
A Reminder about the Importance of Computing and Exploiting Invariants in
Planning

Vidal Alcázar
vidal.alcazar.saiz@gmail.com

Universidad Carlos III de Madrid, Madrid, Spain

Álvaro Torralba
torralba@cs.uni-saarland.de

Saarland University, Saarbrücken, Germany

Abstract
Throughout the years, extensive work has pointed out
how important computing and exploiting invariants is
in planning. However, no recent studies about their em-
pirical impact regarding their ability to simplify and/or
complete the model have been done. In particular, an
analysis about the impact of invariants computed in re-
gression from the goals is severely lacking, despite the
existence of previous attempts to use this kind of invari-
ants in different planning settings. In this work we fo-
cus on the ability of invariants to simplify the planning
task in a preprocessing step. Our results show that this
simplification significantly improves the performance
of different optimal and satisficing planners.

Introduction
The invariants of a planning problem are relationships be-
tween the entities of the task that are true in the definition
of the initial state and the goal condition (if the problem has
a solution) and whose truth is preserved by the application
of the actions of the problem. The importance of invariants
has been highlighted by many authors throughout the years.
First, different methods to compute invariants have been pro-
posed (Gerevini and Schubert 1998; Fox and Long 1998;
Rintanen 2000; 2008; Helmert 2009); second, the benefits
of exploiting the information provided by invariants have
proven to be essential in many planning paradigms. Exam-
ples of successful uses of invariants are partial-order plan-
ning (Penberthy and Weld 1992), planning graphs (Blum
and Furst 1997), backward search (Bonet and Geffner 2001),
planning as SAT (Chen, Xing, and Zhang 2007; Huang,
Chen, and Zhang 2012) and multi-valued formulations of
planning (Edelkamp and Helmert 1999; Helmert 2009).

However, and despite the substantial amount of publica-
tions dedicated to the study of invariants, some areas remain
unclear. In particular, the computation of binary static mu-
texes using a reachability analysis in Pm (Haslum 2009),
arguably the most common form of invariant computation,
and the impact of a fixpoint computation of invariants, have
not been empirically studied in isolation. In addition, some
major aspects, like the direction of the computation of the
invariants, appear scattered in the literature. Hence, in this

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

work we analyze some aspects of the computation of in-
variants, focusing on important details of the implementa-
tion and the direction of the computation. The aim of this
work is to propose the use of invariants as a general method
to simplify the model of the planning task (Haslum 2007),
orthogonal to the techniques used to solve it. The empirical
results obtained show a noticeable improvement in coverage
for very different planners with little to no drawbacks.

Background
Classical planning tasks are formalized as a STRIPS prob-
lem (Fikes and Nilsson 1971) or a multi-valued problem.
The two most common multi-valued formalizations are
SAS+ (Bäckström and Nebel 1995) and the Finite-Domain
Representation (Helmert 2006). In this work we will use
SAS+, although we will make reference to the STRIPS
formalization whenever it is relevant. A planning task in
SAS+ is defined as a tuple Π=(V ,s0,s?,O). V is a set of
state variables, and every variable v ∈ V has an associ-
ated extended domain D+

v = Dv ∪ {u} composed of the
regular domain of each variable, Dv , and the undefined
value u (used to denote unknown values). The value of a
variable v ∈ V in a given state s, also known as fluent,
is defined as s[v]. s0 is the initial state. s? is the (com-
monly partial) state that defines the goals. O is a set of
operators (actions), where each operator is a tuple o =
(pre(o), post(o), prev(o)), where pre(o), post(o), prev(o)
represent the pre-, post- and prevail-conditions respectively.
A solution plan (a1, a2, . . . , an) where ai ∈ O is related to
a sequence of states (s0, s1, s2, . . . , sn) s.t. s? ⊆ sn and si
results from executing the action ai in si−1, ∀i = 1..n.

State invariants and Spurious States/Actions
A state invariant is a logical formula over the fluents of a
state that must hold in every state that may belong to a so-
lution path. We will work with two types of state invariants:
relations of mutual exclusivity (mutex) and “exactly-1” in-
variant groups.

Definition 1. (Mutex) A set of fluents M = {f1, . . . , fm} is
a set of mutually exclusive fluents of size m (mutex of size
m) if there is no state s ⊆ S that may belong to a solution
path such that M ⊆ s.



This differs from the original definition of mutex by Bonet
and Geffner (2001) in that it does not depend on s0. While
the original definition is suitable to identify states unreach-
able from s0, it does not contemplate other cases, as un-
reachable states from s? (which would correspond to for-
ward dead ends) or spurious states detected using other types
of invariants.

The most common method to find mutexes is the hm

heuristic (Bonet and Geffner 2001). hm performs a reacha-
bility analysis in Pm (Haslum 2009), a semi-relaxed version
of the original problem in which atoms are actually sets of m
fluents. If the value of hmax of an atom in Pm is infinite (it
is unreachable in Pm) then that atom is a mutex of size m.
The time needed to compute hm grows exponentially with
m, so we will consider only mutexes of size two.
Definition 2. (“exactly-1” invariant group) An “exactly-1”
invariant group is a set of fluents Ig = {f1, . . . , fn} such
that ∀pm = {fi, fj}|fi, fj ∈ Ig ∧fi 6= fj , pm is mutex, and
(f1 ∨ . . . ∨ fn) is a state invariant.

All the variables v ∈ V are “exactly-1” invariant groups,
but not all the “exactly-1” invariant groups of the problem
need to be variables. Groups of fluents such that all the el-
ements are pairwise mutex can be completed with an addi-
tional fluent 〈none of those〉 to turn them into “exactly-1”
invariant groups (Helmert 2009).
Definition 3. (Spurious state/action) A spurious state is a
state that cannot be part of a solution path. A spurious ac-
tion is an action that cannot be part of a solution plan.1

A state that violates a state invariant is spurious and hence
can be safely pruned. An action whose preconditions or ef-
fects violate a state invariant is also spurious and can also be
safely discarded.

Implementation Details of h2

Due to its simplicity and efficiency, h2 is the most popular
invariant computation method. There exist generalizations
of h2 (Rintanen 2008), but for classical planning h2 is still
widely used. In spite of this, there are important details that
affect its behavior.

Negated Atoms h2’s original definition is based on
STRIPS. This does not represent explicitly the negation of
the propositions, which may be problematic, e.g.: in the
Matching-Blocksworld domain, a block may become non-
solid, in which case no other block can be stacked on top of
it. Solid blocks are represented by the predicate (solid ?x -
block), so a non-solid block is identified by having the corre-
sponding proposition as false. Because of this, a mutex like
{on a b), ¬(solid b)} will not be found by h2, with a poten-
tially high detrimental impact. Yet, not all the propositions
need to have their negation explicitly represented.
Theorem 1. Only the propositions that do not belong to an
“exactly-1” invariant group must have their negation explic-
itly represented to ensure that all spurious states detectable
with binary mutexes can be found.

1Again, this does not depend on s0 for the aforementioned rea-
sons.

Proof by contradiction. Let p, q be propositions such that
(¬p∧q) is a mutex. Let Ig = {p, f1, . . . , fn} be an “exactly-
1” invariant group such that p ∈ Ig . ¬p =⇒ (f1∨. . .∨fn),
so whenever (¬p∧ q) is true then ((q ∧ f1)∨ . . .∨ (q ∧ fn))
is true. Therefore, {(q ∧ f1), . . . , (q ∧ fn)} are mutexes too
and whenever (¬p∧ q) is true, at least one of those mutexes
is violated.

In SAS+, fluents that do not belong to an “exactly-1” in-
variant group will be grouped with a 〈none of those〉 fluent.
Therefore, the negation of the fluents of a SAS+ task does
not need to be explicitly represented, as all the fluents will
be part of an “exactly-1” invariant group.

Unreachable Actions Every action that has not been ap-
plied in h2 is spurious, as it is unreachable in P 2 and nec-
essarily contains mutex preconditions. Spurious actions will
not be applicable forward, but they may be applicable back-
wards or be otherwise used in other parts of the planner, like
the heuristic computation.

Encoding Extra Information in the Actions Other in-
variant computation methods use the invariants found to en-
rich the description of the actions and find new invariants
with a fixpoint computation (Gerevini and Schubert 1998;
Rintanen 2000; 2008). This is applicable to h2 too. A gen-
eral way to do this is to disambiguate the actions (Alcázar
et al. 2013). This consists of creating a CSP in which the
“exactly-1” invariant groups are the variables, the fluents
that belong to them are their domain, and the mutexes are the
constraints. Departing from a partial state, constraint propa-
gation is enforced. If the domain of some variable becomes
empty, the partial state is spurious. If the domain of some
variable has a single valid value, it can be encoded explicitly
in the partial state. This can be done with both the effects
and preconditions of the actions, and generalizes over other
methods such as e-deletion (Vidal and Geffner 2005). If the
preconditions or effects of an operator are inconsistent with
the state invariants, it can be removed. This includes all the
actions unreachable in h2, but it may detect more.

State Invariants in Regression
Current invariant computation methods work in progres-
sion starting from s0 and inferring new information forward.
However, this can be also done from s? in regression, infer-
ring new information backward: imagine a problem with a
truck, with fuel encoded in a discrete fashion using a se-
quence of fluents. The truck must arrive to its destination,
and moving from one location to an adjacent one uses one
unit of fuel. By regressing over s?, one can easily infer that
at the locations at distance 1 of the destination the truck must
have at least one unit of fluent, at the locations at distance 2,
2 units, and so on. This implication can be encoded with a
set of mutexes. For example, being at a location at distance
2 of the destination and having 1 unit of fuel is a mutex.

Forward search planners can prune spurious states that vi-
olate mutexes computed backward, e.g.: if a forward search
planner finds a mutex “truck at some location” and “fuel



equals n”, that state can be pruned, as the truck will not be
able to make it to its destination. This is the reason why Def-
inition 1 does not depend exclusively on s0, as mutexes can
be computed in either direction. Invariants computed in re-
gression can be used normally in any planning paradigm, but
only the invariants computed in the opposite direction matter
when pruning states during state space search.

Theorem 2. An invariant computed in a given direction
cannot be violated by a state generated in that direction.

Proof sketch. The invariants of the relaxation of a problem
are a subset of the invariants of the original problem. Invari-
ants hold through the application of actions. Hence, all the
invariants respected in a given direction in a relaxed problem
will hold in the same direction in the original one.

Backward invariants can be computed using a reversed
formulation R(Π) of the original problem Π, initially pro-
posed by Massey (1999) and later revisited by Petter-
son (2005) and Suda (2013). This reversed problem is com-
putable in polynomial time and space, and every solution
plan of R(Π) corresponds univocally to a solution plan of Π.
s0 in R(Π), which corresponds to s? in Π, is commonly a
partial state though. In order to obtain as much information
as possible from R(Π), it is advisable to disambiguate s0 in
R(Π) with information from forward invariants.

Regarding the actual computation of invariants in regres-
sion, this is not a novel idea. Petterson already used R(Π)
to compute a reversed planning graph, which yields the set
of static binary mutexes obtained by backward h2 when it
levels off. Also, Haslum (2008) explicitly implemented h2

on R(Π) to use it as an admissible heuristic for a forward
heuristic planner. Nevertheless, neither author explored this
line as a general way to obtain invariants, nor reported the
amount of mutexes found or the number of spurious actions
discarded. Performing h2 in regression dominates a back-
wards reachability analysis (which is nothing but hmax in
regression) and has the same properties as h2 in progression.

Since in this work we use SAS+, a few points must be
clarified. First, we do not encode the negation of fluents
explicitly. Second, the reversed operators are substantially
simpler to obtain: the preconditions of the action become
the postconditions and vice versa, while the prevail con-
ditions remain the same. In the computation of h2 back-
wards, though, we have to deal with undefined precondi-
tions, i.e. a variable v ∈ V and an action o ∈ O such that
pre(o)[v] = {u} and post(o)[v] 6= {u}. In this case, any
value of Dv should be considered as a potential postcondi-
tion in regression, which corresponds to an add effect of the
action in h2. However, by disambiguating the action some
values of Dv may be discarded, obtaining a tighter set of
add effects (for instance, if a fluent p ∈ Dv is mutex with
another fluent p′ such that p′ ∈ pre(o), then p does not need
to be an add effect in regression). Note that these potential
postconditions in regression cannot be used to infer delete
effects straightforwardly by adding as a delete any fluent
mutex with them: unless a fluent is mutex with all the po-
tential preconditions of Dv , it cannot be added as a delete
(following the former example, if Dv = {p, q, r} and p was

Algorithm 1: Fixpoint computation of invariants.
fw← True, updatedFW← True, updatedBw← True
while updatedFW ∨ updatedBW do

if fw ∧ updatedBW then
updatedFW←− computeH2(fw) ∨
disambiguateActions()

if ¬ fw ∧ updatedFW then
updatedBW←− computeH2(fw) ∨
disambiguateActions()

fw←− (¬ fw)

discarded, a fluent p′′ can only be added as a delete effect if
p′′ is mutex with both q and r).

The computation of invariants in both directions can be
combined to allow inferring more information. For instance,
it is possible that after a backward computation of h2, addi-
tional mutexes can be found forward by computing h2 with
the additional backward invariants. Algorithm 1 shows the
fixpoint procedure employed.

Experiments
We have implemented the described techniques as part of
Fast Downward’s preprocessor (Helmert 2006). To assess
their usefulness, we have first analyzed their capability to
simplify the benchmark tasks of the International Planning
Competition (IPC) for optimal planning. Table 1 shows the
sum of original facts (F) and actions (O) among all the prob-
lems of the domain, the geometric mean of the ratio of re-
maining facts (% F) and actions (% O) after the simplifica-
tion, the sum of forward mutexes barring those encoded by V
(Mfw ), the geometric mean of the ratio of forward mutexes
that were not extracted from “exactly-1” invariant groups
(% Mfw ), the number of backward mutexes (Mbw ), the max-
imum number of times that mutexes were computed forward
or backward until no new invariants could be found (i) and
the maximum time necessary to compute the invariants (t(s))
among all the problems of the domain. In the latter, if in at
least one problem the invariant computation surpassed the
imposed limit of 300 seconds, we report the number of prob-
lems in which this occurs instead.

A significant simplification is obtained in several do-
mains. More than a fourth of the facts could be discarded in
three domains (Airport, Parcprinter and Tidybot), and more
than three fourths of the actions in Airport and Tidybot, with
several other domains like Trucks, Scanalyzer, NoMystery
or Floortile greatly benefiting from action pruning too. Some
of these domains are STRIPS versions of ADL formulations,
which indicates that a naive compilation may produce a high
number of irrelevant actions and facts, but in domains like
Floortile and NoMystery this is due to their structure.

In many domains h2 finds a sizable amount of new mu-
texes, and in 15 domains backward mutexes are found, with
a positive correlation between the number of backward mu-
texes and pruned actions in most cases. Only in three do-
mains the computation of invariants is not possible under
300 seconds, and often in tasks far from the reach of current



Domain # F % F O % O Mfw % Mfw Mbw i t (s)
Airport (50) 157592 0.62 144963 0.23 7711748 0.96 130480 7 > (13)
Barman (20) 4604 1.00 13264 0.86 11569 0.96 0 2 0.22
Blocksworld (35) 4826 1.00 7490 1.00 28694 0.07 0 2 0.12
Depot (22) 9423 1.00 68894 0.83 104628 0.21 0 2 16.56
Driverlog (20) 6007 1.00 53494 1.00 715 0.00 0 2 5.86
Elevators08 (30) 3360 1.00 18520 1.00 0 – 0 2 0.06
Elevators11 (20) 2097 1.00 11450 1.00 0 – 0 2 0.04
Floortile11 (20) 3578 0.82 9188 0.62 3766 0.00 4758 4 0.22
Freecell (80) 23419 1.00 1071066 1.00 267475 0.83 37 3 5.76
Grid (5) 3373 1.00 38808 1.00 1770 0.80 0 2 13.5
Gripper (20) 2380 1.00 3720 1.00 2300 0.00 0 2 0.02
Logistics00 (28) 3429 1.00 6972 1.00 0 – 0 2 0.06
Logistics98 (35) 82687 1.00 501186 1.00 0 – 0 2 > (1)
Miconic (150) 13950 1.00 189100 1.00 0 – 0 2 0.14
Mprime (35) 17796 0.99 567960 0.90 13558 1.00 0 2 36.22
Mystery (30) 13066 0.94 217800 0.77 22891 1.00 838 5 38.9
NoMystery11 (20) 4434 0.94 72522 0.62 26802 1.00 364 4 0.7
Openstacks08 (30) 3540 1.00 28480 1.00 3138 1.00 0 2 0.14
Openstacks11 (20) 2360 1.00 17320 1.00 2050 1.00 0 2 0.1
Openstacks06 (30) 10634 1.00 213470 1.00 177579 1.00 0 2 114.96
Parcprinter08 (30) 6139 0.75 9066 0.33 57862 1.00 8483 5 0.48
Parcprinter11 (20) 3993 0.72 5096 0.32 35205 1.00 5054 5 0.2
Parking11 (20) 11020 0.97 241740 0.96 195470 0.55 340 3 13.28
Pathways-nn (30) 13119 1.00 40595 1.00 20585 1.00 219 3 1.38
Pegsol08 (30) 2920 0.86 5346 0.70 2164 1.00 152 7 0.02
Pegsol11 (20) 2000 1.00 3700 0.94 1559 1.00 0 2 0.02
Pipesw-notan (50) 44594 0.97 187388 0.92 556322 1.00 0 2 81.86
Pipesw-tan (50) 28027 0.98 1135917 0.98 278986 0.79 14 3 127.44
Psrsmall (50) 2158 1.00 14546 0.98 3486 1.00 0 2 0.22
Rovers (40) 29324 1.00 231653 1.00 637 1.00 0 2 34.68
Satellite (36) 30479 1.00 3709130 1.00 1156 1.00 0 2 > (3)
Scanalyzer08 (30) 4680 1.00 1145836 0.57 25776 1.00 0 2 13.66
Scanalyzer11 (20) 3088 1.00 631288 0.69 16768 1.00 0 2 13.64
Sokoban08 (30) 8518 0.79 12674 0.76 102842 0.43 3454 7 4.78
Sokoban11 (20) 5306 0.78 7166 0.76 87257 0.51 996 7 4.8
Tidybot11 (20) 11476 0.69 384018 0.15 87905 1.00 0 2 21.76
TPP (30) 18807 0.88 281351 0.55 2088 1.00 0 3 25.22
Transport08 (30) 6800 1.00 105888 1.00 0 – 0 2 1.92
Transport11 (20) 2886 1.00 35216 1.00 0 – 0 2 0.2
Trucks (30) 6961 0.95 442262 0.54 30234 0.35 25219 3 39.86
Visitall (20) 2516 1.00 3520 1.00 753 1.00 0 2 0.1
Woodw08 (30) 5677 0.96 27835 0.49 13244 0.91 36 4 0.5
Woodw11 (20) 3805 0.96 18175 0.48 9005 0.91 26 4 0.3
Zenotravel (20) 4518 1.00 140433 1.00 0 – 0 2 12.8

Table 1: Results of the invariant computation.

state-of-the-art optimal planners.
We also did an ablation study disabling some features of

the preprocessor. Disambiguation used to prune spurious ac-
tions proved to be essential in Airport, Floortile, Parcprinter,
TPP and Woodworking, but disabling the encoding of in-
variants in the actions via disambiguation had very little im-
pact. The fixpoint alternation of the forward and backward
direction is of most importance in Parcprinter, though it also
helps in other domains such as Airport and Sokoban. Dis-
abling the backward h2 computation has a major impact in
domains with an important amount of backward mutexes.

Now we check whether simplifying the problem helps
current planners to solve more tasks. Table 2 shows the cov-
erage of four planners, two optimal planners run on the opti-
mal benchmark - Fast Downward with blind search and the
lm-cut heuristic (Helmert and Domshlak 2009) - and two
satisficing planners on the satisficing benchmark - FD is Fast
Downward with lazy greedy best-first search, preferred op-
erators and the FF heuristic (Hoffmann and Nebel 2001), and
LAMA is the first iteration of LAMA (Richter and Westphal
2010). Only the domains for which a change in coverage was
observed are displayed. As shown by the results, there is a
significant improvement in all four planners. The optimal
planners solve strictly more tasks, and most of the tasks lost
by FD are due to different tie breakings. This result is very
significative, as it proves that an orthogonal preprocessing
step helps planners of a very different nature.

Optimal Satisficing
Blind LM-cut FD LAMA

Domain # - h2 - h2 - h2 - h2

Airport 50 22 +5 28 +1 37 +2 35 +3
Barman 20 4 0 4 0 8 -1 20 0
Depot 22 4 0 7 0 18 0 21 +1
Floortile-11 20 2 +6 7 +7 7 +13 6 +14
Freecell 80 20 0 15 0 80 -1 80 0
Mystery 30 15 0 17 0 16 +2 19 0
Nomystery-11 20 8 0 14 0 10 -1 13 0
Parcprinter-08 30 10 +11 18 +4 21 +9 27 +3
Parcprinter-11 20 6 +10 13 +4 3 +15 14 +6
Pegsol-08 30 27 0 28 +1 30 0 30 0
Pegsol-11 20 17 0 18 +1 20 0 20 0
Pipes-notank 50 17 0 17 0 44 -2 43 +1
Satellite 36 6 0 7 0 36 -1 36 -1
Sokoban-08 30 22 +5 30 0 28 0 29 0
Sokoban-11 20 19 +1 20 0 18 0 19 0
Tidybot-11 20 12 0 14 +3 15 +2 16 +3
Tpp 30 6 0 6 +1 30 0 30 0
Trucks-strips 30 6 +1 10 0 20 -2 15 0
Woodworking-08 30 8 +1 17 +5 30 0 30 0
Woodworking-11 20 3 +1 12 +3 20 0 20 0
Others 788 299 0 445 0 647 0 773 0∑

1396 533 +41 747 +30 1138 +35 1296 +30

Table 2: Coverage of different planners. In domains with dif-
ferent sets of problems, the corresponding set was used.

We also tried a version that explicitly checked if back-
ward invariants were violated when generating states for-
ward. Blind search benefited from this, solving six more
tasks in Floortile, one more in Sokoban08 and one more in
Trucks-strips, and reducing the number of expanded nodes
in other domains. The results remained unchanged for the
heuristic planners, though. This is because once some ac-
tions are pruned thanks to the backward h2, the reachability
analysis done by these planners suffices to detect states that
violate backward mutexes as forward dead-ends.

Conclusions
In this work we have analyzed several unclear aspects of in-
variant computation. Additionally, we have done an exper-
imental analysis regarding implementation details not cov-
ered by previous works, with a particular emphasis on the
computation of invariants in regression. Results show that it
is very advantageous to exploit invariants in a preprocessing
step to simplify the planning task, even if those invariants
are not explicitly used during search.

We leave as future work exploring other invariant compu-
tation methods in regression and testing empirically the im-
pact of backward invariants in other paradigms. The poten-
tial of completing the model using invariants is also interest-
ing, e.g.: disambiguating undefined preconditions can posi-
tively affect LP-based heuristics (Pommerening et al. 2014)
by turning actions that sometimes consume or produce an
atom into actions that always do so. We also plan to have a
closer look at the interaction with complementary methods
to simplify the planning task such as irrelevant-action prun-
ing (Scholz 2004; Haslum, Helmert, and Jonsson 2013).



Acknowledgements
This work is partially supported by the EU FP7 Programme
under grant agreement no. 295261 (MEALS).

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In International
Joint Conference on Artificial Intelligence (IJCAI), 2254–
2260.
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11:625–656.
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-2):281–
300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Chen, Y.; Xing, Z.; and Zhang, W. 2007. Long-distance mu-
tual exclusion for propositional planning. In International
Joint Conference on Artificial Intelligence (IJCAI), 1840–
1845.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge
in planning problems to minimize state encoding length. In
European Conference on Planning (ECP), 135–147.
Fikes, R., and Nilsson, N. 1971. STRIPS: a new approach
to the application of theorem proving to problem solving.
In International Joint Conference on Artificial Intelligence
(IJCAI), 608–620.
Fox, M., and Long, D. 1998. The automatic inference of
state invariants in tim. Journal of Artificial Intelligence Re-
search (JAIR) 9(1):367–421.
Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In National Con-
ference on Artificial Intelligence (AAAI), 905–912.
Haslum, P.; Helmert, M.; and Jonsson, A. 2013. Safe, strong,
and tractable relevance analysis for planning. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 317–321.
Haslum, P. 2007. Reducing accidental complexity in plan-
ning problems. In International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1898–1903.
Haslum, P. 2008. Additive and reversed relaxed reachabil-
ity heuristics revisited. Proceedings of the 6th International
Planning Competition.

Haslum, P. 2009. hm(P) = h1(Pm): Alternative characteri-
sations of the generalisation from hmax to hm. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 354–357.
Helmert, M., and Domshlak, C. 2009. Landmarks, criti-
cal paths and abstractions: What’s the difference anyway?
In International Conference on Automated Planning and
Scheduling (ICAPS).
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research (JAIR) 26:191–
246.

Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5-
6):503–535.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research (JAIR) 14:253–302.
Huang, R.; Chen, Y.; and Zhang, W. 2012. SAS+ planning
as satisfiability. Journal of Artificial Intelligence Research
(JAIR) 293–328.
Massey, B. 1999. Directions In Planning: Understanding
The Flow Of Time In Planning. Ph.D. Dissertation, Com-
putational Intelligence Research Laboratory, University of
Oregon.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Principles of
Knowledge Representation and Reasoning, 103–114.
Pettersson, M. P. 2005. Reversed planning graphs for rele-
vance heuristics in ai planning. In Planning, Scheduling and
Constraint Satisfaction: From Theory to Practice, volume
117, 29–38. IOS Press.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet,
B. 2014. LP-based heuristics for cost-optimal planning.
In International Conference on Automated Planning and
Scheduling (ICAPS).
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39:127–177.
Rintanen, J. 2000. An iterative algorithm for synthesiz-
ing invariants. In AAAI Conference on Artificial Intelligence
(AAAI), 806–811.
Rintanen, J. 2008. Regression for classical and nondeter-
ministic planning. In European Conference on Artificial In-
telligence (ECAI), 568–571.
Scholz, U. 2004. Reducing Planning Problems by Path Re-
duction. Ph.D. Dissertation, Technische Universität Darm-
stadt.
Suda, M. 2013. Duality in STRIPS planning. CoRR
abs/1304.0897.
Vidal, V., and Geffner, H. 2005. Solving simple planning
problems with more inference and no search. In Interna-
tional Conference on Principles and Practice of Constraint
Programming, volume 3709 of LNCS, 682–696.


