Heuristic Search in
the Dual Space. In Proc. IJCAI’17, 4954–4958.

Younes, H. L. S.; Littman, M. L.; Weissman, D.; and Asmuth, J.
2005. The First Probabilistic Track of the International Planning
Competition. JAIR 24: 851–887.

209

