
Planning in the Browser
Nicolas Tran, Patrick Speicher, Robert Künnemann, Michael Backes

CISPA Helmholtz Center for Information Security, Saarland Informatics Campus, Saarbrücken, Germany
{patrick.speicher,robert.kuennemann,backes}@cispa.saarland

Álvaro Torralba
Aalborg University, Aalborg, Denmark

alto@cs.aau.dk

Jörg Hoffmann
Saarland University, Saarland Informatics Campus, Germany

hoffmann@cs.uni-saarland.de

Abstract

Traditionally, planning tools are designed as applications that
users need to install, taking care of the specificities of their
operating system, packages, etc. This often places a signif-
icant burden on users, especially due to the academic nature
of the software. To remedy this situation, here we propose
for planning to jump onto the growing trend of light-weight
software use: We demonstrate the possibility to run planning
tools directly in the browser. We used the emscripten frame-
work to port Fast Downward into WebAssembly (WASM)
code, which allows for in-browser execution at near-native
speeds. This allows for in-browser PDDL editing and planner
execution without the need for server-side resource manage-
ment. Moreover, it opens up a host of new possibilities, rang-
ing from the interactive presentation of planning-based analy-
sis to new applications exploiting the availability of planning
in browsers to perform user-centric analyses.

Introduction
‘Move fast and break things often‘ — Facebook’s developer
motto until 2014 — summarizes the mentality of modern
web development: web application development is an ag-
ile process with frequent specification changes. At the same
time, there is a shift to push computation to the client side,
i.e., the browser, motivated by both economic and opera-
tional reasons. User-side computation is scalable by design,
averts security and availability issues that come with the al-
lotment of server-side resources and saves cost (by external-
izing them to the user). But there are also operational rea-
sons: web applications can be ‘closer’ to the user, their per-
sonal habits and preferences. We can solve privacy-related
challenges by simply not running the code in the cloud,
while retaining the mobility of cloud-based code delivery.

Planning technology is a perfect match for ‘move fast’-
mentality: solvers are drop-in solutions; they are not neces-
sarily performance-optimal, but fast. They can quickly adapt
to frequent problem changes. Unfortunately, no competitive
planner is available in the browser, where JavaScript is the
lingua franca for active content. Moreover, traditional plan-
ners are typically heavily optimized C or C++ code. Even if
rewritten in JavaScript, their performance would suffer, e.g.,

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

due to JavaScript’s dynamic type checks, its garbage collec-
tor or lack of ahead-of-time compiler optimization.

WebAssembly (WASM), which has become a W3C rec-
ommendation in 2019 (W3C), provides a solution to both
problems. It defines a portable binary-code format for ex-
ecutable programs and was designed to run at near-native
speed. With emscripten1, there is a compiler from C to
WASM that helps porting existing planners. Considering the
superior performance of WASM over JavaScript, a generic
planning algorithm in WASM may end up faster than a spe-
cialized algorithm implemented in JavaScript.

We used emscripten to port the Fast Downward Planning
System (Helmert 2006), including Speicher et al.’s exten-
sions to Stackelberg planning (2018a). We will skim over
some challenges encountered in porting before, but focus
on existing and potential applications for in-browser plan-
ner. Finally, we evaluate the performance in WASM versus
a native execution and show that the overhead is affordable
(50–100%).

Porting Challenges
Emscripten is a source-to-source compiler that runs as a
back end to the LLVM compiler and produces a subset of
JavaScript known as WASM. The challenges were threefold.

• Fast Downward consists of two modules, the translator
which reads an input PDDL file and transforms it to an in-
termediate FDR representation, and the search component
which solves the task. Porting the translator part, which is
written in Python, to WASM is not straightforward. In the
demo, we substitute the translator by a domain-specific
encoding of our domain in FDR.

• Portability: Fast Downward contains OS-specific code
for memory usage statistics and input handling. As the
browser’s execution environment does not provide them,
they had to be replaced or removed.

• Transmitting input/output: Fast Downward employs C++-
style input/output streams which are incompatible with
the browser’s execution environment. By default, em-
scripten writes the output as a file within a virtual file
system. We modified Fast Downward to obtain the input

1https://emscripten.org/



file as a command line string, and added glue code that
fetches the output file and displays its content.

Demonstration
Our demonstration consists of two parts, a domain-specific
application that runs the planner in the browser, and a sim-
ple interface that allows the user to run the planner on any
instance provided by the user.

Analyses with customizable parameters Stackelberg
planning (Speicher et al. 2018a) computes optimal solutions
in a game-like planning task between two players. Speicher
et al. used this technique to compare various security tech-
nologies (e.g., IPsec, DNSSEC, SMTP-over-TLS, START-
TLS, strong certificate validation in SMTP) to improve con-
fidentiality in the email system. Roughly speaking, the first
player deploys one or more of these technologies on a set of
hosts in the current infrastructure. The second player repre-
sents a surveillance attacker and spies on as many connec-
tions as possible. The outcome is a front of plans that are
Pareto optimal w.r.t. the cost of deploying the countermea-
sures, and the users affected by the attack.

A major obstacle in communicating these results is the
agreement on cost estimates, which vary wildly between
countries and companies operating the infrastructure. Yet
a result is only meaningful to a user if they consider these
parameters accurate. We provide a ‘parametric’ version of
our results as a web application that allows for customizing
these parameters.2 Users can now refine our estimates ac-
cording to their expertise and, possibly, insider knowledge,
without having to share it with other partners. They can also
choose among several attacker models and groups of users
to be protected, providing highly individualized results, if
desired.

Planning in the browser We offer a simple interface,
where users can provide a task in FDR representation and
run Fast Downward to solve it. This allows to evaluate the
performance of the in-browser planner before implement-
ing a domain-specific user interface. The user can choose
between an optimal (A∗with hLM-cut (Helmert and Domsh-
lak 2009)) and an agile (LAMA (Richter, Westphal, and
Helmert 2011)) configuration.

Evaluation
We measured the performance impact of running Fast
Downward inside the browser environment. We run A∗

search with the LM-cut (Helmert and Domshlak 2009)
heuristic on three standard IPC domains, namely Logis-
tics98, Rovers, and Satellite. We ran the experiments on an
Intel Core i7-7820HQ, 2.90 GHz with Chrome v85 and Fire-
fox v80.0. For each task, we set a 5-minute time limit and
a 4-GB memory limit. All tasks solved with the native im-
plementation also finished in the browsers, and the memory
limit was never hit.

2https://project.cispa.io/fd-in-browser/

logistics98 rovers satellite

coverage (N/C/F) 6/6/6 of 35 7/7/7 of 40 7/7/7 of 36

overh. C 83.2± 13.4 58.0± 6.38 72.2± 15.3
overh. F 93.1± 11.2 72.2± 5.11 87.0± 20.6

Table 1: Performance evaluation for Firefox (F) and Chrome (C).
We ignored all tasks that take less than 0.3s on all platforms. On
the remaining 3 tasks per domain, we computed overhead as the
arithmetic mean of the native runtime (N) divided by the runtime
in the respective browser minus 1, here presented in %.

Across all the tasks finishing in less than 5 minutes, but
more than 0.3s, there is a performance loss of around 50%
to 100% (see Table 1). This number is in line to the previous
findings reporting an average slowdown of 45% (Firefox)
to 55% (Chrome), with peak slowdowns of 2.08× (Firefox)
and 2.5× (Chrome) (Jangda et al. 2019). Our results are
slightly better, possibly because Fast Downward does not
need to perform slow IO operations after reading in the input
file.

Discussion and Potential Applications
This demo showcases how planners can be run in the
browser to improve scalability and privacy compared to
computation in the cloud, and avoid having to compile and
install the planner, compared to native execution. Thus we
foresee many potential applications.

Ready-to-go planning IDE An in-browser planner pro-
vides the possibility to edit and solve PDDL input di-
rectly in the browser. This facilitates the quick and easy
use of planning technology. Existing in-browser edi-
tors like https://editor.planning.domains and
WEB PLANNER (Magnaguagno et al. 2017) provide this
functionality, but rely on a backend server for problem solv-
ing. Besides the aforementioned issues in terms of scalabil-
ity, availability and privacy of the input data, the network
latency adds to the perceived responsiveness, which is im-
portant in small domains, as used in teaching. Integrating
our WASM module would immediately mitigate all these is-
sues: results would display as soon as they are computed
and users could exploit the full power of their machine.

Data privacy plugins Data privacy research suggests the
sanitisation of data sent to social network to minimize the
risk of exposure while retaining the utility of the infor-
mation. Examples are the perturbation of location infor-
mation (Luceri et al. 2020), the generalisation of hash-
tags in Tweets (Zhang et al. 2018) or the redaction of im-
ages (Orekondy, Fritz, and Schiele 2018)). Planning algo-
rithms can be used to optimize these steps if the sanitisation
can be described in terms of discrete operations (Kulynych
et al. 2018). Sanitisation would typically be implemented
in a browser plug-ins, as these can interact with the social
network website while also being under the user’s control.



References
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In Proceedings of the 19th International Conference on Au-
tomated Planning and Scheduling (ICAPS’09), 162–169.
AAAI Press.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Jangda, A.; Powers, B.; Berger, E. D.; and Guha, A. 2019.
Not so fast: Analyzing the performance of webassembly vs.
native code. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 107–120. Renton, WA: USENIX Asso-
ciation.
Kulynych, B.; Hayes, J.; Samarin, N.; and Troncoso, C.
2018. Evading classifiers in discrete domains with provable
optimality guarantees. arXiv preprint arXiv:1810.10939.
Luceri, L.; Andreoletti, D.; Tornatore, M.; Braun, T.; and
Giordano, S. 2020. Measurement and control of geo-
location privacy on twitter. Online social networks and me-
dia 17:100078.
Magnaguagno, M. C.; Pereira, R. F.; Móre, M. D.; and
Meneguzzi, F. 2017. Web planner: A tool to develop clas-
sical planning domains and visualize heuristic state-space
search. In Proceedings of the Workshop on User Interfaces
and Scheduling and Planning, UISP, 32–38.
Orekondy, T.; Fritz, M.; and Schiele, B. 2018. Connecting
pixels to privacy and utility: Automatic redaction of private
information in images. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 8466–
8475.
Richter, S.; Westphal, M.; and Helmert, M. 2011. LAMA
2008 and 2011 (planner abstract). In IPC 2011 planner ab-
stracts, 50–54.
Speicher, P.; Steinmetz, M.; Backes, M.; Hoffmann, J.; and
Künnemann, R. 2018a. Stackelberg planning: Towards
effective leader-follower state space search. In Proceed-
ings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI’18), 6286–6293. AAAI Press.
Speicher, P.; Steinmetz, M.; Künnemann, R.; Simeonovski,
M.; Pellegrino, G.; Hoffmann, J.; and Backes, M. 2018b.
Formally reasoning about the cost and efficacy of secur-
ing the email infrastructure. In Proceedings of the 2018
IEEE European Symposium on Security and Privacy (Eu-
roS&P’18), 77–91.
W3C. 2019. Webassembly core specification.
Zhang, Y.; Humbert, M.; Rahman, T.; Li, C.-T.; Pang, J.;
and Backes, M. 2018. Tagvisor: A privacy advisor for shar-
ing hashtags. In Proceedings of the 2018 World Wide Web
Conference, 287–296.


