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Abstract

The benchmarks from previous International Planning Com-
petitions (IPCs) are the de-facto standard for evaluating plan-
ning algorithms. The IPC set is both a collection of planning
domains and a selection of instances from these domains.
Most of the domains come with a parameterized generator
that generates new instances for a given set of parameter val-
ues. Due to the steady progress of planning research some of
the instances that were generated for past IPCs are inadequate
for evaluating current planners. To alleviate this problem, we
introduce Autoscale, an automatic tool that selects instances
for a given domain. Autoscale takes into account constraints
from the domain designer as well as the performance of cur-
rent planners to generate an instance set of appropriate diffi-
culty, while avoiding too much bias with respect to the con-
sidered planners. We show that the resulting benchmark set
is superior to the IPC set and has the potential of improving
empirical evaluation of planning research.

Introduction
Automated planning aims to develop general solvers that
find solutions to arbitrary sequential decision-making prob-
lems. This makes the evaluation of planners an essential part
of planning research (Linares López, Celorrio, and Helmert
2013; Seipp et al. 2017). Evaluating planners on different
benchmark sets may produce different results, leading to dif-
ferent conclusions. Not only is it important which domains
we use, but also how we model them (Riddle, Holte, and
Barley 2011), and which instances of a domain we select.
Therefore, having a standardized benchmark set is important
to increase the comparability of results across papers, and to
avoid using benchmarks tailored for the proposed technique.
The benchmarks from the International Planning Competi-
tion (IPC) are the current de-facto standard. This benchmark
set has grown across the nine editions of the IPC so far, from
1998 to 2018 (e.g., Hoffmann and Edelkamp 2005; Hoff-
mann et al. 2006; Linares López, Celorrio, and Olaya 2015),
and it features a diverse set of domains that pose interesting
challenges for planning algorithms.

We deal with selecting a finite set of instances of a given
domain to evaluate planning algorithms. So far, this was
done by the IPC organizers by manually choosing suitable
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values for the parameters of an instance generator, to obtain
instances of different sizes and difficulty (Vallati, Chrpa, and
McCluskey 2018). However, there are several issues with
the instance selection in the IPC set (Moraru and Edelkamp
2019). For example, different numbers of instances were se-
lected per domain (from 5 to 150), which reduces the value
of statistics aggregated over different domains. More impor-
tantly, the instances were selected to evaluate planners at the
respective IPC, and they are not useful to evaluate current
planners two decades later. In some of the domains all in-
stances are trivially solved by modern planners, making it
impossible to show significant advantages over a baseline.
Furthermore, early IPC editions did not have a specialized
track for optimal planning, and some of their instances are
much too hard even for state-of-the-art optimal planners.

We identify desirable design principles for an instance set:
(1) it is useful to evaluate current planners; (2) it avoids bias
with respect to the considered planners; and (3) it keeps the
spirit of the domain. Our main contribution is to frame the
problem of finding a suitable instance selection that follows
these principles as an optimization problem. Our tool, Au-
toscale, chooses one or more sequences of parameter con-
figurations that induce a good instance set in order to evalu-
ate current and near-future planners. Thus, given an instance
generator for a planning domain and a set of baseline and
state-of-the-art planners, Autoscale automatically generates
an instance set that has the desired properties.

In other communities like SAT, there has been a lot
of research on how to construct random instances (Sel-
man, Mitchell, and Levesque 1996; Achlioptas et al. 2000;
Giráldez-Cru and Levy 2015; Xu et al. 2005). In planning,
some research has also explored how to generate new prob-
lems, e.g., around the phase transition (Rintanen 2004; Ri-
effel et al. 2014), with suitable initial states and goals for
Sokoban (Bento, Pereira, and Lelis 2019), or via declarative
instance generators (Fuentetaja and de la Rosa 2012). Our
approach is complementary and it can be used to choose in-
stance sets among the ones they can generate.

To evaluate Autoscale, we generate two separate sets of
benchmarks for optimal and agile planning by selecting new
instances for 26 domains from the standard IPC set. The re-
sults show clear advantages over the IPC set, illustrating the
potential of the new benchmark set to improve the evaluation
of future planning research.



Preliminaries
Informally, a classical planning task Π is defined by an ini-
tial state, a set of actions and a goal description. Given a
task, a planner finds a plan, i.e., a sequence of actions that
can be applied in the initial state to achieve the goal. A plan
is optimal if it minimizes the summed-up cost of the actions
among all plans. If the planner is guaranteed to find an opti-
mal solution, it is an optimal planner, otherwise it is an agile
planner. In both settings, we only consider solvable tasks.
We denote by t(p,Π) the runtime of a planner p to solve Π.

The IPC introduced numerous planning tasks from differ-
ent problem settings, called domains. A planning task is typ-
ically divided into a domain and an instance file. The domain
file defines the types of objects, their properties, and the ac-
tion schemas. Each instance file can have a different number
of objects, initial state and goals. Most domains have an in-
stance generator,1 which is a program that, given certain pa-
rameters and a random seed, generates a new instance of the
domain. Formally, an instance generator is a function G that
takes as input a tuple of parameter values ρ and a random
seed r ∈ N+ and outputs a planning task Π = G(ρ, r).

As an example, consider the Nomystery do-
main (Nakhost, Hoffmann, and Müller 2012), where a
truck must deliver a set of packages to certain locations. To
do that, there is a limited amount of fuel that is consumed
by drive actions. Instances differ in the amount of fuel
available, the number of locations and their connections,
the number of packages, and their initial and final location.
The instance generator for Nomystery accepts several
parameters that allow the benchmark designer to control
the difficulty of the generated instances: the number of
locations, the number of packages, the number of edges
between locations, the maximum fuel consumption between
two locations, and the constrainedness C ≥ 1, so that
the amount of fuel in the initial state is set to C times the
minimum fuel consumption required to solve the instance.

Instance Set Design Principles
We analyze desirable principles for the selection of instances
from a given domain, similar to the ones considered by IPC
organizers (e.g., Vallati, Chrpa, and McCluskey 2018).

Principle 1: Useful to Evaluate Current Planners The
purpose of a benchmark set is to evaluate planners and com-
pare their performance on a diverse class of problems. The
selection of instances depends on our assumptions on the
evaluation that will take place. Typically, there are two main
goals for the evaluation of a novel algorithm: (1) understand
its properties by comparing its performance against a base-
line, and (2) compare it against the state of the art. Often,
the main metric for comparison is coverage, i.e., the number
of solved instances. Therefore, our goal is that, for any two
planners A and B (possibly unknown at the time when the
instance set is generated), if A is consistently faster than B
on the instances of a domain, the probability that this is re-
flected on the coverage score should be as high as possible.
For aggregated statistics to be meaningful, not only should

1https://github.com/AI-Planning/pddl-generators

IPC Autoscale
# L D O # L D O

Grid 5 5 5 5 30 17 14 16
Driverlog 20 20 20 20 30 15 10 25
Rovers 40 40 40 40 30 30 23 28
Snake 20 5 15 12 30 6 19 16

Total 85 70 80 77 120 68 66 85

Table 1: Coverage of LAMA (L), and two IPC 2018 agile
planners Dual-BFWS (D) and OLCFF (O).

all domains have the same number of instances, but their dif-
ficulty should also scale similarly. Otherwise, conclusions
taken from the empirical evaluation may be misleading. To
showcase this, we advance an excerpt of the results obtained
with the IPC and our Autoscale benchmark set, as described
in the experiments section. Table 1 compares three planners
(for references see Table 3) in four domains with both bench-
mark sets. Evaluating these planners with IPC instances, we
could conclude that Dual-BFWS is superior to the other two
planners in these domains, both in total coverage and on a
per-domain basis, since it has better or equal coverage in
all domains. However, this conclusion is biased because in-
stances are not well scaled. Instances in Grid, Driverlog, and
Rovers are way too easy and therefore they do not show any
differences between the planners. Using the Autoscale in-
stances leads to a different conclusion: all three planners are
complementary, with OLCFF being superior in total cover-
age. Of course, no strong conclusions can be taken out of
only a few domains. However, using more domains will help
to alleviate this issue only if the instances are well scaled.

Principle 2: Avoid Bias Given our first principle, a set of
current planners is required in order to measure how use-
ful the resulting instance set is. Thus, the instance selection
necessarily depends on the considered set of planners, pos-
sibly introducing bias towards such a set of planners. While
the bias cannot be entirely avoided, it should be minimized
as much as possible, making sure that the resulting instance
set is suitable to evaluate other future planners. Indeed, the
Autoscale instance set featured in Table 1 was configured
without using any planner after 2014, so it did not use any
information regarding the two IPC 2018 planners, showing
that our instance selection can generalize to future planners.

Principle 3: Keep the Spirit of the Domain The princi-
ples above aim to find an instance set that maximizes the
amount of differences in performance that can be identi-
fied on a set of planners. We must not forget, however, that
planning domains aim to model problems relevant in the
real-world so instance sets that are pathological should be
avoided. For example, in a Barman-like domain it may be
more interesting to analyze planners’ performance with re-
spect to scaling the number of cocktails that must be pre-
pared rather than arbitrarily scaling the number of ingredi-
ents of each cocktail over 100, even if that showcases more
differences among the planners. This is a domain design de-
cision, so the domain modeler should be allowed to establish
constraints on the sets of instances that are acceptable.



The Instance Selection Problem
Next, we model the problem of instance selection as an op-
timization process that complies with the design principles.

Smooth Scaling
Even though Principle 1 establishes that the objective is to
observe differences in performance among the current plan-
ners, this should not be the direct optimization objective.

Rule 1 (Agnostic to Individual Planner Performance). The
optimization process must not consider the individual results
of all planners available for the optimization, but only con-
sider the best planner per instance.

The reason is that this would directly contradict Princi-
ple 2, as this metric heavily depends on the entire set of
planners considered. For example, even if the set of planners
is very diverse, if many of the planners belong to the same
family of algorithms (e.g., heuristic search), this will bias
the results towards finding instance sets adequate for them,
ignoring the rest. This is related to achieving independence
of irrelevant alternatives, i.e., including more planners in the
optimization process should not affect the selection unless
they change the state of the art (Seipp 2019).

Instead, our objective is to achieve a smooth scaling.

Rule 2 (Smooth Scaling). The optimization process aims to
find a set that: (1) has easy instances solved by all planners,
(2) has hard instances not solved by any current planner,
and (3) instance difficulty grows smoothly.

Condition (1) is necessary for experiments to be infor-
mative at all: if some planners do not solve any instance,
no conclusions can be obtained about their relative perfor-
mance. This happens in some domains of the IPC bench-
mark set for optimal planning. For example, Fišer, Torralba,
and Shleyfman (2019) write that “In Childsnack, [they] mea-
sured about twice as many expanded states per second. How-
ever, no planner solved any instance in this domain.”. Con-
dition (2) is necessary for new algorithms to show that they
can deal with instances that previous planners could not, as
shown by our example in Table 1.

Condition (3) is necessary for differences in planner per-
formance to be reflected in coverage. To see why, con-
sider an idealized setting where a planner A whose run-
time scales exponentially on an instance set {Π1,Π2, . . . }
(t(A,Πx) = Cx for some constantC) is compared to a plan-
ner B which is always faster than A by at least a factor of
K > 1, i.e., t(B,Πx) ≤ t(A,Πx)

K . Then there is a guaranteed
difference in coverage if and only if (a) some instances are
solved by B, (b) not all instances are solved by A, and (c)
K ≥ C. Otherwise, it is possible to choose instances with
runtimes of A and B compatible with the exponential scal-
ings but their coverage is equal and hence the performance
difference of a factor of K is missed. For example, if K = 2
and C = 3, then (c) does not hold. For any time limit (e.g.,
300 seconds), if the runtime of the last instance solved by A
is close enough to the time limit (e.g., 250 seconds), the next
instance cannot be solved by B within the time limit (e.g.,
250·3

2 > 300).
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Figure 1: Runtimes of two IPC 2018 optimal planners in the
Barman domain using the IPC and Autoscale instance sets.
Instances unsolved by both planners are removed.

Real distributions of planner runtimes over instance sets
differ from this idealized example: they usually involve con-
stant factors, they may scale irregularly, and even for a single
planner it may be impossible to obtain instances that scale
according to the desired runtimes in some domains. But
ideally, we aim for a collection where the easiest instance
is quickly solved by most planners, has instances unsolved
by current planners, and planner runtimes scale by approxi-
mately a factor of 1.5–2 between consecutive instances.

Figure 1 exemplifies why a smooth scaling is important
to meet Principle 1 in practice. The plot shows the runtimes
of two optimal planners on the IPC 2011 instance set and
the Autoscale instance set for the Barman domain. In the
IPC instances the difficulty does not grow smoothly. Instead,
there are groups of four or seven instances of the same dif-
ficulty, and the runtime of all planners increases by about
one order of magnitude from one group to the next. This is
undesirable since we cannot observe differences in perfor-
mance for some planners by inspecting their coverage. In
contrast, the difficulty of the Autoscale instance set grows
more smoothly: there are instances of more varied difficulty
for all planners and fewer jumps in their runtime. Accord-
ingly, now we can observe that Delfi-LM-cut is able to solve
some instances that are not solved by Complementary2.

Baseline and State-of-the-Art Planners
The attentive reader may have noticed that Rules 1 and 2
contradict each other. If only the best planner per instance
is considered, it is impossible to ensure that the resulting set
has easy instances, solved by all planners. The latter requires
to consider the worst time of any planner in each instance.

However, this would make the optimization process brit-
tle, as including any single planner whose performance is off
may alter the selection in an undesired way. For example, if
we define easy instances as those solved within a minute by
all planners and any of the considered planners includes a
preprocessing phase of at least one minute, then no instance
will be considered easy anymore. To address this, we con-
sider two sets of planners: baseline and state of the art.

The set of state-of-the-art planners A should contain
as many planners as possible. For each instance Π, we



characterize the performance of a set of planners A on
Π as the minimum runtime of any planner, tmin(A,Π) =
minp∈A t(p,Π). We exclude a planner from consideration if
it solves all instances that can be generated in under 30 sec-
onds, as otherwise it would be impossible to find a smooth
scaling. This happens only in domains solvable in polyno-
mial time for which constructing hard instances of a reason-
able size is not possible.

The set of baseline planners B represents the expected
minimum performance of any planner that will later be eval-
uated to ensure that some instances are solved by those (or
better) planners. We consider the worst runtime of any base-
line planner for any instance, tmax(B,Π) = maxp∈B t(p,Π).
Note that the choice of the baseline planners is a clear source
of bias, since we ensure that some instances are solved by
such planners. Thus, in our experiments we are very conser-
vative and only choose a single planner as baseline.

Selection of Parameter Configurations
After having established the objectives of our optimiza-
tion, the next step is to determine our decision variables.
While it may be natural to directly select a set of instances
{Π1, . . . ,Πn}, we avoid this and only select a set of suitable
parameters {ρ1, . . . , ρn} for the generator G.

Rule 3 (Parameter-based Selection). The optimization pro-
cess does not select concrete instances, but rather only de-
cides which parameters to use for the generator. The final
benchmark set is then generated with a new random seed.

This reduces the bias towards the set of considered plan-
ners (Principle 2), as we are not selecting concrete instances
in which the planners behave in certain ways. Instead, plan-
ners are only used to find a suitable range of parameters.
Moreover, choosing concrete instances would allow the op-
timization process to select instances with pathological dis-
tributions of initial states or goals, violating Principle 3. For
example, in Nomystery one could choose instances where
all packages have the same destination if this induces a
smoother scaling. Ensuring that the final benchmark set is
randomly sampled from the distribution of instances with
the same parameters avoids this kind of unintended bias.

The main drawback of selecting parameters instead of in-
stances is that in some domains there may be a huge vari-
ance on the runtime of instances with the same parame-
ters (de la Rosa, Cenamor, and Fernández 2017; Cohen and
Beck 2018). We model the runtime of a parameter configu-
ration ρ as a distribution Tmin(A, ρ), which corresponds to
tmin(A, G(ρ, r)) for all r ∈ N+. In practice, we estimate
Tmin by computing the runtime on a small sample of tasks.
Admittedly, this reduces our ability to control that the in-
stance set scales smoothly, but it is not a problem in practice
for two reasons. On the one hand, by generating multiple in-
stances across a sequence, the variance balances out. Even
if one instance is particularly easy or hard, other instances
of similar size in the sequence will make up for it. On the
other hand, recall that the “desired/expected” runtimes are
just a means to an end: even if the runtimes differ from the
expected ones this is fine as long as the instances have a rea-
sonable difficulty to be useful to evaluate current planners.

locations packages

constr. b m b m

OPT Π1, . . . ,Π13 1.5 4.6 0.1 22 1
OPT Π14, . . . ,Π30 2.0 9 0.1 3 1

AGL Π1, . . . ,Π30 1.5 5 1 9 1.4

Table 2: Sequences chosen by Autoscale for the Nomystery
domain in optimal (OPT) and agile (AGL) planning.

Instance Sequences
Finally, we also require that the parameter configurations are
not chosen arbitrarily, but rather that they are organized in
one or more sequences of instances.

Rule 4 (Sequence-based Selection). The parameter config-
urations of the instance set are not standalone, but rather
they can be organized in one or more sequences.

We distinguish between two types of parameters. Lin-
ear parameters can be assigned arbitrary non-negative nu-
meric values, where larger values usually result in harder
instances. They are typically used to specify the number of
objects of a given type. Each generator should have at least
one linear parameter that helps to control the difficulty of
the generated instances. In our Nomystery example there are
two linear parameters that control the number of locations
and packages in the task. In contrast, enumerated parame-
ters have a finite set of values, and we do not make any as-
sumption about their impact on instance hardness. In our ex-
ample, the constrainedness level that determines the amount
of fuel available is an enumerated parameter. All other pa-
rameters are fixed to a predefined constant value.

We define a sequence of instances as a list of planning
tasks Π1 = G(ρ1, r1),Π2 = G(ρ2, r2), . . . of increasing
difficulty. To ensure that difficulty increases, all instances in
the sequence have the same value for all enumerated param-
eters, whereas the value of linear parameters increases lin-
early across the sequence. We specify this via the base value
b that the linear parameter takes for Π1 and the slope m. For
example, the selection made by Autoscale for Nomystery for
agile planning (see Table 2) uses (b=5,m=1) for locations,
and (b=9,m=1.4) for the packages. Then, the sequence
consists of instances with the following numbers of loca-
tions and packages: (5, 9), (6, 10), (7, 11), (8, 13), (9, 14),
etc. Any duplicates are skipped so that all configurations in
a sequence have different values.

This heavily restricts the combinations of parameters that
are possible, as linear parameters are all increased at the
same time. For example, a single sequence cannot contain
both (3, 2) and (2, 3) because that would require to decrease
one of the parameters, which is not allowed by our linear
scaling. To allow more flexibility, our optimization may se-
lect multiple sequences for a single domain. This is the case
for the OPT selection in Table 2, where two sequences with
a different proportion of trucks and locations are chosen.

Considering sequences of instances has several advan-
tages. It allows us to choose parameters that generate in-
stances which current planners fail to solve within reason-



able time and for which there is no direct way of obtaining
their runtime. More importantly, it makes the instance se-
lection more interpretable (Principle 3). For example, our
instance selection for OPT-Nomystery tests how planners
scale with respect to the number of packages under two con-
strainedness levels, whereas AGL-Nomystery tests the scal-
ing with respect to both the number of locations and pack-
ages. This allows us to describe the instance sets very com-
pactly: e.g., Table 2 contains all information to recreate the
corresponding sets of 30 instances for fixed random seeds.

Note that, in order to ensure that Principle 3 is fulfilled, it
is the task of the domain designer to specify which scalings
are desirable according to the spirit of the domain.

Rule 5 (User Constraints). The tool should be configurable
via user constraints that specify which parameter configura-
tions for sequences of instances are acceptable.

An Automatic Tool for Instance Selection
Our tool, Autoscale, takes as input a tuple (spec, G,A,B),
where spec is a domain specification; G is an instance gen-
erator; A is a set of state-of-the-art planners; and B is a set
of baseline planners. The output is a set of parameter con-
figurations {ρ1, . . . , ρn} that can be passed to the genera-
tor to generate a set of n instances. Autoscale works in two
phases: the first phase designs a set of candidate sequences
(Sequence Optimization), and the second phase performs a
final selection of sub-sequences that adheres to our design
principles as much as possible (Sequence Selection).

Domain Specification
To use Autoscale, the benchmark designer must specify how
to call the instance generator, which parameters are avail-
able, and which value ranges are appropriate for each pa-
rameter. The snippet in Figure 2 shows the domain specifi-
cation for Nomystery. For each linear parameter, lower and
upper bounds for the base and slope values are provided.
This allows the domain modeler to specify preferences on
which parameters to scale (e.g., restricting the slope m for
the number of locations to be between 0.1 and 1 indicates
that scaling the number of packages is preferable).

Often, instance generators impose constraints on the
range of parameter values or their combination. Those con-
straints must be enforced by adding a postprocessing func-
tion that updates the value of the parameters passed to the
generator. This is an arbitrary function provided by the
benchmark designer which receives the parameters that were
automatically chosen and outputs the final parameters that
will be provided to the generator. For example, if the num-
ber of packages has to be greater than the number of loca-
tions, instead of directly selecting the number of packages,
our linear scaling will consider the number of locations and
the number of additional packages. All of these adjustments
must be done on a per-domain basis, since they depend on
the specific characteristics of the domain and generator.

Note that, by assuming that linear parameters scale diffi-
culty, we require the benchmark designer to identify cases
where this is not the case and/or where there is a strong in-
teraction between some of the parameters. Take as example

generator_command = "nomystery -l {locations}

-p {packages} -n {edgefactor} -m {edgeweight}

-c {constrainedness} -s {seed} -e 0"

parameters = [

LinearParam("locations", lower_b=3, upper_b=10,

lower_m=0.1, upper_m=1),

LinearParam("packages",lower_b=2,upper_b=20,lower_m=1),

ConstantParam("edgefactor", "1.5"),

ConstantParam("edgeweight", "25"),

EnumParam("constrainedness", [1.1, 1.5, 2.0])]

Figure 2: Nomystery domain specification with the genera-
tor command and its corresponding parameters.

the amount of fuel in Nomystery. Instead of a constrained-
ness value, the generator could have a parameter specifying
the amount of fuel. However, this would not be well-suited
to be a linear parameter because larger amounts of fuel can
decrease the difficulty of solving the problem. Thus, Au-
toscale can deal with domains that exhibit a phase transition
effect (Rieffel et al. 2014; Cohen and Beck 2017) by using
the constrainedness level as an enumerated parameter, as in
our example. Autoscale will automatically choose suitable
levels of constrainedness (e.g., closer or further away from
the phase transition) among the set of values that the domain
designer considers to be relevant.

We emphasize that providing a domain specification is
typically straightforward. For the 26 domains that we have
configured with Autoscale so far, we were able to easily
choose categories for the generator parameters. A notable
exception are parameters that define the width and height of
a grid, because they have a strong interaction, i.e., the num-
ber of cells is the product of both parameters. In that case,
we had to consider them as a single parameter by defin-
ing a list of grid sizes sorted by the number of cells (e.g.,
4×5(20), 4×6(24), 5×5(25), 5×6(30), etc.). The linear pa-
rameter just selects the position in this list, so the number of
tiles in the grid scales linearly instead of quadratically.

Sequence Optimization
The first Autoscale phase generates sequences of 30 parame-
ter configurations {ρ1, . . . , ρ30} by optimizing sequence pa-
rameters. To guide the search towards sequences where plan-
ner runtimes scale smoothly, we compute a penalty score
for each sequence and search for the sequence that min-
imizes this score. Sequences are evaluated by running the
set of state-of-the-art (A) and baseline (B) planners on the
instances, using a time limit of 180 seconds per instance.
A penalty is computed for each of them individually, and
summed up.

Next, we describe the procedure for evaluating state-
of-the-art planners. The procedure for baseline planners is
equivalent, replacing tmin by tmax. First, we evaluate each
parameter configuration ρi by sampling K tasks (K = 3
in our experiments). We estimate the average runtime of ρi,
E[Tmin(A, ρi)] by computing tmin(A, G(ρi, r)) for K differ-
ent random seeds r. Since the sequences are generated with
increasing values of the linear parameters, we assume that



the runtimes will always increase,2 so we can stop our eval-
uation as soon as one instance is not solved under the time
limit. In cases where this does not hold, we enforce it by
sorting the instances by average runtime. Our assumption is
that these anomalies stem from using different random seeds
for the instance generator and the results could be reversed
with other random seeds.

Let T1, . . . , T5 be the set of runtimes for each of the
first five instances with an average runtime above 5 sec-
onds. We ignore those with lower runtime, considering
that differences of ±5 seconds are not meaningful enough.
We only use five instances as harder instances will usu-
ally incur runtimes above the 180 seconds time limit. The
penalty score for state-of-the-art planners is defined as∑

i∈[2,5]

∑
t∈Ti,t′∈Ti−1

S(max(t,t′),min(t,t′))
|Ti||Ti−1| where

S(a, b) =



3− 2
a

b
if a ≤ 180 and 1 ≤ a

b
< 1.5

0 if a ≤ 180 and 1.5 ≤ a

b
≤ 2

1− 2
b

a
if a ≤ 180 and 2 <

a

b
2 if a > 180

This penalty is lower for sequences whose runtime scales
smoothly, assigning a minimum score of 0 to any sequence
where the runtimes of the considered planners scale expo-
nentially with a factor between 1.5 and 2, e.g., if K = 1,
〈10, 15, 23, 35, 52, . . . 〉, or 〈10, 20, 40, 80, 160, . . . 〉. If not
enough instances are solved in the [10, 180] second interval,
the sequence gets a penalty of 2 for each unsolved instance.
The remaining two cases assign a penalty between 0 and 1,
depending on how far they are from the 1.5–2 scaling. When
K > 1, we compute the average penalty S(a, b) for each
pair of sampled runtimes for consecutive parameter config-
urations. This is representative of the scaling that one may
encounter in the final instance set, and it tends to favor se-
quences with lower runtime variance.

On top of this, to avoid sequences where all instances are
solved by the state-of-the-art planners, we add a penalty of
1 for each instance solved beyond 20 instances. Moreover,
to guarantee that all sequences contain some instances solv-
able within the time limit and to speed up the evaluation we
discard any sequence where the first three instances are not
solved within 10, 60, and 180 seconds, respectively.

Of course, the concrete definition of this penalty func-
tion is arbitrary. What matters is that sequences that scale
smoothly will minimize it, thereby guiding the parameter
optimization towards good sequences.

Evaluating each sequence may be time consuming, as it
may require to run all planners on up to 30 ·K instances. To
speed-up the optimization, we use two important measures.
First, we store the runtimes of any evaluated configuration
in a database, to avoid repeating it more than once. Second,
to avoid running all planners, we choose a subset of planners
per domain. We select them by using data from previously

2Note that parameters with unpredictable influence on planner
runtime should be considered enumerated parameters and remain
constant for a given sequence.

known instances of the domain (e.g., from the IPC or previ-
ous Autoscale runs) to choose a subset of planners sufficient
for obtaining the best runtime on 95% of the instances, while
accepting an error of five seconds.

Sequence Selection
After performing one or more optimization runs for a do-
main (using different random seeds) as described above, we
collect all sequences seen during the optimization process.
Since this set can be very large, we only keep the 100 se-
quences with the lowest penalty score per value of the enu-
merated parameters. For each group of sequences where the
planners solve the same instances, we only keep one mem-
ber of the group. This filtering ensures that we keep a set of
diverse sequences with a good penalty score.

For each sequence, we collect the runtimes of all in-
stances solved in 180 seconds from the sequence optimiza-
tion phase. For the other instances, we estimate their runtime
by assuming that runtimes increase according to the aver-
age increasing factor E[T (A, ρi)]/E[T (A, ρi−1)] observed
on the instances solved between 5 and 180 seconds. This is
a very rough estimate but it is accurate enough for the pur-
pose of choosing where to end a sequence (see below).

We model the problem of selecting a suitable set of sub-
sequences as a mixed-integer programming (MIP) problem,
where constraints directly aim to model our instance set de-
sign principles. The decision variables model the start and
end points of each sub-sequence of instances. The selection
must satisfy the following hard constraints that model prop-
erties desirable for a good set of instances:

(H1) The number of selected instances must be exactly 30.

(H2) There must be at least one instance solvable by the
baseline under 30 seconds.

(H3) All sequences must start with an instance that is solved
under 180 seconds and end with an instance whose
estimated runtime is higher than 2000 seconds.

(H4) Each parameter configuration must be used (with dif-
ferent random seeds) at most twice, and only once for
domains whose generators are deterministic.

The objective is to minimize the summed-up penalty score
of all sequences used, plus the penalty incurred for violating
any of the following soft constraints:

(S1) The number of instances solved by the baseline under
30 seconds must be between 2 and 6 (with a penalty of
2x2 where x is the deviation wrt. the constraint).

(S2) The number of instances solved by state-of-the-art
planners under 180 seconds must be between 8 and 15
(with a penalty of 2x2 where x is the deviation wrt. the
constraint).

(S3) All sequences must end with an instance whose esti-
mated runtime is between 18 000 and 180 000 seconds
(that is, 1–2 orders of magnitude larger than the typ-
ical time limit of 1800 seconds). Larger times t incur
a penalty of 100t/180 000 and smaller times incur a
penalty of 100(18 000/t).



Optimal Agile

Train blind search (baseline, Helmert 2006), all four components of the
FDSS 1 portfolio from IPC 2011 (Helmert et al. 2011) and SymBA∗

1

from IPC 2014 (Torralba et al. 2014)

greedy best-first search with FF heuristic (baseline, Hoffmann
and Nebel 2001), LAMA (Richter and Westphal 2010), Mada-
gascar (Rintanen 2012), Mercury (Katz and Hoffmann 2014),
Jasper (Xie, Müller, and Holte 2014), and Probe (Lipovetzky
et al. 2014)

Eval five components of Delfi1 portfolio from IPC 2018 using symmetry
pruning and partial order reduction (blind search, iPDB, LM-cut and
two M&S variants, see Katz et al. 2018) and three vanilla IPC 2018
planners: Complementary2 (Franco, Lelis, and Barley 2018), DecStar
(Gnad, Shleyfman, and Hoffmann 2018), Scorpion (Seipp 2018b)

eight vanilla IPC 2018 planners: Cerberus (Katz 2018), BFWS-
PREF, DUAL-BFWS and POLY-BFWS (Francès et al. 2018),
DecStar (Gnad, Shleyfman, and Hoffmann 2018), OLCFF
(Fickert and Hoffmann 2018), Fast Downward Remix (Seipp
2018a) and Saarplan (Fickert et al. 2018)

Table 3: Choice of optimal and agile planners used during the optimization (Train) and evaluation (Eval).

(S4) If a parameter configuration is used more than once,
there is a penalty of 100.

Constraints (H2), (S1) and (S2) ensure that the instance
set contains some easy instances, so that any future planning
algorithms are expected to solve at least some instances, al-
lowing researchers to analyze the behaviour of their algo-
rithms in the domain. Constraints (H3) and (S3) ensure that,
whenever possible, at least some of the instances are ex-
pected to be out of reach for state-of-the-art planners. To-
gether with minimizing the penalty score of the selected
sequences, they aim to obtain a smooth scaling, since se-
quences must interpolate between easy and hard instances
and sequences with smoother scaling are preferred. Finally,
constraints (H4) and (S4) are needed to avoid duplicate in-
stances and instances that are very similar to each other.

The penalties are set arbitrarily, scaling quadratically wrt.
the deviation so that no constraint is completely ignored.

Experiments
We test Autoscale by running two completely separate ex-
periments for optimal and agile planners. Both experiments
consider 26 domains from previous IPCs with instance gen-
erators. We use planners available at the time of IPC 2014 for
training (i.e., our optimization process) and planners from
IPC 2018 for evaluation. This separation helps to evaluate
whether our method can generate instances that are still ad-
equate for empirical evaluations after several years. Table 3
lists the planners we used. We ran experiments on Intel Xeon
Silver 4114 CPUs using Downward Lab (Seipp et al. 2017).
All our code, planners, and benchmarks are publicly avail-
able (Torralba, Seipp, and Sievers 2021).

We implemented the first phase, i.e., sequence optimiza-
tion, using the automatic configurator SMAC (Hutter, Hoos,
and Leyton-Brown 2011). Since we limit each planner run
during sequence optimization to three minutes, we adapt the
preprocessing time limits for planners with preprocessing
phases accordingly. We run five SMAC instances in par-
allel using different random seeds and let the SMAC runs
share their discovered results with each other. Each SMAC
run is limited to 50 hours of wall-clock time. After the
sequence optimization phase finishes, we consider all se-
quences encountered during optimization for the sequence
selection phase. We filter the instances as described in the
previous section and solve the MIP for sequence selection

using CPLEX 12.10, which finishes in under 30 seconds for
each domain.

We evaluate the Autoscale (AS) benchmark set with both
the training and evaluation planners, limiting each run to 30
minutes and 3.5 GiB. Table 4 shows the results, grouped by
optimal and agile setting. For each setting, the first column
(#s) shows the number of sequences used for the instance
sets, and the remaining columns are divided into training and
evaluation performance, which we evaluate according to two
metrics. The first metric is the range of coverage scores per
domain for both sets (cov range), which allows seeing how
many instances are solved by all planners and how many re-
main unsolved by any of the planners. Second, we consider
the number of pairwise comparisons in which one planner
has higher coverage than another (comp), which quantifies
how many differences in the performance of planners are re-
flected by the coverage score.

We first observe that the generated instance sets for op-
timal planning consist of more sequences (#s) than in ag-
ile planning. The reason is that in many domains increasing
parameter values even slightly causes a big increase in the
runtime of optimal planners on the resulting instances. Au-
toscale successfully compensates for this by selecting mul-
tiple sequences.

Next, we see that the AS set is preferable to the IPC set
for many domains in the optimal setting, for both the train-
ing and the evaluation planners: its coverage ranges show
that all planners solve some instances in all cases, and only
in Gripper a training planner solves all instances. This does
not hold for the IPC set, where at least one planner solves no
instance in Childsnack nor Parking, and in three domains at
least one training and evaluation planner solves all instances.
The AS set increases the number of observed comparisons
in 13 and 12 out of 26 domains using the training and eval-
uation planners, while the opposite is true in only 7 and 9
domains, respectively. In Openstacks, the large negative dif-
ference in observed comparisons is due to the two instance
sets having different sizes. The IPC Openstacks set has a
much larger set of 70 instances, and many planners solve
around 42–46 of them. Moreover, a single training planner
(SymBA∗1) greatly outperforms the rest, including all eval-
uation planners from 2018. The AS set “reserves” 10 of its
30 instances to evaluate planners that outperform SymBA∗1.
Having such planners in our evaluation set would show the



optimal agile

training evaluation training evaluation

cov range comp (15) cov range comp (28) cov range comp (15) cov range comp (28)

#IPC #s IPC AS AS diff IPC AS AS diff #s IPC AS AS diff IPC AS AS diff

Barman 34/40 3 4–16 6–14 14 +9 4–11 10–16 24 +12 1 17–40 0–28 15 +2 39–40 4–20 26 +19
Blocksworld 35 1 18–34 6–11 14 +2 18–30 5–12 24 +6 1 35–35 5–27 15 +15 35–35 6–21 26 +26
Childsnack 20 3 0–4 8–15 5 0 0–6 8–19 21 +8 2 0–7 0–11 15 +2 1–20 2–30 28 +1
Data-Network 20 2 7–13 8–16 14 -1 6–14 8–17 25 -2 1 2–15 8–24 14 0 9–19 16–30 26 +2
Depots 22 3 4–9 8–14 13 +4 5–14 11–19 25 0 1 17–22 7–23 15 +3 22–22 14–21 25 +25
Driverlog 20 1 7–14 4–18 15 +4 7–15 4–30 27 +5 1 18–20 12–19 15 +10 20–20 8–25 25 +25
Elevators 50 3 7–44 5–15 13 -2 28–44 8–11 23 -3 1 11–50 2–30 15 +6 49–50 14–30 18 +11
Floortile 40 2 2–34 3–22 15 +2 16–34 8–16 18 -3 1 7–40 1–15 9 -5 4–40 2–12 24 +7
Grid 5 1 1–3 5–17 14 +3 1–3 5–14 26 +7 1 4–5 5–17 13 +8 5–5 12–16 21 +21
Gripper 20 1 7–20 8–30 11 0 8–20 9–30 7 0 1 20–20 30–30 0 0 20–20 26–30 7 +7
Hiking 20 2 9–19 1–18 12 -2 13–18 2–16 25 +4 2 1–20 3–15 14 +5 10–20 2–25 25 +3
Logistics 63 2 12–27 7–19 15 +1 13–36 8–30 25 -3 2 57–63 0–15 12 0 51–63 7–15 21 +4
Miconic 150 2 55–144 3–21 15 +1 56–143 3–21 27 0 1 150–150 30–30 0 0 150–150 30–30 0 0
Nomystery 20 2 8–20 3–18 14 0 8–20 3–30 28 +10 1 6–20 1–25 15 +1 12–20 6–30 27 +4
Openstacks 70 1 23–70 3–20 9 -3 42–64 4–6 7 -17 1 6–70 1–24 14 0 70–70 12–21 25 +25
Parking 40 4 0–11 11–19 14 -1 0–15 12–19 26 -2 1 23–40 0–24 15 +1 35–40 15–18 18 +5
Rovers 40 2 6–14 4–27 14 +1 6–13 5–27 22 -4 1 26–40 14–30 13 +8 38–40 15–30 27 +20
Satellite 36 2 6–10 7–23 15 +3 7–14 14–27 26 +5 1 28–36 7–21 15 +1 26–36 4–17 25 +2
Scanalyzer 50 3 15–29 9–20 5 -4 21–33 9–19 26 0 2 42–50 8–15 13 +1 48–50 11–13 20 +8
Snake 20 2 4–12 5–13 12 0 7–14 7–15 21 -1 2 5–12 5–23 14 +2 3–17 2–20 27 0
Storage 30 2 14–16 6–16 12 +3 15–18 8–23 27 +6 1 19–30 6–18 14 0 21–30 8–19 27 +1
TPP 30 2 6–8 2–16 12 +1 7–20 4–30 26 +2 1 23–30 8–24 15 +6 29–30 8–20 26 +11
Transport 70 1 23–33 4–24 9 -5 24–35 6–30 13 -8 1 13–70 4–18 15 +1 62–70 9–16 21 +14
Visitall 40 2 12–28 6–25 15 0 12–30 6–20 26 0 1 3–40 5–28 15 +3 36–40 19–30 24 +17
Woodworking 50 3 11–48 5–17 14 +2 38–50 15–25 26 +5 1 43–50 4–20 14 +9 28–50 3–30 27 +14
Zenotravel 20 2 8–13 3–16 14 0 7–13 3–29 27 +4 1 20–20 10–16 13 +13 20–20 6–14 22 +22

Table 4: Comparison of the IPC and Autoscale (AS) benchmark sets generated for optimal and agile planning, evaluated using
the training and evaluation planners (cf. Table 3). The #IPC column shows the number of tasks per domain in the IPC set
(equal in optimal and agile planning except for Barman), which is always 30 for the AS set. The #s columns show the number
of sequences in the AS instance sets. The “cov range” columns show the minimum and maximum coverage of any planner.
The “comp” columns report how many pairs of planners yield different coverage. We show the value for the AS set and the
difference to the value for the IPC set, highlighting in bold the cases where the AS set is superior. The maximum possible
number of pairwise comparisons is 15 for the 6 training planners and 28 for the 8 evaluation planners.

superiority of the AS set for comparing such planners. The
remaining 20 instances, however, have to cover the same dif-
ficulty range compared to the original 70 instances, which
causes most planners to solve exactly 6 instances.

For agile planning, the AS set is far superior to the IPC
set: only in a single case (Floortile-training) the number of
pairwise differences in coverage decreases, while in the vast
majority of cases this metric increases for the AS set, of-
ten drastically. The reason is that the IPC set scales poorly
in many domains and therefore exhibits a small coverage
range, a problem that the AS set does not share. Using the
AS set, we observe coverage differences for the evaluation
planners in seven domains that are solved completely by all
of these planners when using the IPC set.

The comparison of the training and evaluation results
clearly shows that Autoscale is not too sensitive to the set
of considered planners and the instance sets obtained with
old planners are also useful to evaluate new planners. The
reason is that the state of the art has not advanced enough in
the four years to make the instances trained with 2014 plan-

ners outdated for evaluating 2018 planners. Consequently,
we have reason to believe that a new benchmark set gener-
ated by Autoscale using modern IPC 2018 planners will be
useful for many years.

Conclusions
Constructing a benchmark set to evaluate planning algo-
rithms requires to select the parameters of an instance gen-
erator to obtain a balanced set of instances. We identified
desirable principles for this selection and modeled the prob-
lem of generating such instance sets as an optimization prob-
lem. We introduced Autoscale, a new tool that is able to
produce instance sets that follow our principles. As demon-
strated by the experiments, the new instances make differ-
ences in planner performance more visible compared to the
standard IPC set, even when the optimization is done on a
different set of planners. We will release a new benchmark
set optimized with current planners to replace the IPC set,
improving empirical evaluations in future planning research
(Torralba, Seipp, and Sievers 2021).
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