
Practical Undoability Checking via Contingent Planning

Jeanette Daum and Álvaro Torralba and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
s9jedaum@stud.uni-saarland.de ; {lastname}@cs.uni-saarland.de

Patrik Haslum and Ingo Weber
NICTA and ANU/UNSW

Canberra/Sydney, Australia
{firstname.lastname}@nicta.com.au

Abstract

We consider a general concept of undoability, asking whether
a given action can always be undone, no matter which state it
is applied to. This generalizes previous concepts of invertibil-
ity, and is relevant for search as well as applications. Naïve
undoability checking requires to enumerate all states an ac-
tion is applicable to. Extending and operationalizing prior
work in this direction, we introduce a compilation into contin-
gent planning, replacing such enumeration by standard tech-
niques handling large belief states. We furthermore introduce
compilations for checking whether one can always get back
to an at-least-as-good state, as well as for determining partial
undoability, i. e., undoability on a subset of states an action
is applicable to. Our experiments on IPC benchmarks and in
a cloud management application show that contingent plan-
ners are often effective at solving this kind of problem, hence
providing a practical means for undoability checking.

Introduction
One essential property of actions is undoability, whether or
not their effects can be undone. Informally, an action a is
undoable iff whenever a is applied in a state s, there exists a
plan for returning to s from the resulting state. Undoability
is relevant for a variety of search algorithms, because only
non-undoable actions may lead to dead-end states. The spe-
cial case of undoability in a single step (termed invertibility
by Koehler and Hoffmann, 2000; and symmetry by Jonsson
et al., 2000), for which syntactic sufficient conditions exist,
has been exploited, as has the related concept of reversibil-
ity, defined as always being able to return to the initial state
(Chen and Giménez 2010). However, no practical support
for recognizing undoability (or reversibility) in the general
case has been provided.

Undoability is also important in a range of planning ap-
plications: For example, Williams and Nayak’s (1997) reac-
tive planner for autonomous spacecraft control had to meet
the requirement that non-undoable actions can be used only
when repairing failures, not in normal operation. Weber et al.
(2012; 2013) argue that undoability checking is important
in cloud management, as a tool for administrators dealing
with (a complex and ever-growing set of) fixed APIs whose
operations may have irreversible side effects depending on

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

context. For example, many operations (adding a slave to
a database server, scaling up or down an instance) require
stopping and restarting a server, which may overwrite prop-
erties not restorable (using the API) later on. Weber et al.
employ a PDDL-based undoability checker that naïvely enu-
merates the states an action is applicable in. They also pro-
pose a simple relevance pruning technique making this enu-
meration feasible in their domain, yet sacrificing soundness:
undoability cannot be concluded with certainty.

However, state enumeration can be avoided by drawing on
the power of planning under uncertainty to deal with large
belief states. (This was also observed by Eiter et al. (2007;
2008), who proposed, but did not evaluate, a QBF encod-
ing of bounded-length conformant planning for a related
problem.) We devise a practical compilation of undoabil-
ity checking into contingent planning. Given an action a to
check, the initial belief state is the set of possible outcome
states s′ for all states s that a can be applied in. The goal is
to get back, from every s′, to the respective previous state
s. Contingent planning allows the undo-plan to observe and
branch on “environment variables”, not touched by the ac-
tion. This is required to decide undoability exactly, as differ-
ent undo-actions may be needed in different states.

It is sometimes not possible, but also not necessary, to
find an undo-plan that returns exactly to s for every state
s. Hence, we also present compilations for two useful varia-
tions of undoability. First, whether a plan exists to return to a
state that is at least as good as s, in terms of goal reachability.
With no negative preconditions or goals, a state with more
facts true is always better. We name this property rectifiabil-
ity. Second, if an action is not undoable in every state, we
determine partial undoability/rectifiability, by identifying a
subset of states on which the action is undoable/rectifiable.
Experiments on IPC benchmarks as well as Weber et al.’s
cloud management application shows deciding undoability
is feasible in many cases, though scalability is problematic
in some domains.

Background
We base our formalization on the STRIPS framework.
STRIPS planning tasks are tuples Π = (F,A, I,G) of facts,
action set, initial state I ⊆ F , and goal G ⊆ F . Each a ∈ A
is a triple (pre(a), add(a), del(a)) of precondition, add list,
and delete list, each a subset of F . For simplicity, WLOG we

assume that add(a)∩ pre(a) = ∅ and add(a)∩ del(a) = ∅.
A state s is a subset of facts (those true in s). Action

a is applicable to s if pre(a) ⊆ s. In that case, the out-
come of applying a to s is denoted sJaK, given by sJaK :=
(s ∪ add(a)) \ del(a). Applicability for an action sequence
〈a1, . . . , an〉, and the outcome state sJ〈a1, . . . , an〉K, are de-
fined in the straightforward manner.

We say that state s is reachable if there exists an action se-
quence 〈a1, . . . , an〉 so that IJ〈a1, . . . , an〉K = s. For action
a, by S[a] we denote the set of states s (including unreach-
able ones) to which a is applicable. We say that p ∈ F is mu-
tex with q ∈ F if there exists no reachable state s such that
{p, q} ⊆ s (e. g. (Blum and Furst 1997; Fox and Long 1998;
Rintanen 2000; Gerevini and Schubert 2001)).

We will use contingent planning (e. g. (Peot and Smith
1992)) to encode undoability of STRIPS actions. Precisely,
for our purposes here a contingent planning task takes the
form (F,A, φI , G). The initial belief φI is a propositional
CNF formula over the atoms F . The initial belief state
bI is the set of states s where s |= φI . The action set
A = Ar ∪ Ao, Ar ∩ Ao = ∅, distinguishes regular ac-
tions Ar and observation actions Ao. Observation actions
a ∈ Ao are pairs (pre(a), obs(a)) where pre(a) is as above,
and obs(a) ∈ F . For regular actions, in addition to pre(a),
add(a), and del(a) as above, we allow conditional effects
because these will be needed in our encoding: Each ac-
tion a ∈ Ar has a set E(a) of conditional effects e =
(con(e), add(e), del(e)). The outcome of applying a to s is
defined as sJaK := (s∪add(a)∪

⋃
e∈E(a),con(e)⊆s add(a))\

(del(a) ∪
⋃

e∈E(a),con(e)⊆s del(a)). (In our actual encod-
ings, conditional effects with contradictory adds/deletes
have mutex conditions, so never occur together.)

Action a is applicable to belief state b if a is applica-
ble to all s ∈ b. Applying a regular action a to b yields
bJaK := {sJaK | s ∈ b}. Applying an observation action
a with obs(a) = p to b splits b into two branches, bJa, pK :=
{s | s ∈ b, s |= p} and bJa,¬pK := {s | s ∈ b, s |= ¬p};
bJa, lK may be read as “applying a and observing l”. An ac-
tion tree T solves a belief state b if either of the following
three cases holds: 1. T is empty and ∀s ∈ b : s |= G; 2.
the root node of T contains a regular action a ∈ Ar appli-
cable in b, has a single child, and removing a from T yields
a tree that solves bJaK; or 3. the root node of T contains an
observation action a ∈ Ao applicable in b, has exactly two
children, of which one is labeled with obs(a) and the other is
labeled with ¬obs(a), and for each l ∈ {obs(a),¬obs(a)},
the sub-tree rooted at the respective child solves bJa, lK. T is
a plan if it solves bI .

Undoability
We first examine the most basic concept of undoability:

Definition 1 Let Π = (F,A, I,G) be a STRIPS planning
task, and a ∈ A an action. Let a be an action, s ∈ S[a] a
state and s′ = sJaK: a is undoable in s if there is an action
sequence←−−as,s′ such that s′J←−−as,s′K = s. We say that a is un-
doable if it is undoable for all reachable states s ∈ S[a], and
we say that a is universally undoable if it is undoable for all
s ∈ S[a] (including the unreachable ones).

The distinction between “undoable” (reachable states)
and “universally undoable” (arbitrary states) is important.
The former is appropriate when interested specifically in the
instance Π. The latter is valid across any instance of the do-
main that contains the actions involved, i. e., a itself as well
as the actions used in the undo sequences ←−−as,s′ ; for exam-
ple, this is true of all instances resulting from Π by changing
only the initial state and goal. Furthermore, testing undoa-
bility would require to know everything about reachability
in Π in the first place. Hence the method we propose tests
universal undoability, which is interesting in its own right,
and which serves as a sufficient criterion for undoability.

Previous work (Koehler and Hoffmann 2000; Jonsson et
al. 2000) considered the special case of undoability by a
single-step plan. This property has a syntactic sufficient con-
dition: a is invertible if (1) each fact in add(a) is mutex
with at least one fact in pre(a); (2) del(a) ⊆ pre(a); and
(3) there is an action a ∈ A such that pre(a) ⊆ (pre(a) ∪
add(a)) \ del(a), add(a) = del(a), and del(a) = add(a).
For example, a “move(l1 l2)” action a in Gripper is invert-
ible through a = “move(l2 l1)”. A “fly(b c1 c2 l1 l2)” action
in ZenoTravel is not invertible, but is universally undoable
by “refuel(b c2 l1 l2), fly(b c2 c1 l1 l2), refuel(b c1 l1 l2)”.

Undoability relates to reversibility, as has been consid-
ered in several algorithmic and structural investigations of
planning (e.g., Chen and Giménez 2010; Katz et al. 2013).
Reversibility requires that, for any reachable state s, there
exists an action sequence ←−a such that sJ←−a K = I . This is
equivalent to undoability of all actions:

Proposition 1 A STRIPS task Π = (F,A, I,G) is re-
versible if and only if every a ∈ A is undoable.

Proof: For the if part, say s ∈ S[a] is reachable. As Π is
reversible, we have←−a such that sJaKJ←−a K = I . Attaching to←−a the action sequence leading from I to s shows the claim.
For the only-if part, say s is reached from I via 〈a1, . . . , an〉,
and denote by si the state after execution of action ai. Then
〈←−−−−−asn−1,sn , . . . ,

←−−−as2,s1 ,
←−−as1,I〉 reverts s to I . �

This result is useful because, previously, no automatic
method for detecting reversibility was known, beyond the
trivial case where all actions are invertible. Our universal-
undoability test, a sufficient criterion for action undoability,
yields with Proposition 1 a much more powerful method.

Undoability Checking
We consider the problem of checking whether an action a
is universally undoable, i. e., undoable for all s ∈ S[a]. Our
compilation uses initial state uncertainty to formulate this
test compactly. In the compiled planning task, the outcome
states s′ become the initial belief, and the goal ensures that,
for every outcome state s′, the contingent plan leads us back
to the previous state s corresponding to s′. To indicate these
roles, we denote the initial belief of the compiled task by φs′ ,
denote its possible initial states by s′, and denote its goal by
Gs. We refer to plans for the compiled task as undo plans.

Assume the viewpoint of wishing to check whether a is
undoable in s, without actually knowing what s is beyond
the fact that a is applicable in s, i. e. s ∈ S[a]. What do we

know about the outcome state s′ := sJaK? We know that
add(a) and pre(a) \ del(a) must be true, and we know that
del(a) must be false. What we do not know are the values of
the environment variables FE(a) := F \(pre(a)∪add(a)∪
del(a)) not touched by a at all. As for s itself, we know
that pre(a) must be true, but we do not know the values
of the environment variables, nor those of the overwritten
variables FO(a) := add(a) ∪ (del(a) \ pre(a)) which are
set by a’s effects but are not constrained by a’s precondition.

We handle overwritten variables simply by enumeration,
i. e., we create one compiled task for every value assign-
ment to FO(a). While the number of such assignments is
exponential, the exponent |FO(a)| can be expected to be
small in practice.1 In contrast, as STRIPS actions typically
touch only a small fraction of the fact set F , the number of
environment variables |FE(a)| will typically scale linearly
with the size of the input. So these we need to handle in a
compact way. Our compilation does so by maintaining, for
each p ∈ FE(a), additional variables WasT p, WasF p, and
Okp. These reflect whether p was true or false in the pre-
application state s and whether in the current state of our
undo plan we know that p has that same value again, respec-
tively. To ascertain this behavior, we augment the original
task’s actions as follows:

Definition 2 Let a be the action whose undoability we want
to check, and α any STRIPS action. By αU [a] we denote the
action identical to α but with conditional effectsE(αU [a]) =

(i) {({WasT p}, {Okp}, ∅), ({WasF p}, ∅, {Okp}) | p ∈
add(α) ∩ FE(a)}∪

(ii) {({WasF p}, {Okp}, ∅), ({WasT p}, ∅, {Okp}) | p ∈
del(α) ∩ FE(a)}.

If an action makes p true, then p is deemed to be Ok if
it was true in s′, and not-Ok if it was false in s′. The case
where it makes p false is symmetric.

We need a last simple notation, associating an individual
fact p with a straightforward observation action ap:

Definition 3 The observer of a fact p is the observation ac-
tion ap where pre(ap) = ∅ and obs(ap) = p.

Such observation actions will enable the contingent undo
plan to branch on the values of environment variables.

In what follows, we represent value assignments toFO(a)
as subsets O ⊆ FO(a), i. e., the subset of facts assigned to
true. Slightly abusing notation, we identify fact sets with fact
conjunctions, and assume negated goals as a syntactic fea-
ture of contingent planning tasks. Negated goals can be com-
piled away with standard techniques (Gazen and Knoblock
1997); many tools (e. g. Contingent-FF) support them at
PDDL level. Our compilation can then be stated as follows:

Definition 4 Let Π = (F,A, I,G) be a STRIPS planning
task, a ∈ A an action, and O ⊆ FO(a). The undoability-
compilation of a with respect toO is the contingent planning
task ΠU [a,O] := (Fs′s, As′s, φs′ , Gs) as follows:

(i) Fs′s = F ∪ {WasT p,WasF p,Okp | p ∈ FE(a)};
1An alternative is to introduce observation actions for the over-

written variables; we will get back to this below.

(ii) As′s = Ar ∪ Ao where Ar = {αU [a] | α ∈ A} and
Ao = {ap | p ∈ FE(a)};

(iii) φs′ = add(a) ∧ (pre(a) \ del(a)) ∧ {¬p | p ∈
del(a)}∧

∧
p∈FE(a) Okp∧

∧
p∈FE(a)(p↔WasT p)∧∧

p∈FE(a)(¬p↔WasF p); and
(iv) Gs = pre(a) ∪ {Okp | p ∈ FE(a)} ∪ O ∪ {¬p | p ∈

FO(a) \O}.
Items (i) and (ii) should be clear given the discussion

above. To understand the specification of φs′ , recall our
knowledge about the outcome state s′: add(a) and pre(a) \
del(a) must be true, and del(a) must be false. The value of
the environment variables FE(a) is unknown; φs′ says that,
at the start of the undo plan, every p ∈ FE(a) is Ok, and it
sets WasT p and WasF p according to the value of p in every
s′ |= φs′ . The undo-goal Gs, finally, constrains pre(a) and
the environment variables as expected. Beyond that, we need
to ensure that we can get back to the desired setting O of the
overwritten variables in s. Note that this is the only point in
the compilation where O plays a role (in s′, these values are
known simply because they are set by a’s effects).

Theorem 1 Let Π = (F,A, I,G) be a STRIPS planning
task. An action a ∈ A is universally undoable if and only if,
for all O ⊆ FO(a), ΠU [a,O] is solvable.

Proof Sketch: ⇒: Say that a is universally undoable, and
let O ⊆ FO(a). A plan T for Π[a,O] can be constructed
by observing the values of all environment variables, and
attaching to each leaf node, which must correspond to a
unique state s′ |= φs′ , a corresponding sequence←−−as,s′ with
s′J←−−as,s′K = s, where s is chosen such that s′ = sJaK. By
construction,←−−as,s′ results in a goal belief state of Π[a,O].
⇐: Say that s ∈ S[a] and s′ = sJaK. Let O := FO(a)∩ s

be the assignment to a’s overwritten variables in s. Let ac-
tion tree T be a plan for Π[a,O]. Executing T on s′, let
〈aU1 , . . . , aUn 〉 be the resulting sequence of applicable reg-
ular actions from As′s which achieves Gs. Let ←−−as,s′ :=
〈a1, . . . , an〉. By construction, s′J←−−as,s′K = s. �

For undoability checking (as opposed to universal-
undoability checking as in Theorem 1), our compilation
can be strengthened with invariants, i.e., formulas that hold
in all reachable states. Such invariants can be found by
several known methods (e.g., Blum and Furst 1997; Fox
and Long 1998; Gerevini and Schubert 2000; Scholz 2000;
Rintanen 2000; Helmert 2009). If ψ is an invariant formula,
we can replace φs′ with φs′ ∧ ψ in ΠU [a,O]. Furthermore,
if pre(a) ∧ ψ entails a specific value for some p ∈ FO(a),
we can remove p from FO(a) as its value is known. In both
cases, solvability of all ΠU [a,O] remains a sufficient cri-
terion for undoability of a. This is important because ac-
tions are often not universally undoable, but can be proven
to be undoable in reachable states thanks to invariants. For
example, in Barman, “leave(h c)” is undoable by “grasp(h
c)”, but only in reachable states. In the unreachable states
s where “(holding h c)” and “(ontable c)” are both true,
“leave(h c)” cannot be undone, because “grasp(h c)” deletes
“(ontable c)”. In other words, we cannot get back to the pre-
vious inconsistent state. Restricting φs′ with the mutex in-
variant “¬(holding h c) ∨¬(ontable c)”, we get rid of the

inconsistent states, resulting in solvable tasks ΠU [a,O] and
thus a proof of undoability.

Using contingent – rather than conformant – planning al-
lows the undo plans to branch on environment variables. An
example of why this is necessary is the “switch-off” action
in IPC Satellite. To undo it, we need to apply “switch-on”,
which deletes calibration, so we need to recalibrate, turning
the satellite from its current direction to a calibration target.
The undo plan hence consists of a case distinction over the
“pointing(.,.)” environment variables, encoding the direction
of the satellite.2

In general, branching over environment variables is
needed when actions have (a) different enabled precondi-
tions or (b) different conflicts with the need to preserve en-
vironment variable values. To illustrate (b), say we wish to
undo a which deletes p, a1 adds p and environment variable
q, and a2 adds p but deletes q (and there are no other ac-
tions). Then a1 can only be used if q was true beforehand,
while a2 can only be used if q was false beforehand.

On the other hand, branching over environment variables
is not needed if neither of (a) or (b) apply, i. e., if the undo
plan neither relies on the values of environment variables
nor affects them. So, in many cases, the contingent undo
plan makes do with very little or no branching. This is dif-
ferent for the overwritten variables. In principle, one could
handle these in a similar manner, encoding their prior values
as unknown facts p in φs′ and including observation actions
ap for them (unless, that is, we can infer their values from
pre(a) and invariants). This would tackle the entire undoa-
bility check with a single call of contingent planning. How-
ever, in contrast to p ∈ FE(a), for p ∈ FO(a) we can not
assume Okp in φs′ : the values of overwritten variables are
affected by the action, and may have been different in the
preceding state s. Hence the contingent plan would have to
establish Okp for all p ∈ FO(a), which would necessar-
ily involve including branches enumerating all value assign-
ments to FO(a). It is more effective to do this enumeration
outside the planner.

Anyway, as we shall see in the next section, once we mod-
ify undoability to rectifiability, i. e. require only that we can
always get back to an at-least-as-good state, it suffices to
consider a single assignment to the overwritten variables:
The one where they are all assigned to true.

From Undoability to Rectifiability
We straightforwardly modify Definition 1:

Definition 5 Let Π = (F,A, I,G) be a STRIPS planning
task, and a ∈ A an action. For s ∈ S[a], a is rectifi-
able in s if there exists an action sequence ←−−as,s′ such that
sJaKJ←−−as,s′K ⊇ s. We say that a is rectifiable if it is rectifi-
able for all reachable states s ∈ S[a], and we say that a is
universally rectifiable if it is rectifiable for all s ∈ S[a].

Similar to the use of invertibility as a simple syntactic spe-
cial case of undoability, prior work (Hoffmann 2005) has

2Our approach (and implementation) finds this undo plan pro-
vided the at-least-one invariant over the “pointing(.,.)” facts has
been added to φs′ . Else, φs′ considers it possible that the satellite
is not pointing anywhere, in which case one cannot recalibrate.

identified a special case of rectifiability. An action a is at-
least-invertible if there is an action a ∈ A such that (1)
pre(a) ⊆ (pre(a)∪add(a))\del(a); (2) add(a) ⊇ del(a);
(3) each fact in del(a) is mutex with at least one fact in
pre(a). In this situation, (1) a is always applicable behind
a, (2) re-achieves everything deleted by a, and (3) does
not delete anything true prior to the application of a. Ev-
ery invertible action is also at-least-invertible, so this syn-
tactic special case generalizes the previous one. For exam-
ple, the “rewind-movie” action a in the Movie domain is
not undoable (and hence, in particular, not invertible) be-
cause it adds “movie-rewound”, which is not deleted by any
action. However, the only fact deleted by “rewind-movie”
is “counter-at-zero”. This can be re-achieved by the “reset-
counter” action, which has empty preconditions and deletes
and thus qualifies for the role of a as specified above.

It turns out that a simplified version of our previous com-
pilation is suitable for checking rectifiability:

Definition 6 Let Π = (F,A, I,G) be a STRIPS planning
task, and a ∈ A.

For any STRIPS action α, by αR[a] we denote the ac-
tion identical to α but with conditional effects E(αR[a]) =
{({WasT p}, {Okp}, ∅) | p ∈ add(α) ∩ FE(a)} ∪
{({WasT p}, ∅, {Okp}) | p ∈ del(α) ∩ FE(a)}.

The rectifiability-compilation of a is the contingent plan-
ning task ΠR[a] := (Fs′s, As′s, φs′ , Gs) as follows:

(i) Fs′s = F ∪ {WasT p,Okp | p ∈ FE(a)};
(ii) As′s = Ar ∪ Ao where Ar = {αR[a] | α ∈ A} and

Ao = {ap | p ∈ FE(a)};
(iii) φs′ = add(a)∧(pre(a)\del(a))∧{¬p | p ∈ del(a)}∧∧

p∈FE(a) Okp ∧
∧

p∈FE(a)(p↔WasT p); and
(iv) Gs = pre(a) ∪ {Okp | p ∈ FE(a)} ∪ FO(a).

Relative to the previous augmented actions (Definition 2),
we do not have to maintain the WasF p flags, because we
don’t care if an environment variable was previously false
and has been made true by the undo plan. Relative to the
previous compiled planning task (Definition 4), we drop the
WasF p flags from φs′ , and we no longer need the input ar-
gument O enumerating assignments to the overwritten vari-
ables FO(a). Instead, we just constrain these variables to be
true in the goal. This suffices to get the desired equivalence:

Theorem 2 Let Π = (F,A, I,G) be a STRIPS planning
task. An action a ∈ A is universally rectifiable if and only if
ΠR[a] is solvable.

Proof Sketch:⇒: If a is universally rectifiable, to construct
a plan for ΠR[a] we observe the values of all environment
variables as in Theorem 1, and attach to each leaf node cor-
responding to state s′ a sequence ←−−as,s′ where s is chosen
such that s′ = sJaK and FO(a) ⊆ s. The latter property can
be ensured WLOG because s′ = sJaK is not affected by the
values of the overwritten variables in s.
⇐: Say that s ∈ S[a] and s′ = sJaK, that T is a plan

for ΠR[a], and that executing T on s′ yields the sequence
〈aR1 , . . . , aRn 〉 of regular actions. Then←−−as,s′ := 〈a1, . . . , an〉
satisfies s′J←−−as,s′K ⊇ s as desired because, by construction,
all environment variables true in s, as well as all overwritten
variables, are true in s′J←−−as,s′K. �

Intuitively, setting all overwritten variables to true is
enough because, there being no need to rectify a false vari-
able, this is the worst thing we may need to rectify. Given
this, one may be tempted to think that a similar “worst-case”
handling is possible for the environment variables. But this
is not so because, for environment variables, being true is
“bad” because the undo plan must ensure they are true again,
while being false is “bad” because it enables less undo-plan
actions (the latter is not so for overwritten variables whose
values in s′ are fixed anyhow). To illustrate, say we wish to
undo a which deletes p, a1 adds p and has the environment-
variable precondition q, and a2 adds p but deletes q (and
there are no other actions). Then a1 can only be used if q
was true beforehand, while a2 can only be used if q was
false beforehand, so, like for undoability, different environ-
ment variable values may necessitate different actions.

Partial Undoability/Rectifiability
If an action is not undoable, or not rectifiable, on all states,
naturally it is of interest to ask for subsets of states that work:

Definition 7 Let Π = (F,A, I,G) be a STRIPS planning
task, a ∈ A, and S ⊆ S[a]. We say that a is undoable (rec-
tifiable) in S if a is undoable (rectifiable) in all s ∈ S.

In what follows, to avoid clumsy language we will mostly
talk about undoability only, the understanding being that all
claims apply also to rectifiability exactly as stated.

The main challenge of analyzing partial undoability is that
we need to find the maximal set S such that action a can be
proven undoable in every state in S. Since we have reduced
undoability to the existence of a contingent plan that solves
every possible initial state (i.e., bI), partial undoability cor-
responds to finding a partial contingent plan, meaning a plan
that solves a subset S ⊆ bI of the possible initial states and
ensuring that the set S is maximal.

One approach to this problem comes from online contin-
gent planners (Albore et al. 2009; Shani and Brafman 2011;
Brafman and Shani 2012a; 2012b; Maliah et al. 2014).
These tools interleave planning and execution. To simu-
late execution, the outcome of observation actions is chosen
based on some preselected initial state. For our purposes,
this results in a machinery choosing observation outcomes
to narrow down the search space in the (offline) analysis of
partial undoability. Given that observation actions are cho-
sen in a manner trying to minimize their use while maxi-
mizing progress to the goal, this provides some support for
obtaining large sets S of solved initial states.

However, we pursue a different approach, by compiling
the maximal partial contingent planning problem into a stan-
dard contingent planning problem (i.e., generating a contin-
gent plan that solves all initial states) but with a certain op-
timization objective. Given a contingent task Π, we denote
this compiled task by Π|⊥C . The plan cost function that we
define ensures that a (complete) contingent plan for Π|⊥C
with minimum cost corresponds to a partial contingent plan
for Π that maximizes the coverage of initial states.

The compilation is simple: We introduce a give-up action
aGiveUp with empty precondition, effectG, and cost C. This
allows the plan to achieve the goal anytime, at cost C. For

this compilation to work as intended, we need to (1) suit-
ably define the plan cost function, in particular the way in
which the cost of AND nodes (observation actions) are ag-
gregated from the costs of their children; and (2) select a
suitable value for the constant C. We show how to do both
so that a cost-optimal contingent plan for Π|⊥C applies the
aGiveUp action in a belief b only if b does not even have a
weak plan (Cimatti et al. 2003); that is, if no sequence of
observations and actions lead from b to the goal.

The plan cost function we use averages the costs of chil-
dren of observation action nodes. Let a be the action at
node N of a plan tree: the cost of N recursively defined
as: c(N) := c(a) + c(N ′), if a is a regular action (N
is an OR node) and N ′ is the sole child of N ; c(N) :=
c(a) +

∑n
i=1

1
nc(N

′
i), if a is an observation action (N is an

AND node) and N ′1, . . . , N
′
n are the children of N . The cost

of an empty subtree is 0, and the cost of a plan tree T is the
cost of the root node of T .

We note that the commonly used sum and max aggrega-
tion functions, which minimize the total cost of the plan tree
and the cost of the most expensive branch, respectively, will
not achieve the aim of our compilation. If Π does not have a
complete contingent plan, every plan for Π|⊥C must contain
aGiveUp , and adding other actions can only increase plan
cost. Thus, under sum or max aggregation, applying aGiveUp

at the root node would be an optimal plan for Π|⊥C . In con-
trast, using average aggregation we can set the cost of the
give-up action, C, so that the contingent plan gives up on
belief b only if b is not solvable:

Theorem 3 Let Π = (F,A, φI , G) be a contingent plan-
ning task. Let B := 22

|F |
be the size of the belief space, and

let C := (2B − 1) ∗B+ 1. Let T0 be a plan for Π|⊥C that is
optimal under average aggregation. Then T0 uses aGiveUp

only on beliefs that are not partially solvable.

Proof Sketch: Say that b is partially solvable. Let π be
a weak plan for b. Consider the action tree T constructed
by following π and applying aGiveUp to each observation-
action outcome not contained in π. As the number of ob-
servation actions on T , and the number of regular actions
in between observations, is bounded by B, 2B−1

2B
(B + C)

is an upper bound on the average-aggregation cost of T ,
and hence on that of T0. So for any setting of C s.t. C >
2B−1
2B

(B + C), T0 cannot use aGiveUp on b. The claim fol-
lows as C > 2B−1

2B
(B + C) iff C > (2B − 1) ∗B. �

Given this, we can test partial undoability/rectifiability
by using the give-up compilation on top of our previous
compilations: ΠU [a,O]|⊥C respectively ΠR[a]|⊥C .3 As av-
erage aggregation is not supported by standard contingent
planning tools, we implemented it in Contingent-FF (CFF)
(Hoffmann and Brafman 2005). CFF does not support action
costs, so our implementation is native inside its AO∗ search
algorithm. Also, as CFF’s heuristic may return ∞ on par-
tially solvable beliefs, we added a new heuristic (for partial

3We remark that, for ΠU [a,O] and ΠR[a] where environment
variables can always be observed, the much smaller setting C :=

(2|FE(a)| − 1) ∗ 2|F | + 1 suffices for the claim of Theorem 3.

undoability only), which assumes all unknown facts are true
and then runs the standard hFF heuristic.

Experiments
We implemented our compilations at lifted-PDDL level, i. e.,
while each test pertains to a ground action a, the action
sets of the compiled contingent planning tasks ΠU [a,O] and
ΠR[a] are encoded as parameterized action schemas. This is
important in practice, as otherwise the compiled task can be-
come so large as to cause difficulties for planner parsers. We
use binary mutexes and invariants found by Scholz’ (2000)
algorithm4, and the FD translator (Helmert 2009) to generate
the ground actions to be tested.

We focus in what follows on rectifiability testing, due to
space restrictions and as rectifiability is arguably the more
relevant property in practice. For the same reason, through-
out we enhance our rectifiability tests with reachability in-
formation, not examining the behavior without it.

The reachability information we use are pairwise fact mu-
texes and exactly-1 invariants as detected by pddlcat. These
are added to the initial belief φs′ as previously described,
which for mutexes ¬p ∨ ¬q where p ∈ pre(a) is equivalent
to restricting a with the implicit precondition ¬q. Note that
in this case, q 6∈ FO(a) even if q ∈ add(a). We also em-
ploy a simple form of admissible relevance pruning. Start-
ing with RA := ∅ and RF := del(a) where a is the ac-
tion to be tested, we iteratively include into RA actions a′
whose add list intersectsRF , and intoRF facts appearing in
pre(a′)∪ del(a′). After reaching a fixed point, RF contains
all facts that an undo plan may need to make true, and RA

contains all actions that may be needed. We can thus, with-
out affecting the outcome of the test, remove from ΠR[a]
actions and facts not in RA and RF , respectively, as well as
observation actions for facts not in RF .

All experiments were run on a cluster of Intel E5-2660
machines running at 2.20 GHz, with time/memory cut-offs
for each call of contingent planning set to 10 minutes/4 GB.

Contingent Planners
For full (as opposed to partial) rectifiability testing, we ran
CFF and the offline version of CLG (Albore et al. 2009).
PO-PRP (Muise et al. 2014) is not applicable because our
compiled tasks are not “simple” (unknown literals occur as
effect conditions). The compilation approach of CLG, on the
other hand, is perfectly suitable in principle as the contingent
width of our compiled tasks is 1. However, the compiled
tasks are quite large and, despite the width 1, CLG’s trans-
lation step often is prohibitive. Furthermore, there is a bug
in CLG’s implementation which sometimes leads to invalid
undo plans.5 So the main planner in our experiments here
is CFF, which turned out to almost consistently outperform
CLG. We include a brief summary of CLG’s performance
below. We run CFF without helpful actions pruning so as to
allow proving unsolvability (non-rectifiability).

4Implemented in the pddlcat tool: http://users.cecs.
anu.edu.au/~patrik/un-hsps.html.

5According to CLG’s authors, the bug is known but would be
very difficult to fix.

For partial rectifiability testing, we ran CFF with the com-
piled tasks ΠR[a]|⊥C ; as the exclusive focus here is finding
plans, rather than proving their absence, we do use helpful
actions pruning. Regarding the alternative approach, online
contingent planning on the tasks ΠR[a], we did not exper-
iment with CLG because it may return invalid undo plans
and we have no means for plan checking (which is itself a
hard problem in contingent planning). We did run experi-
ments with SDR (Brafman and Shani 2012b), which is more
recent anyhow and represents the state of the art in this area.

IPC Benchmarks
We run all STRIPS domains from IPC’98 to IPC’14. For
domains that occur several times, we use the most recent in-
stance suite; for domains that have both an optimal and a
satisficing suite, we use the optimal one (due to scaling, see
below). As many benchmarks have large numbers of ground
actions, rather than testing all of these, for every ground ac-
tion a we first test whether a is at-least-invertible, and if
so (record and) discard a. From the remaining ground ac-
tions, we randomly select 50 per action schema. It makes
sense to organize these experiments per schema, as ground
actions of different schemas typically exhibit characteristi-
cally different behavior. We omit pre-grounded domains (no
action schemas), and we select only four instances from each
test suite, namely the smallest-index one, the largest-index
one, and two instances at equal spacing (with respect to the
IPC indexing) in between. Overall, this still results in 48800
compiled contingent planning tasks. Consider Table 1.

Of the 35 domains, in 9 the at-least-invertible criterion
applies to all actions (Blocksworld, Driverlog, Elevators,
Gripper, Logistics, Miconic, Movie, Transport, VisitAll). In
Tidybot, the compiled tasks are too large for CFF to parse.
In 4 domains, nothing or not much is gained over the in-
vertibility test (Mprime, the Pipesworlds, Tetris). In 4 do-
mains, we find undo plans (Miconic, Satellite, Scanalyzer,
Zenotravel). In the remaining 17 domains, many actions are
proved non-rectifiable. In 6 domains this happens reliably
(Childsnack, Floortile, Hiking, PegSol, Sokoban, TPP); in
the other 11 domains, the ability to prove non-rectifiability
varies depending on action schema and instance size. Note
that non-rectifiability here really means “not universally rec-
tifiable”. Because the found invariants do not always rule
out every unreachable state, tests are not guaranteed to be
on reachable states only. A case in point is the GED domain,
where all actions are in fact undoable in reachable states but
many actions are found to be non-rectifiable because testing
includes non-reachable states.

The “YES” cases are usually proved quickly. CFF finds
most undo plans in < 1 second, except in Satellite, where
it finds complex undo plans for the “switch-off” (20 regular
actions, 6 observation actions, tree depth 10) and “switch-
on” actions (26 regular, 6 observation, tree depth 10), in
261.2 and 265.5 seconds, respectively.

The majority of successful “NO” cases are proved either
(a) by CFF’s pre-processor or (b) CFF’s heuristic function
returning ∞ on the initial state. (a) happens iff the goal is
not reachable in a relaxed planning graph even assuming
all environment variables are true. (b) happens iff there is

YES NO
Domain Action schema name %I %Y #A %PN %HN %SN %S C CA
Barman (refill/clean/fill)-shot/shake 0 0 – 0 0 0 0 0 0
Barman empty-shaker/pour-* 0 0 – 0 100 0 100 4 4
ChildSnack make/put/serve* 0 0 – 100 0 0 100 4 4
Depots lift 0 0 – 0 25 0 25 1 1
Floortile paint-down/paint-up 0 0 – 100 0 0 100 4 4
Freecell *home* 0 0 – 100 0 0 100 4 4
Freecell move 63 0 – 100 0 0 100 4 4
Freecell sendtonewcol/sendtofree 71 0 – 100 0 0 100 4 4
GED begin-cut 0 0 – 0 100 0 100 4 4
GED continue-cut 0 0 – 0 0 0 0 0 0
GED continue-inv-splice-1(a/b) 0 0 – 20 35 0 56 4 2
GED continue-splice-1 0 0 – 22 35 0 58 4 2
GED end*/begin*/reset-1/

continue-(inv)-splice-2
0 0 – 0 50 0 50 2 2

Grid move 0 0 – 0 0 0 0 0 0
Grid unlock 0 0 – 100 0 0 100 4 4
Hiking walk-together 0 0 – 100 0 0 100 4 4
Miconic depart 0 100 3.0 0 0 0 100 4 4
Mprime drink 86 0 – 0 0 0 0 0 0
Mprime feast 0 0 – 0 0 0 0 0 0
NoMystery drive 0 0 – 100 0 0 100 4 4
Parking move-car-to-car 0 0 – 5 0 0 5 3 0
Parking move-car-to-curb 0 0 – 0 0 0 0 0 0
Parking move-curb-to-car 93 0 – 100 0 0 100 4 4
Pegsolitaire (end/jump-*)-move 0 0 – 0 100 0 100 4 4
PipesNoTank pop*/push-(start/unitpipe) 0 0 – 0 0 0 0 0 0
PipesNoTank push-end 0 0 – 1 0 0 1 1 0
PipesTank (push/pop)-start 0 0 – 0 0 0 0 0 0
PipesTank (push/pop)-unitarypipe 15 0 – 0 0 0 0 0 0
PipesTank pop-end 0 0 – 4 0 0 4 2 0
PipesTank push-end 0 0 – 1 0 0 1 1 0
Rovers drop 0 0 – 0 50 0 50 2 2
Rovers sample-soil/sample-rock 0 0 – 100 0 0 100 4 4
Rovers take-image 76 0 – 0 25 0 33 2 1
Satellite switch-off 0 25 26.0 0 0 0 25 1 1
Satellite switch-on 0 25 32.0 0 0 0 25 1 1
Scanalyzer analyze-4 3 21 3.0 0 17 0 38 2 1
Scanalyzer rotate-4 2 22 3.0 0 19 0 42 2 1
Sokoban push-to-goal 0 0 – 21 79 0 100 4 4
Sokoban push-to-nongoal 0 0 – 46 54 0 100 4 4
Storage go-out/move 0 0 – 0 0 0 0 0 0
Storage lift/drop 0 0 – 0 0 25 25 1 1
Tetris move* 0 0 – 0 0 0 0 0 0
ThoughtFul col-to-home 0 0 – 11 0 0 11 4 0
ThoughtFul col-to-home-b 0 0 – 56 0 0 56 4 0
ThoughtFul move-col-to-col 30 0 – 12 0 0 12 4 0
ThoughtFul move-col-to-col-c 0 0 – 38 0 0 38 3 0
ThoughtFul tal-to-*/move-col-to-col-b 0 0 – 100 0 0 100 4 4
ThoughtFul turn-deck-a 0 0 – 14 3 0 16 4 0
ThoughtFul turn-deck/home-to-* 0 0 – 0 0 0 0 0 0
Tidybot * 0 0 – 0 0 0 0 0 0
TPP load 0 0 – 0 99 0 99 4 3
TPP unload/buy 0 0 – 100 0 0 100 4 4
Woodworking (cut-brd/do-saw)-large 0 0 – 75 0 0 75 3 3
Woodworking (cut-brd/do-saw)-(sm/med) 0 0 – 100 0 0 100 4 4
Woodworking do-(immer/spray)-varnish 21 0 – 0 0 6 6 2 0
Woodworking do-glaze 0 0 – 0 100 0 100 4 4
Woodworking do-grind 9 0 – 4 0 6 9 2 0
Woodworking do-plane 9 0 – 39 0 3 42 4 0
Zenotravel fly 18 100 3.0 0 0 0 100 4 4
Zenotravel zoom 0 100 3.6 0 0 0 100 4 4

Table 1: Rectifiability checking results with CFF. We
omit action schemas where all ground actions are at-least-
invertible, and domains where this applies to all schemas.
YES: proved rectifiable, NO: proved non-rectifiable. %I:
global fraction of at-least-invertible actions. As fractions
of the actions selected per schema, across IPC instances:
%Y: proved YES, %PN: proved NO by pre-process, %HN:
proved NO by initial-state heuristic value, %SN: proved NO
by search, %S: successfully analyzed (proved YES or NO).
#A: average number of actions in undo plan. C/CA: number
of IPC instances (out of the 4 selected per domain) where
some/all actions are successfully analyzed.

an assignment to the environment variables for which the
goals are not relaxed reachable. Few “NO” cases are proved
by (c) the actual search. This is not surprising as the origi-

nal problems are already large, so the yet larger compilation
cannot be proved unsolvable by belief-space search. Success
in the “NO” case is therefore largely determined by whether
or not (a) or (b) apply. Concretely, 52% of the successful
“NO” cases are of category (a), proved in mean/max time
0.1/0.9 seconds; 47% of cases are of category (b), proved in
mean/max time 6.1/32.8 seconds; and 1% of cases are of
category (c), proved in mean/max time 31.2/203 seconds.

The trivial alternative to our methods, enumeration of all
s ∈ S[a], is of course infeasible. The slightly less trivial
method, doing this in the projection onto the relevant facts
RF , would work in some cases but not in general either. The
average (maximum) number of relevant environment vari-
ables is 174.4 (1508) over all cases in our experiments, and
is 93.2 (485) over the cases successfully tackled with CFF.
Note that, while “NO” cases (a) could be captured using sim-
ple techniques, “NO” cases (b) genuinely rely on reasoning
enabled by the encoding into planning under uncertainty.

The performance of CLG is almost consistently worse
than that of CFF. A major advantage of CFF is its ability
to handle large non-undoable instances, thanks to (a) and
(b) above. For such instances, CLG’s compilation either ex-
plodes in size and runs out of memory, or it does not carry
over to classical planning the structure allowing CFF to eas-
ily detect unsolvability. The single case where CLG success-
fully analyzes more ground actions than CFF is Woodwork-
ing “do-grind”, where CLG proves 29% of the ground ac-
tions non-undoable (vs. CFF’s 9%)

Analyzing partial rectifiability using CFF and our give-
up compilation turns out to be hard because, prior to giving
up, search must explore all plan trees whose average cost
is below the give-up cost C. With large values of C, this
was infeasible in our experiments. Setting C := 3, we find
partial undo-plans for Depots “lift”, Grid “move”, Rovers
“take-image”, Thoughtful “turn-deck-a” and Woodworking
“do-plane”. Each of these undo plans works “in half of the
cases”: the undo plan applies one sensing action and solves
one case while giving up on the other case. The single ex-
ception is Woodworking, where the undo plans apply two
sensing actions and solve three of the four possible cases.

The online contingent planner SDR finds partial undo
plans in Depots, Grid, Parking, and Satellite. The only im-
provement over CFF is in Parking, for some instances of
“move-car-to-car”. For the remaining 19 domains of interest
(those with non-rectifiable actions), in 7 domains we could
not get SDR to run, in 8 domains SDR always runs out of
time or memory, and in 4 domains SDR always gets stuck
in a dead end, i. e., the preselected initial state is unsolvable
and hence no undo plan is found.

Cloud Management
Weber et al.’s (2012; 2013) cloud management application
is interesting from our perspective as a realistic use case, es-
tablished and investigated in practically oriented prior work.
For administrators, being aware of action undoability is of
the essence, as it is most embarrassing to cause a lasting out-
age by incorrect API usage. Support for analyzing undoabil-
ity is valuable as the set of APIs to deal with is complex,
grows continually, and involves many operations with irre-

versible (side) effects depending on context. Furthermore,
the API is the only method available to manipulate the re-
sources – although Web frontends and other tools exist, they
offer the same API operations through other channels.

Weber et al. devise an encoding of 35 API operations,
from Amazon Web Services (AWS) Elastic Compute Cloud
(EC2), into a PDDL domain file. The APIs, each encoded as
an action schema, manipulate cloud resources such as virtual
machines (VM) and virtual harddisks (VHD). Action effects
concern resource status (e. g., start VM1, delete VHD2), rela-
tionship (e. g., connect VM1 to VHD3), or attributes (change
VM2 from small to large). Preconditions capture require-
ments, e. g., a VM’s size can only be changed if it is stopped.

For the undoability tests, Weber et al. employ a classi-
cal planner. Towards that end, they first create a set of ob-
jects, essentially just one representing each type (the under-
lying assumption being that, within each type, objects be-
have symmetrically). To test an action a, they select a set
of actions Ua whose adds cover del(a) and whose deletes
cover add(a). They deem the facts Fa touched by Ua as rel-
evant, fix all other facts (environment variables) to be false,
and create one classical planning task for every pre/post state
pair (s, s′) over Fa where pre(a) ⊆ s. They consider a to
be undoable iff all these planning tasks are solvable.

In brief, Weber et al.’s test is naïvely enumerative, but
uses a simple pruning technique to consider only a subset
S ⊆ S[a] of states a is applicable to. The pruning technique
is, obviously, not sound, in that S may overlook a state a
is not undoable on. So the test may report a to be undoable
even if that is not so. Note furthermore that the test is agnos-
tic to reachability information, and may report a to be not-
undoable due to unreachable pre/post states. One example
where this happens are actions of the form “start-instance”,
whose precondition “(instanceStopped ?inst)” implies that
no IP is associated with ?inst. Without this implicit precon-
dition, the action is not undoable. Weber et al. propose that
the API provider (or the system admin) interacts with the
undoability checker to add implicit preconditions. Conse-
quently, they have two PDDL domain files, DW with the
implicit preconditions, and DW/O without them.

Weber et al.’s tool is quite effective performance-wise.
Using FF (Hoffmann and Nebel 2001), the total planning
time across all a is 3 seconds in each of DW/O and DW . On
DW , the tool correctly classifies all actions as undoable, ex-
cept for “create-autoscaling-group” which is correctly clas-
sified as non-undoable. On DW/O, the actions with miss-
ing implicit preconditions are incorrectly classified as being
non-undoable. So, in the domain the tool was built for, it
does not suffer from its lack of soundness, but does suffer
from its lack of reachability information. Using our tech-
nology, the same tests can be performed in little more run-
time, with soundness guarantee, and automatically finding
the necessary reachability information.

Weber et al.’s PDDL contains some universally quantified
preconditions, which we transformed to STRIPS in the usual
manner (Gazen and Knoblock 1997). On these STRIPS ver-
sions of DW/O and DW , Weber et al.’s tool yields the
same analysis results in slightly worse runtime. We created

a canonical initial state instantiating the objects with their
(obvious) initial properties. Running CFF on the contingent
planning tasks ΠU [a] checking undoability takes 15.3 sec-
onds total time for DW/O and 15.7 seconds for DW , clas-
sifying all actions correctly. In particular, the actions with
missing implicit preconditions in DW/O are determined to
be undoable. Running CFF on the tasks ΠR[a] to check rec-
tifiability takes 17.3 (16.1) seconds for DW/O (DW), and
determines that “create-autoscaling-group” is (not undoable
but) rectifiable. The trivial sound method, naïve enumeration
of states in the projection onto the relevant facts RF , would
be feasible here, yet would incur substantial overhead: the
average (maximum) size of RF is 9.8 (22).

Related Work
The best-known prior work on undoability detection, in the
AI planning community, pertains to the simple sufficient
criteria, invertible and at-least-invertible actions (Koehler
and Hoffmann 2000; Hoffmann 2005), that we already dis-
cussed. Hoffmann (2005) introduces the additional notion of
actions whose adds are static and that delete only their own
preconditions. If every action either satisfies this criterion, or
is at-least-invertible, then the state space (may contain non-
rectifiable actions but) cannot contain dead end states.

The only prior work on general undoability checking is
that by Eiter et al. (2007; 2008). They propose an encod-
ing into conformant planning under uncertainty. They did
not implement this approach though, and it is quite differ-
ent in the specifics. They propose to create a library of “re-
verse plan items (RPI)”, action sequences−→a along with cor-
responding reverse sequences ←−a that will always undo −→a .
Once created, the library can be used during plan execution,
to identify undo plans if needed. To find the RPIs, Eiter et
al. design a fixed-plan-length QBF encoding of a conformant
problem guaranteeing that, for some index i along the plan,
the prefix −→a up to i will be undone by the postfix ←−a be-
hind i. This forces the conformant planner to find “cycles”,
and thus valid RPIs. Towards partial undoability, Eiter al al.
consider “conditional” RPIs, and a modified QBF encoding
allowing −→a to mark states as “don’t care”, freeing←−a from
the obligation to undo them.

For our purposes, i. e., deciding whether a specific action
a is undoable, Eiter et al.’s approach could be adapted by
forcing the use of a in the first time step of their QBF en-
coding, allowing us to look for reverse sequences ←−a for a.
However, the length of ←−a is fixed as part of the encoding,
and←−a is a conformant plan so will fail in those cases where
different actions must be taken depending on the values of
the environment variables.

Conclusion
Undoability checking can be encoded into contingent plan-
ning. In practice, perhaps not surprisingly, the problem can
often be solved, even proved unsolvable, with reasonable ef-
fort, due to the particular nature of “typical” actions (which
affect only a few state variables) and the corresponding undo
problems. Performance does remain a challenge in some do-
mains though. The most important challenge, in our view, re-

mains more effective partial undoability checking, arguably
the most useful tool in practice. Towards this end, it may
be worth looking into assumption-based planning (Davis-
Mendelow et al. 2013), where the planner imposes restric-
tions on the initial belief, identifying a solvable subset of
initial states. The current incarnation pertains to conformant
planning, yet an extension to contingent planning and un-
doability checking appears promising and feasible.

Acknowledgments. This work was partially supported by
the EU FP7 Programme under grant agreement no. 295261
(MEALS). NICTA is funded by the Australian Government
through the Department of Communications and the Aus-
tralian Research Council through the ICT Centre of Excel-
lence Program.

References
Alexandre Albore, Héctor Palacios, and Hector Geffner. A
translation-based approach to contingent planning. In Proceedings
of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), pages 1623–1628, 2009.
Avrim L. Blum and Merrick L. Furst. Fast planning through plan-
ning graph analysis. Artificial Intelligence, 90(1-2):279–298, 1997.
Ronen I. Brafman and Guy Shani. A multi-path compilation ap-
proach to contingent planning. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence (AAAI’12), 2012.
Ronen I. Brafman and Guy Shani. Replanning in domains with
partial information and sensing actions. Journal of Artificial Intel-
ligence Research, 45:565–600, 2012.
Hubie Chen and Omer Giménez. Causal graphs and structurally
restricted planning. Journal of Computer and System Sciences,
76(7):579–592, 2010.
Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo
Traverso. Weak, strong, and strong cyclic planning via symbolic
model checking. Artificial Intelligence, 147(1–2):35–84, 2003.
Sammy Davis-Mendelow, Jorge A. Baier, and Sheila A. McIlraith.
Assumption-based planning: Generating plans and explanations
under incomplete knowledge. In Proceedings of the 27th AAAI
Conference on Artificial Intelligence (AAAI’13), 2013.
Thomas Eiter, Esra Erdem, and Wolfgang Faber. On reversing ac-
tions: Algorithms and complexity. In Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’07),
pages 336–341, 2007.
Thomas Eiter, Esra Erdem, and Wolfgang Faber. Undoing the ef-
fects of action sequences. Journal of Applied Logic, 6(3):380–415,
2008.
Maria Fox and Derek Long. The automatic inference of state in-
variants in TIM. Journal of Artificial Intelligence Research, 9:367–
421, 1998.
B. Cenk Gazen and Craig A. Knoblock. Combining the expressive-
ness of UCPOP with the efficiency of Graphplan. In Proceedings of
the 4th European Conference on Planning (ECP’97), pages 221–
233, 1997.
Alfonso Gerevini and Lenhart Schubert. Inferring state constraints
in DISCOPLAN: Some new results. In Proceedings of the 17th
National Conference of the American Association for Artificial In-
telligence (AAAI’00), pages 761–767, 2000.
Alfonso Gerevini and Lenhart Schubert. DISCOPLAN: an efficient
on-line system for computing planning domain invariants. In Pro-
ceedings of the 6th European Conference on Planning (ECP’01),
pages 433–436, 2001.

Malte Helmert. Concise finite-domain representations for PDDL
planning tasks. Artificial Intelligence, 173:503–535, 2009.
Jörg Hoffmann and Ronen Brafman. Contingent planning via
heuristic forward search with implicit belief states. In Proceed-
ings of the 15th International Conference on Automated Planning
and Scheduling (ICAPS’05), pages 71–80, 2005.
Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research, 14:253–302, 2001.
Jörg Hoffmann. Where ‘ignoring delete lists’ works: Local search
topology in planning benchmarks. Journal of Artificial Intelligence
Research, 24:685–758, 2005.
Peter Jonsson, Patrik Haslum and Christer Bäckström. Towards
Efficient Universal Planning – A Randomized Approach. Artificial
Intelligence, 117(1):1–29, 2000.
Michael Katz, Jörg Hoffmann, and Carmel Domshlak. Who said
we need to relax all variables? In Proceedings of the 23rd In-
ternational Conference on Automated Planning and Scheduling
(ICAPS’13), pages 126–134, 2013.
Jana Koehler and Jörg Hoffmann. On reasonable and forced goal
orderings and their use in an agenda-driven planning algorithm.
Journal of Artificial Intelligence Research, 12:338–386, 2000.
Shlomi Maliah, Ronen I. Brafman, Erez Karpas, and Guy Shani.
Partially observable online contingent planning using landmark
heuristics. In Proceedings of the 24th International Conference
on Automated Planning and Scheduling (ICAPS’14), 2014.
Christian J. Muise, Vaishak Belle, and Sheila A. McIlraith. Com-
puting contingent plans via fully observable non-deterministic
planning. In Proceedings of the 28th AAAI Conference on Arti-
ficial Intelligence (AAAI’14), pages 2322–2329, 2014.
Mark Peot and David E. Smith. Conditional non-linear planning.
In Proceedings of the 1st International Conference on Artificial In-
telligence Planning Systems (AIPS’92), pages 189–197, 1992.
Jussi Rintanen. An iterative algorithm for synthesizing invariants.
In Proceedings of the 17th National Conference of the American
Association for Artificial Intelligence (AAAI’00), pages 806–811,
2000.
Ulrich Scholz. Extracting state constraints from PDDL-like plan-
ning domains. In Proc. AIPS 2000 Workshop on Analyzing and
Exploiting Domain Knowledge for Efficient Planning, pages 43–
48, 2000.
Guy Shani and Ronen I. Brafman. Replanning in domains with par-
tial information and sensing actions. In Proceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence (IJCAI’11),
pages 2021–2026.
Ingo Weber, Hiroshi Wada, Alan Fekete, Anna Liu, and Len Bass.
Automatic undo for cloud management via AI planning. In Pro-
ceedings of the 8th Workshop on Hot Topics in System Dependabil-
ity (HotDep’12), 2012.
Ingo Weber, Hiroshi Wada, Alan Fekete, Anna Liu, and Len Bass.
Supporting undoability in systems operations. In Proceedings
of the 27th Large Installation System Administration Conference
(LISA’13), pages 75–88, 2013.
Brian C. Williams and P. P. Nayak. A reactive planner for a
model-based executive. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence (IJCAI’97), pages 1178–
1185, 1997.

