
Symbolic Planning with Axioms

David Speck
University of Freiburg

speckd@cs.uni-freiburg.de

Florian Geißer
Research School of CS, ANU

florian.geisser@anu.edu.au

Robert Mattmüller
University of Freiburg

mattmuel@cs.uni-freiburg.de

Álvaro Torralba
Saarland University

torralba@cs.uni-saarland.de

Abstract

Axioms are an extension for classical planning models that
allow for modeling complex preconditions and goals expo-
nentially more compactly. Although axioms were introduced
in planning more than a decade ago, modern planning tech-
niques rarely support axioms, especially in cost-optimal plan-
ning. Symbolic search is a popular and competitive opti-
mal planning technique based on the manipulation of sets of
states. In this work, we extend symbolic search algorithms
to support axioms natively. We analyze different ways of en-
coding derived variables and axiom rules to evaluate them in
a symbolic representation. We prove that all encodings are
sound and complete, and empirically show that the presented
approach outperforms the previous state of the art in cost-
optimal classical planning with axioms.

Introduction
In classical planning, most planners support models that de-
scribe a state of the world in terms of Boolean or finite-
domain variables, such as STRIPS (Fikes and Nilsson 1971)
or SAS+ (Bäckström and Nebel 1995). The aim of such
planners is to find a sequence of operations that transforms a
specified initial state into a desired goal. While these models
are already very general, more expressive models like ADL
with conditional effects (Pednault 1989) or state-dependent
action costs (Geißer, Keller, and Mattmüller 2015) allow a
more compact representation of a planning problem. Ax-
ioms are another example of such a model extension which
allow for modeling complex preconditions and goals com-
pactly. Planning with axioms introduces a set of derived
variables whose values are not directly influenced by the ac-
tions, but are derived from the values of other variables us-
ing a set of logical axioms. Thiébaux, Hoffmann, and Nebel
(2005) argue that axioms are necessary to model real-world
problems in a compact and elegant way, as they allow to
model complex action preconditions or goals that cannot
be expressed in the original formalism without incurring a
super-polynomial growth of plan length or domain descrip-
tion size.

Although axioms are a feature of PDDL (McDermott et
al. 1998; Hoffmann and Edelkamp 2005), the common lan-
guage for modeling planning tasks, modern planning tech-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

niques rarely support axioms, especially in cost-optimal
planning. Most admissible heuristics commonly used in
A∗ search, one of the most prominent approaches to cost-
optimal planning, are not defined for their use with ax-
ioms. The few heuristics that support axioms are based on
naive relaxations that consider axioms as zero-cost actions,
which may greatly reduce the informativeness of the heuris-
tics. One exception is the axiom-aware delete relaxation
heuristic, obtained by applying a model for state constraints
to planning with axioms (Ivankovic and Haslum 2015;
Haslum et al. 2018). While these heuristics are often infor-
mative, they are also expensive to compute and therefore of-
ten do not pay off in terms of coverage or runtime.

In the past decade, symbolic search has proven to be
a strong and competitive alternative algorithm for cost-
optimal planning (Kissmann, Edelkamp, and Hoffmann
2014; Torralba et al. 2014). Here, sets of states are rep-
resented by compact data structures, e.g., by Binary Deci-
sion Diagrams (BDDs) (Bryant 1986), which make it possi-
ble to perform an exhaustive search by efficient manipula-
tion of sets of states, often more efficiently than an explicit
state search. The dominant search strategy is bidirectional
blind search. While modern symbolic search planners have
been generalized to support conditional effects (Kissmann,
Edelkamp, and Hoffmann 2014) or state-dependent action
costs (Speck, Geißer, and Mattmüller 2018a; 2018b), there
is currently no planner that supports axioms.

In this paper, we analyze three different ways of encoding
axioms and derived variables to evaluate them in a symbolic
representation. We prove that all encodings are sound and
complete and discuss their advantages and disadvantages.
An empirical study on various planning domains shows that
the presented encodings result in an optimal planner sup-
porting axioms that outperforms the previous state of the art.
Furthermore, in a second study we empirically show that
even for classical planning domains without axioms, sym-
bolic planning can benefit from our native axiom support,
since this allows searching on reformulated planning tasks
with automatically extracted axioms.

Preliminaries
A planning task is a tuple Π = (V,D,A,O, I,G), where
V is a set of (primary) state variables, each with a finite do-
main Dv , and D is a set of (secondary) derived variables

which can take Boolean values {>,⊥}. A partial state is a
variable assignment to variables in V ∪ D. A state is a vari-
able assignment to all variables in V , and an extended state
is a variable assignment to all variables in V ∪D. With S we
refer to the set of all possible states defined over the primary
variables V . I is the initial state, and G is a partial state that
defines all possible goal states.
A is a set of axioms partitioned into layers A1 ≺ · · · ≺

Ak. Each layer Ai, i = 1, . . . , k, consists of a finite number
of axiom rules of the form b → h, where the body b is a
finite conjunction of positive or negative literals over V ∪D,
and the head h is a variable in D. Given an axiom (rule) r,
we denote with body(r) the body of r. If it is clear from
the context, we sometimes abuse notation and also denote
with body(r) the set of variables appearing in the body of r.
Similarly, we denote with head(r) the head of r. The layer
of an axiom is defined by the layer of its head which is de-
termined by a partition of the set of derived variables into
subsetsD1 ≺ · · · ≺ Dk. We assume that this partition forms
a stratification, i.e., that for all i = 1, . . . , k, and for every
di ∈ Di, it holds that (1) if dj ∈ Dj appears in the body of
an axiom with head di then j ≤ i and (2) if dj ∈ Dj appears
negated in the body of an axiom with head di then j < i. In-
tuitively, (1) to evaluate a derived variable, only rules in the
current or previous layers have to be considered, and (2) the
axioms have a negation-as-failure semantics, i.e., if a fact
cannot be derived to be true, it is assumed to be false on
subsequent layers. Therefore, axiom layers have to be fully
evaluated before a variable from that layer can be used neg-
atively in another axiom body, which necessitates moving
to a strictly higher layer if dj is used negatively. Given a
state s ∈ S, the extended state A(s) is uniquely defined by
standard stratified semantics (Apt, Blair, and Walker 1988;
Thiébaux, Hoffmann, and Nebel 2005).

Algorithm 1 describes the axiom evaluation algorithm for
explicit states, following the exposition of Helmert (2006).
Some axiom definitions also specify a default value for de-
rived variables, which is assumed before any rules are ap-
plied. We assume without loss of generality that the default
value of all derived variables is ⊥ (false).

Algorithm 1: Axiom evaluation for explicit states
Data: Axiom layers A1 ≺ · · · ≺ Ak, primary state s
Result: Extended state A(s)

1 foreach variable v do

2 s′(v) :=

{
s(v) if v is a primary variable
⊥ otherwise

3 foreach axiom layer i = 1, . . . , k do
4 while there exists an axiom b→ h ∈ Ai such

that s′ |= b and s′ 6|= h do
5 choose such an axiom b→ h
6 set s′(h) to true

7 Return s′

O is a set of operators where each o ∈ O is a tuple
(preo, eff o). The precondition preo is a partial state and eff o

is a set of conditional effects (cond B v = val) where cond
is a partial state, v ∈ V is a primary variable and val is a
value in Dv . For binary variables we also write v for v = 1
and ¬v for v = 0. An operator is applicable in a state s if
preo ⊆ A(s). The result of applying operator o to a state
s is a state s′, where for all v ∈ V we have s′(v) = val if
there exists (cond Bv = val) ∈ eff o and cond ⊆ A(s), and
s′(v) = s(v) otherwise.1 The objective of classical planning
is to determine a sequence of operators (a plan) whose exe-
cution transforms the initial state to a goal state. Such a plan
is considered to be optimal if there is no shorter plan.2

Symbolic Search
Symbolic search is a state space exploration technique that
uses efficient data structures to represent and manipulate
sets of states (McMillan 1993). Sets of states S ⊆ S are
represented via their characteristic function χS , which is a
Boolean function χS : S→ {>,⊥} that represents whether
a given state belongs to S or not. More precisely, χS(s) = >
(or equivalently: s |= χS) if s ∈ S, and χS(s) = ⊥
(or equivalently: s 6|= χS) if s /∈ S. We also say that χS

characterizes S. We use Binary Decision Diagrams (BDDs)
that are a data-structure to represent such functions (Bryant
1986). For clarification, we sometimes annotate a set of
states and its corresponding characteristic function with the
set of variables over which it is defined, to explicitly dis-
tinguish state sets defined over primary variables and state
sets defined over primary and derived variables. For exam-
ple, χS[V] is the characteristic function describing the set of
states S[V], which are only defined over primary variables,
while χS[V,D] describes the set of extended states S[V,D].

In symbolic search, operators are represented as transition
relations (TRs). A TR represents a set of operators O ⊆ O
as a BDD TO[V,V ′] that contains the set of all pairs (s, s′),
such that s′ is reachable from s by applying an operator
o ∈ O. Given a set of states S ⊆ S and a TR T , the image
operation computes the set of successor states of S through
T . The complexity of the image operation is worst-case ex-
ponential in the number of state variables, but is often more
efficient than expanding the states in S one by one. The re-
verse pre-image operation computes the set of predecessor
states where o can be applied to reach some state in S.

Symbolic forward search algorithms start from the BDD
representation of the initial state, and iteratively compute the
image until a BDD is found whose intersection with the goal
is non-empty. Similarly, one can define backward search al-
gorithms that start from the goal and iteratively apply pre-
image operations until a BDD that contains the initial state
is found.

Symbolic Search with Axioms
Explicit search is based on the generation and expansion of
single states while symbolic planning is based on the ma-
nipulation of sets of states. Thus, in explicit search after

1We assume that effects are well-formed, i.e., the conditions of
multiple conditional effects assigning different values to the same
variable can never hold in the same state.

2We consider unit costs without loss of generality.

each state generation the values of the derived variables can
be inferred independently. The latter does not hold anymore
in symbolic planning. However, the concept of an extended
state A(s) can be generalized to a set of extended states SA
as shown in Definition 1.
Definition 1 (Extended State Set). Let S[V] be a set of
states. The extended state set SA[V,D] contains the exten-
sion of all states of S[V], i.e., SA[V,D] = {A(s)|s ∈ S[V]}.

Note, that the extension of a state set is again unique be-
cause the extension of each individual state is unique.

Symbolic search is known to be an efficient technique for
exhaustive state space exploration, to enumerate all states
that are reachable from a given set of states. In the follow-
ing, three different ways of encoding derived variables and
axiom rules for evaluation in a symbolic representation are
presented.

Encoding I: Action-Based
In the action-based encoding, the first of the three encodings
proposed in this paper, we evaluate axiom rules by inter-
preting them as operators OA with no precondition and a
conditional effect where the body of the rule is the condi-
tion and the head is the effect (note that, as opposed to orig-
inal operators, the effect affects a derived variable instead
of a primary one). Starting from a BDD χ

S[V] represent-
ing the state set S[V], one can perform a breadth-first search
with the operators in OA to obtain a BDD χ

SA[V,D] which
represents the corresponding extended state set SA[V,D] by
applying OA until a fixpoint is reached for each stratifica-
tion layer. In other words, after application of operators inO
(via transition relations), the obtained set of successor states
has to be extended. A set of successor states still contains
information about the derived variables of their predeces-
sors, therefore we first quantify over all derived variables
and set them to false. Afterwards, a layer-wise fixpoint com-
putation is performed, where the result of the previous com-
putation is the starting point for the next computation. This
process is performed in ascending order of the axiom lay-
ers A1 ≺ · · · ≺ Ak, until all layers are processed. Figure 1
visualizes this action-based axiom representation.
Example 1. Consider a planning task with primary vari-
ables x, y and derived variables a, b, c, together with the fol-
lowing set of axioms:

r11 : b→ a

r12 : ¬x→ b

r13 : y → b

r21 : (¬a ∧ ¬b)→ c,

where A1 = {r11, r12, r13} and A2 = {r21}, i.e., D1 =
{a, b} and D2 = {c}.

We get the following set of operators:

o11 : 〈>, bB a〉
o12 : 〈>,¬xB b〉
o13 : 〈>, y B b〉
o21 : 〈>, (¬a ∧ ¬b) B c〉.

. . . χ
S[V] fixpoint? χ

SA[V,D]

apply
operations

apply
axioms yes

no

for each axiom layer
A1, . . . ,Ak

Figure 1: Visualization of symbolic forward search with the
action-based encoding of axioms. The BDD χ

S[V] represent-
ing the set of successor states is extended to χSA[V,D] by ap-
plying axioms represented as operators layer by layer until a
fixpoint is reached.

Let us assume that after restricting to primary variables
we obtain χS[V] = x, i.e., our current set of states consists
of the states x ∧ y and x ∧ ¬y. Setting the derived variables
to false results in χS[V] = x∧¬a∧¬b∧¬c. Then, for each
layer we apply the corresponding operators until a fixpoint
is reached: applying o11 and o12 on χS[V] does not change
anything, application of o13 leads to the state set (x∧y∧¬a∧
b∧¬c)∨ (x∧¬y ∧¬a∧¬b∧¬c). We then can once again
apply o11 and o12 , resulting in (x∧y∧a∧b∧¬c)∨(x∧¬y∧
¬a ∧ ¬b ∧ ¬c), which is a fixpoint for the current layer. We
proceed with the next layer, where application of o21 results
in χS[V,D] = (x∧y∧a∧b∧¬c)∨(x∧¬y∧¬a∧¬b∧c). Since
this is once again a fixpoint and there exist no further layers
we are finished and the resulting fully evaluated extended
state set χSA[V,D] is computed.

One particular drawback of the action-based encoding is
the fixpoint computation, which can be expensive for two
reasons: first, in symbolic search we reason over multiple
states at the same time, and therefore the application of an
operator in OA correlates with the evaluation of the corre-
sponding axiom over multiple states, even if this particular
axiom is only relevant for a small subset of states. Second,
observe that in the previous example we had to reapply op-
erators o11 and o12 after application of o13. In theory, we
could have first applied o13 before applying o11 and o12, to
reduce the number of image computations, which usually
form the main bottleneck of symbolic search. For this exam-
ple it is pretty easy to see that the latter operator (i.e. axiom)
ordering minimizes the number of image computations, be-
cause o11 and o12 are not applicable in any state contained
in χS[V]. In general, however, one operator might initially be
already applicable in a subset of states, but after application
of other operators of the same layer be applicable in even
more states. To reduce the number of image computations,
we therefore have to come up with a good axiom operator or-
dering. For this, we propose the following alternative form
of stratification.

Stratification. We analyze the dependencies of axioms to
schedule the order in which they have to be applied. For

this, we distinguish two types of layers: layers where a de-
rived variable appears both in the body and the head of
a rule require a fixpoint computation, while other layers
need to be evaluated only once. To determine the assign-
ment of axioms to layers, we construct an axiom dependency
graph, with a node per axiom and an edge from ri to rj
if head(ri) ∈ body(rj). Then, the maximal strongly con-
nected components (Tarjan 1972) of the dependency graph
are determined, resulting in an acyclic graph where each
node corresponds to an SCC. We process all SCCs of the
graph in topological order, always choosing an SCC where
all incoming edges have already been processed. If one such
SCC has more than one axiom rule, then all the rules in
that SCC are assigned to the next layer. This layer has ax-
iom rules that depend on one another, so it requires a fix-
point computation. If all SCCs have a single rule, then all
those rules can be processed simultaneously. Therefore, all
of them are assigned to the same layer, which needs to be
applied only once.

Before we prove that the action-based encoding does in-
deed result in the correct fully evaluated extended state,
we note that most sophisticated symbolic planners perform
bidirectional search (and therefore regression), instead of
forward search. While the action-based encoding is based
on operators for axiom evaluation, it is an open question
how to reverse the fixpoint iteration of the operators, which
would be necessary for backward (and therefore bidirec-
tional) search.

That being said, Proposition 1 states the soundness and
correctness of the action-based encoding of axioms.

Proposition 1. Let S[V] be a set of states characterized
by its characteristic function χS[V]. Then the symbolic ax-
iom evaluation procedure based on the action-based encod-
ing described above, applied to χS[V], results in a formula
χ
SA[V,D] that characterizes precisely the extended state set
SA[V,D].

Proof sketch. Follows immediately by construction, as the
symbolic axiom evaluation procedure using the action-based
encoding is essentially a symbolic implementation of the ax-
iom evaluation algorithm for explicit states (Algorithm 1),
up to the missing test whether applying a certain axiom re-
sults in a new fact or not (end of line 4 of Algorithm 1),
which is not necessary in the symbolic case.

Representation of Derived Variables
A major drawback of the action-based encoding is that after
each planning step, an expensive fixpoint iteration has to be
performed. The following two axiom encodings overcome
this issue, by representing each derived variable d ∈ D as a
set of states over primary variables, Sd[V], to represent the
subset of states for which d holds:

Definition 2 (Primary Representation). Let d ∈ V ∪D be
a (primary or derived) variable and A a set of axioms. The
primary representation of d is the set of states Sd[V] which
contains all states over V where d is evaluated to true, i.e.,
Sd[V] = {s ∈ S|A(s) |= d}.

Algorithm 2 shows how the primary representation in
form of its characteristic function can be constructed.3 We
build the primary representations layer by layer, exploiting
the property that derived variables in a layer only depend on
the value of primary variables or derived variables in a pre-
vious or the current layer. At each iteration, the algorithm
computes the corresponding primary representation for vari-
ables in a given layer, assuming that we have computed
the primary representation χSd[V] of each derived variable
d ∈ D of previous layers.

Algorithm 2: Construction primary representations
Data: Axiom layers A1 ≺ · · · ≺ Ak

Data: Derived variables D1 ≺ · · · ≺ Dk

Result: Symb. primary representations χSd
, d ∈ D

1 foreach D1 ≺ · · · ≺ Dk do
2 foreach d ∈ Di do
3 χSd

←
∨

r∈A<i
d
body(r)[χSD/D]

4 queue← {d | d ∈ Di}
5 while queue is not empty do
6 d← pop(queue)
7 foreach r ∈ Ai with d ∈ body(r) do
8 χShead(r)

← χShead(r)
∨ body(r)[χSD/D]

9 if χShead(r)
has changed then

10 queue.insert(head(r))

11 return {χSd
| d ∈ D}

At the beginning, we collect the information of a derived
variable which only depends on variables of lower levels.
More precisely, we represent the set of states in which d ∈ D
is true by applying all axioms in A<i

d : the set of rules that
have d in their head and whose bodies only contain vari-
ables of lower layers, i.e., A<i

d = {r ∈ A | head(r) =
d and ∀d′ ∈ body(r) ∩ D : d′ ∈ Dj for some j < i}. To
process an axiom r, we compute body(r)[χSD/D], where
ϕ[χSD/D] stands for the result of simultaneously replacing
each derived variable d ∈ D with χSd[V] in formula ϕ. Then,
the algorithm proceeds to applying axioms that depend on
variables in the same layer until a fixpoint is reached. Note
that at no point, a derived variable is contained in χSd[V].

Example 2. Consider once again the variables and axioms
of Example 1, where D1 = {a, b} and D2 = {c}. In the
following, we compute the primary representations χSa , χSb

and χSc by application of Algorithm 2.
We start with D1 and d = a (line 3). Note that A<1

a =
∅, since the body of r11 contains b, which lies in the same
layer. Therefore, χSa = ⊥. We proceed with d = b and
have A<1

b = {r12, r13} and therefore get χSb
= ¬x ∨ y.

Note that both x and y are primary variables. We continue
with initializing the queue (line 4) with a and b. We pop a
from the queue, but since there is no rule in the current layer
where a is contained in the body (line 7), we proceed with

3We omit the part “·[V]” signifying the relevant variables in the
pseudocode to avoid clutter. All state sets and formulas are over V .

popping b. We have one rule in the current layer where b
occurs in the body, namely r11 = b → a and set (line 8)
χSa

= ⊥∨χSb
≡ ¬x∨y. We have to insert a again into the

queue, but as before we can pop it from the queue and exit
the loop. This concludes the iteration for D1 and we end up
with χSa

= χSb
= ¬x ∨ y.

In the next iteration, we have d = c and A<2
c = {r21},

where r21 = (¬a ∧ ¬b)→ c. Therefore, we get
χSc = (¬χSa ∧ ¬χSb

)

= (¬(¬x ∨ y) ∧ ¬(¬x ∨ y))

≡ x ∧ ¬y.
Note that since χSa = χSb

, a BDD library may skip in-
termediate reformulations, since both BDDs are the same
object.

We continue the algorithm, but since there is no rule
where c appears in the body, we are finished and end up
with the primary representations χSa

= χSb
= ¬x ∨ y and

χSc
= x ∧ ¬y, which concludes the example.

The following Proposition 2 states that Algorithm 2 is
sound and complete, i.e., that it returns a BDD χ

Sd[V] which
precisely characterizes the primary representation Sd[V] for
each d ∈ D.
Proposition 2. Let d ∈ D be a derived variable, and let
χ
Sd[V] be the formula computed for d by Algorithm 2. Then,

for each state s over primary variables V ,

A(s) |= d if and only if s |= χ
Sd[V].

In other words, χSd[V] characterizes the primary represen-
tation of d, Sd[V].

Proof sketch. The equivalence proof proceeds by induction
over the axiom layers. We may start with the primary vari-
ables as axiom layer zero, resulting in a trivial base case. For
the inductive case, we may assume that the claim already
holds for all lower axiom layers. Then, the information from
strictly lower axiom layers is accounted for in line 3 of Algo-
rithm 2, so it suffices to compare the corresponding fixpoint
iterations of Algorithms 1 and 2. While they may consider
axioms in different orders, the fixpoints will be the same.
Also notice that by substituting χSD for D in the bodies of
applied axioms, Algorithm 2 expresses the truth conditions
of all derived variables d purely in terms of primary vari-
ables, and “unrolls” layered or recursive dependencies. The
“in other words” part immediately follows from the previ-
ous equivalence using the definition of primary representa-
tions.

By structural induction on formulas, we can lift the previ-
ous proposition to entire formulas as follows.
Corollary 3. Let ϕ be a formula over primary and derived
variables. Then, for each state s over primary variables V ,

A(s) |= ϕ if and only if s |= ϕ[χSD/D].

The primary representations can be obtained in a precom-
putation step preceding search and will be required for the
two following axiom encodings. We note that in theory, de-
pending on the number of axioms and derived variables and

. . . χ
S[V] χ

SA[V,D]

apply
operations

∧
d∈D(d↔ χ

Sd[V])

Figure 2: Visualization of symbolic forward search with
variable-based encoding of axioms. A set of states repre-
sented by χ[V] is extended to χA[V,D] by conjunctions with
the primary representations of derived variables.

their interaction, the BDDs representing some Sd can be-
come prohibitively large, but the empirical evaluation (cf.
Experiments) shows that this is usually not an issue.

Encoding II: Variable-Based
Our second proposed symbolic encoding of axioms and de-
rived variables, the variable-based encoding, is based on the
primary representation of derived variables, which allows
us to extend a set of states by application of logical op-
erations (i.e. conjunctions). Again, after we obtain a set of
successor states, we restrict to primary variables, which re-
sults in the state set S[V]. In this case it is not necessary to
set the values of the derived variables to false, which was
required in the action-based encoding. A derived variable
d is true in a state s ∈ S[V] iff s ∈ Sd[V]. Therefore,
χ
SA[V,D] = χ

S[V] ∧
∧

d∈D(d ↔ χ
Sd[V]) represents the ex-

tended set of states. Figure 2 visualizes symbolic forward
search in combination with the presented variable-based en-
coding of axioms. Although this encoding avoids the expen-
sive fixpoint computation, it again remains an open question
how to perform backward search, since the intermediate rea-
soning about the values of the derived variables still remains,
albeit more efficiently.

Example 3. Consider the primary representations obtained
in Example 2: χSa

= χSb
= ¬x ∨ y and χSc

= x ∧ ¬y
and let us once again assume that χS[V] = x, obtained by
quantifying over the derived variables. Note that we trans-
form χ

S[V] directly without setting the derived variables to
false. With the variable-based encoding we get χSA[V,D] =
χ
S[V] ∧ (a↔ χSa

)∧ (b↔ χSb
)∧ (c↔ χSc

) which results
in χSA[V,D] = (x∧y∧a∧ b∧¬c)∨ (x∧¬y∧¬a∧¬b∧ c).

Soundness and completeness then follows directly from
Proposition 2. Intuitively, the following results show that the
formula C =

∧
d∈D(d ↔ χ

Sd[V]) characterizes the set of
all extended states for which there is a state over primary
variables that is extended to them by axiom evaluation. In
other words, C can be viewed as the constraint that states are
consistent with axiom evaluation.

Proposition 4. Let s′ be a state over primary and derived
variables. Then there is a state s over primary variables
such that s′ = A(s), i.e., s′ is consistent with axiom evalua-
tion, if and only if s′ |=

∧
d∈D(d↔ χ

Sd[V]).

Proof sketch. Follows immediately from Proposition 2.

Corollary 5. Let S[V] be a set of states characterized by its
characteristic function χS[V]. Then the formula χSA[V,D] =

χ
S[V] ∧

∧
d∈D(d ↔ χ

Sd[V]) characterizes precisely the ex-
tended state set SA[V,D].

Proof sketch. Follows immediately from Proposition 4 and
the definition of extended state sets.

Encoding III: Symbolic Compilation
While the previous encodings still require reasoning about
derived variables during the actual search, our third pro-
posed encoding completely forgoes derived variables, by
performing search on a compilation of the original planning
task. Again, we precompute the primary representations of
all derived variables with Algorithm 2. The idea underly-
ing the compilation is to replace all occurrences of derived
variables in the planning task with their corresponding pri-
mary representation. In particular, derived variables in op-
erator preconditions and the goal formula are replaced with
the corresponding primary representation:4

Definition 3 (Symbolic Compilation). Let Π = (V, D,
A, O, I, G) be a planning task (with axioms). The sym-
bolic compilation of Π is a new planning task (with-
out axioms) Π′ = (V, ∅, ∅, O′, I, G′) where O′ =
{(preo[χSD/D], eff o) | o ∈ O} and G′ = G[χSD/D].

More precisely, if a BDD ϕ is constructed and a derived
variable d ∈ D occurs in ϕ, we replace d with its primary
representation in the form of another BDD χ

S[V] during the
construction. This makes use of the compact and efficient
nature of BDDs. With the symbolic compilation we obtain a
planning task without axioms and derived variables. There-
fore, the symbolic compilation offers the possibility of back-
ward search and bidirectional search, which can greatly en-
hance planning performance. Once again we note that re-
placing derived variables with their primary representation
can lead to prohibitively large formulas that sometimes may
not be represented compactly as BDDs.

Soundness and completeness follow directly from Corol-
lary 3 by induction on the plan length.

Proposition 6. Given a planning task Π, a sequence of op-
erators π is a plan for Π iff π is a plan for the symbolic
compilation Π′ of Π.

Our symbolic compilation encoding is different from
previous compilations that transform PDDL with axioms
into PDDL without axioms (Gazen and Knoblock 1997;
Garagnani 2000; Davidson and Garagnani 2002; Thiébaux,
Hoffmann, and Nebel 2005), since at no time an explicit ver-
sion of the compiled task (e.g. a new PDDL representation)
is created. In the worst case our symbolic compilation also
suffers from an exponential blow-up — like any compila-
tion of axioms that preserves plan length does (Thiébaux,
Hoffmann, and Nebel 2005). However, the use of a com-
pact symbolic representation helps to alleviate this prob-
lem in practice. Another difference is that previous compi-
lations transform derived variables into primary variables so
that their value is directly set via auxiliary operators and/or

4For simplification, we ignore conditional effects here. In gen-
eral, it is necessary to replace derived variables in the condition of
each conditional effect.

conditional effects. Instead, we replace derived variables by
complex formulas over the primary variables in the opera-
tor preconditions and goals, resulting in a lower number of
variables and operators compared to previous compilations.

Experiments
All presented encodings of axioms are implemented in the
SYMBA? (Torralba et al. 2014) planner, which is built on top
of the FAST DOWNWARD planning system (Helmert 2006).5
We conduct two types of experiments: first, we evaluate the
performance (in terms of coverage) of our symbolic plan-
ner for optimal planning on multiple domains with axioms.
The second experiment compares the performance of sym-
bolic search (with native axiom support) on different formu-
lations of the same planning problems. More specifically, we
use the work of Miura and Fukunaga (2017) to automatically
extract axioms from planning problems without axioms and
compare the performance of symbolic search on both ver-
sions of the same problem. For both experiments we use a
time limit of 30 minutes and a 4 GB memory limit for the
search. Note that we only compare the actual search and ig-
nore the time and memory necessary for translation and pre-
processing. However, planning problems which could not be
translated and preprocessed in 30 minutes or 4 GB memory
were omitted in the experiments.

The performance of symbolic search is heavily influenced
by the exact BDD encoding that is used. Previous research
on symbolic search in planning has studied in depth how
to construct the BDDs that represent the actions as transi-
tion relations (Edelkamp 2001; Torralba et al. 2017), and
how to order the variables (Kissmann and Edelkamp 2011;
Kissmann and Hoffmann 2013). We use the default settings
of SYMBA? (Torralba et al. 2014), both for the generation of
transition relations and for the order of the variables. Note
that the variable order is based on the causal graph, which
respects derived variables and axioms (Helmert 2006).

Optimal Planning with Axioms
Table 1 shows the performance of symbolic uniform-cost
search algorithms extended with the presented axiom encod-
ings compared to A? with the blind and the (naive) max-
imum heuristic hmax (Ivankovic and Haslum 2015), which
are currently the best search techniques for optimal plan-
ning with axioms.6 The benchmark set consists of 20 do-
mains from different fields, sometimes transformed to clas-
sical planning, such as verification (Ghosh, Dasgupta, and
Ramesh 2015; Edelkamp 2003), multi-agent planning with
beliefs (Kominis and Geffner 2015), or elevator control
(Koehler and Schuster 2000).

The results of Table 1 show that the action-based encod-
ing already performs competitively in comparison to ex-
plicit state search, although explicit A? outperforms the
symbolic approach if we do not consider the MICONIC-
AXIOMS domain. Performing a symbolic fixpoint iteration

5Planner and benchmarks are available online: https://gkigit.
informatik.uni-freiburg.de/dspeck/fd-symbolic-axioms

6The naive hmax heuristic of Ivankovic and Haslum (2015) was
the dominant heuristic in our experiments.

Algorithm A? Action-Based Variable-Based Sym. Compilation

ID Domain (#Tasks) blind hmax fwddef fwdscc fwd fwd bwd bid
1 BLOCKS-AXIOMS (35) 18 18 15 15 15 21 18 30
2 GRID-AXIOMS (5) 1 2 1 1 1 1 0 3
3 MICONIC-AXIOMS (150) 60 60 127 120 150 150 150 150
4 OPTICAL-TELEGRAPHS (48) 2 2 2 2 2 4 0 4
5 PSR-MIDDLE (50) 35 35 32 38 39 50 50 50
6 PSR-LARGE (50) 14 14 13 15 15 24 23 25
7 PHILOSOPHERS (48) 5 5 9 10 9 12 4 12
8 ASSEMBLY (30) 0 0 6 6 5 9 8 11
9 AIRPORT-ADL (50) 19 21 14 14 12 20 11 19

10 TRUCKS (30) 6 8 9 9 9 9 4 8

11 BLOCKER (7) 7 7 4 5 5 5 5 5
12 SOCIAL-PLANNING (2) 2 2 2 2 2 2 2 2
13 SOKOBAN-AXIOMS (25) 19 20 7 7 7 18 20 20
14 ACC-CC2 (7) 7 7 7 7 7 7 7 7
15 GRID-CC2 (13) 8 7 0 0 0 0 0 0

16 COLLAB-AND-COMM (1) 1 1 0 0 0 0 0 0
17 MUDDY-CHILDREN (1) 1 1 1 1 1 1 0 1
18 MUDDY-CHILD (1) 1 1 1 1 1 1 1 1
19 SUM (1) 1 1 1 1 1 1 0 1
20 WORD-ROOMS (2) 2 2 0 0 0 0 0 0

TOTAL COV. W/O MICONIC (406) 149 154 124 134 131 185 153 199
TOTAL COV. (556) 209 214 251 254 281 335 303 349

Table 1: Coverage of the presented symbolic encodings with forward (fwd), backward (bwd) and bidirectional (bid) search
and without using mutex information in comparison to explicit A? with blind and (naive) maximum heuristic hmax (Ivankovic
and Haslum 2015). The action-based encoding is benchmarked with the default stratification fwddef and with the strongly
connected component stratification fwdscc. Domains 1-10 are (alternative) formulations of domains with axioms from former
IPCs. Domains 8-10 contain complex preconditions which are translated to axioms. Domains 11-13 originate from Ivankovic
and Haslum (2015), Domains 14 and 15 originate from Ghosh, Dasgupta, and Ramesh (2015) and Domains 16-20 originate
from Kominis and Geffner (2015).

Figure 3: Runtime in seconds of the symbolic compilation (bidirectional search) without using mutex information on formu-
lations of the same planning problems with and without ε-axioms (Miura and Fukunaga 2017) on planning domains of IPCs
1998-2018 (optimal tracks).

after each planning step can be time consuming, and while
the variable-based encoding overcomes this issue, it still has
to evaluate the derived variables after each planning step.
Nevertheless, the variable-based encoding performs in gen-
eral superior in terms of coverage. Symbolic compilation
turns out to be the dominant strategy for optimal planning
with axioms. It “compiles” the reasoning over derived vari-
ables away, and in most cases, this precomputation is fast
and pays off. In addition, it allows us to use bidirectional
search, since the resulting representation of the planning task
does not contain any derived variables. Bidirectional search
outperforms all other approaches by a fair margin.

In general, computing the primary representation of each
derived variable does not prove to be a limiting factor. In
most solved instances the precomputation (Algorithm 2) re-
quires approximately one second of total time. Nevertheless,
there are cases where it is not possible to compute the under-
lying BDD due to the number of derived variables and ax-
ioms (e.g. GRID-CC2). Interestingly, for the compilation ap-
proach, the bottleneck in some domains is not the construc-
tion of the BDDs representing derived variables. In some do-
mains (e.g. WORD-ROOMS) there are operators with a large
number of conditional effects which cannot be encoded in
a single TR. In PHILOSOPHERS, the substitution of derived
variables in the goal formula becomes infeasible. This is re-
lated to some cases where it is known that the BDDs repre-
senting the set of goal states are exponential in the size of the
task (Edelkamp and Kissmann 2008). These cases, unlike in
classical planning tasks where the goal is a simple conjunc-
tion of facts, may require a more advanced representation of
the goal facts, e.g., based on a conjunctive BDD partition-
ing. Nevertheless, these BDDs are usually either constructed
in a few seconds or not at all, so one could use a portfolio
approach where an explicit approach is used whenever com-
puting the symbolic representation is unfeasible.

Different Problem Representations
Miura and Fukunaga (2017) presented a method for auto-
mated extraction of axioms from a classical planning prob-
lem. This method can be used to create an equivalent plan-
ning problem with axioms that is potentially more com-
pact and therefore easier to handle for a planner. Satisfic-
ing planners showed that reformulating the planning prob-
lem with axioms can improve performance. The question
remains whether this also applies to optimal planning. Ta-
ble 2 shows the coverage and Figure 3 shows the runtime of
the symbolic compilation on formulations of the same plan-
ning problems with and without axioms. The formulation
without axioms corresponds to the standard IPC formula-
tions, while the formulation with axioms contains ε-axioms
based on the work of Miura and Fukunaga (2017). We have
included domains from the optimal tracks of IPCs 1998-
2018 in which ε-axioms are found and extracted. The cov-
erage and runtime comparison show that the actual search
can benefit from the compact encoding with axioms if no
mutex information is used. Note that mutexes are used
for automated extraction of axioms, therefore we have in-
cluded the default configuration of SYMBA?, which per-
forms a bidirectional uniform cost search and uses mu-

Algorithm SYMBD Sym. Compilation
no axioms no axioms axioms

Domain no mutexes mutexes no mutexes

AGRICOLA (20) 5 +9 +1
AIRPORT (50) 18 +6 +0
BARMAN (14) 3 +3 +0
BLOCKS (35) 19 +13 +11
DATA-NETWORK (20) 13 +0 +0
DEPOT (22) 4 +3 +3
DRIVERLOG (20) 12 +1 +0
FREECELL (60) 10 +6 +2
GRID (5) 2 +1 +0
GRIPPER (20) 20 +0 +0
PARCPRINTER (20) 8 +7 +0
PARKING (20) 0 +3 +0
ROVERS (40) 14 +0 −1
SOKOBAN (30) 19 +8 +5
STORAGE (30) 14 +0 +0
TIDYBOT (20) 0 +5 +0
VISITALL (20) 7 −1 −1
WOODWORKING (20) 16 +4 −2

TOTAL COV. (478) 184 +68 +18

Table 2: Coverage of the symbolic compilation (bidirec-
tional search) without using mutex information on formu-
lations of the same planning problems with and without ε-
axioms (Miura and Fukunaga 2017) on domains of IPCs
(optimal tracks). SYMBD (Torralba et al. 2014) indicates
the bidirectional blind search configuration of the SYMBA?

planner with mutexes and h2 invariant computation (Tor-
ralba and Alcázar 2013; Alcázar and Torralba 2015).

texes to prune the search space (Torralba and Alcázar 2013;
Alcázar and Torralba 2015). Interestingly, this configuration
solves 50 problems more on the axiom-free problem bench-
mark set. However, it should be mentioned that mutex detec-
tion is more sophisticated for planning without axioms. We
leave the generalization of mutex detection for axioms as fu-
ture work. Nevertheless, these results suggest that symbolic
planning may benefit from the support of axioms even for
planning problems which do not natively contain axioms.

Conclusion

In this work, we extended symbolic planning to natively
handle planning problems with axioms. Overall, we pro-
vided three different symbolic encodings of axioms and
proved that all are sound and complete. The experiments
empirically showed that the presented approach outperforms
the previous state of the art in cost-optimal classical plan-
ning with axioms. Furthermore, we showed that symbolic
planning can benefit from native axiom support, which al-
lows searching on reformulated planning tasks with auto-
matically extracted axioms based on the work of Miura and
Fukunaga (2017). For future work, we plan a generaliza-
tion of mutex detection algorithms (Bonet and Geffner 2001;
Torralba and Alcázar 2013; Alcázar and Torralba 2015) to
planning tasks with axioms, which promises a further im-
provement of symbolic planning.

Acknowledgments. This work was supported by the Ger-
man National Science Foundation (DFG) as part of the
project EPSDAC (MA 7790/1-1) and the Research Unit
FOR 1513 (HYBRIS). The FAI group of Saarland Univer-
sity has received support by DFG grant 389792660 as part of
TRR 248 (see https://perspicuous-computing.science). We
thank Patrik Haslum and the anonymous reviewers for their
comments and suggestions.

References
Alcázar, V., and Torralba, Á. 2015. A reminder about the
importance of computing and exploiting invariants in plan-
ning. In Proc. ICAPS 2015, 2–6.
Apt, K. R.; Blair, H. A.; and Walker, A. 1988. Towards
a theory of declarative knowledge. In Foundations of De-
ductive Databases and Logic Programming. Morgan Kauf-
mann. 89–148.
Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Davidson, M., and Garagnani, M. 2002. Pre-processing
planning domains containing language axioms. In Proc. UK
PlanSIG workshop, 23–34.
Edelkamp, S., and Kissmann, P. 2008. Limits and possi-
bilities of BDDs in state space search. In Proc. AAAI 2008,
1452–1453.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84–90.
Edelkamp, S. 2003. Limits and possibilities of PDDL for
model checking software. In ICAPS 2003 Workshop on the
Competition.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. Artificial Intelligence 2:189–208.
Garagnani, M. 2000. A correct algorithm for efficient plan-
ning with preprocessed domain axioms. In Proc. of ES2000
International Conference on Knowledge Based Systems and
Applied Artificial Intelligence. 363–374.
Gazen, B. C., and Knoblock, C. A. 1997. Combining the
expressivity of UCPOP with the efficiency of graphplan. In
Proc. of ECP’97, 221–233.
Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete re-
laxations for planning with state-dependent action costs. In
Proc. IJCAI 2015, 1573–1579.
Ghosh, K.; Dasgupta, P.; and Ramesh, S. 2015. Automated
planning as an early verification tool for distributed control.
Journal of Automated Reasoning 54(1):31–68.
Haslum, P.; Ivankovic, F.; Ramirez, M.; Gordon, D.;
Thiébaux, S.; Shivashankar, V.; and Nau, D. S. 2018. Ex-
tending classical planning with state constraints: Heuristics

and search for optimal planning. Journal of Artificial Intel-
ligence Research 62:373–431.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelligence
Research 24:519–579.
Ivankovic, F., and Haslum, P. 2015. Optimal planning with
axioms. In Proc. IJCAI 2015, 1580–1586.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In Proc.
AAAI 2011, 992–997.
Kissmann, P., and Hoffmann, J. 2013. What’s in it for my
BDD? On causal graphs and variable orders in planning. In
Proc. ICAPS 2013, 327–331.
Kissmann, P.; Edelkamp, S.; and Hoffmann, J. 2014. Gamer
and dynamic-gamer – symbolic search at ipc 2014. In IPC-8
planner abstracts, 77–84.
Koehler, J., and Schuster, K. 2000. Elevator control as a
planning problem. In Proc. AIPS 2000, 331–338.
Kominis, F., and Geffner, H. 2015. Beliefs in multiagent
planning: From one agent to many. In Proc. ICAPS 2015,
147–155.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL
– The Planning Domain Definition Language – Version
1.2. Technical Report CVC TR-98-003/DCS TR-1165, Yale
Center for Computational Vision and Control, Yale Univer-
sity.
McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publishers.
Miura, S., and Fukunaga, A. 2017. Automatic extraction of
axioms for planning. In Proc. ICAPS 2017, 218–227.
Pednault, E. P. D. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proc. KR
1989, 324–332.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018a. Symbolic
planning with edge-valued multi-valued decision diagrams.
In Proc. ICAPS 2018.
Speck, D.; Geißer, F.; and Mattmüller, R. 2018b. SYMPLE:
Symbolic Planning based on EVMDDs. In IPC-9 planner
abstracts, 82–85.
Tarjan, R. 1972. Depth-first search and linear graph algo-
rithms. SIAM journal on computing 1(2):146–160.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of PDDL axioms. Artificial Intelligence 168(1–2):38–69.
Torralba, Á., and Alcázar, V. 2013. Constrained symbolic
search: On mutexes, BDD minimization and more. In Proc.
SoCS 2013, 175–183.
Torralba, Á.; Alcázar, V.; Borrajo, D.; Kissmann, P.; and
Edelkamp, S. 2014. SymBA*: A symbolic bidirectional
A* planner. In IPC-8 planner abstracts, 105–109.
Torralba, Á.; Alcázar, V.; Kissmann, P.; and Edelkamp, S.
2017. Efficient symbolic search for cost-optimal planning.
Artificial Intelligence 242:52–79.

