
Transition Trees for Cost-Optimal Symbolic Planning

Álvaro Torralba
Planning and Learning Group

Universidad Carlos III de Madrid, Spain
atorralb@inf.uc3m.es

Stefan Edelkamp
TZI Universität Bremen, Germany

edelkamp@tzi.de

Peter Kissmann
Universität des Saarlandes, Germany

kissmann@cs.uni-saarland.de

Abstract

Symbolic search with binary decision diagrams (BDDs) often
saves huge amounts of memory and computation time.
In this paper we propose two general techniques based on
transition relation trees to advance BDD search by refining
the image operator to compute the set of successors. First, the
conjunction tree selects the set of applicable actions through
filtering their precondition. Then, the disjunction tree com-
bines each transition result. Transition trees are used to com-
bine several transition relations, speeding up BDD search.
Experiments with bidirectional symbolic blind and symbolic
A* search on planning benchmarks are reported showing
good performance on most IPC 2011 domains.

Introduction
Binary decision diagrams (BDDs) (Bryant 1986) are
memory-efficient data structures used to represent Boolean
functions as well as to perform set-based search. Sym-
bolic search with BDDs avoids (or at least lessens) the costs
associated with the exponential memory requirement for
the state set involved as problem sizes get bigger. Sym-
bolic planning with BDDs links to symbolic model check-
ing (McMillan 1993) and has been pioneered by Cimatti et
al. (1997) and many existing symbolic planners like MBP
are built on top of symbolic model checkers. Symbolic A*
(alias BDDA*) has been invented by Edelkamp and Reffel
(1998) and integrated in the planning context by Edelkamp
and Helmert (2001) in the model checking integrated plan-
ning system MIPS. ADDA* (Hansen, Zhou, and Feng 2002)
is an alternative implementation with ADDs, while Set A*
(Jensen, Bryant, and Veloso 2002) refined the partitioning in
a matrix representation of g- and h-values.

In IPC 2011, the only BDD-based planner that partici-
pated was GAMER, already including the improvements pro-
posed by Kissmann and Edelkamp (2011). In that IPC,
explicit-state heuristic search planning showed advantages
over symbolic planning, indicating that the increased quality
of search heuristics sometimes exceeds the structural sav-
ings for representing and exploring large state sets in ad-
vanced data structures. However, implementation details
may be relevant for evaluating different techniques. For ex-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ample, it has been shown that an optimized version of ex-
plicit A* can be up to 5.8 times more efficient with a mem-
ory consumption 2.5 times lower (Burns et al. 2012).

One of the main computational bottlenecks in symbolic
planning is successor generation. The transition relation is
a function of predecessor and successor states, which en-
codes the planning actions. A traditional approach in sym-
bolic model checking is using a disjunctive or conjunctive
partition of the transition relation (Burch, Clarke, and Long
1991). In planning, as actions usually refer to a subset of
variables, a disjunctive partitioning is the most natural tech-
nique. For example, Jensen, Veloso, and Bryant (2008) pro-
pose to partition the planning actions into several transition
relations based on the difference in heuristic values.

In this work, we experiment with two improvements to
BDD exploration, both based on trees of transitions. The
conjunction tree filters the states supporting all precondi-
tions of an action. The disjunction tree computes the dis-
junction of the individual images for each action. These
transition trees are also used as a criterion for deciding the
transition relation partitioning. We analyze the relevance of
these two techniques for symbolic A* search, increasing the
performance of symbolic planning.

The IPC 2011 version of GAMER performed bidirectional
symbolic breadth-first search (BFS) for unit-cost domains
and symbolic A* for the rest. Comparison with explicit
search is even more difficult due to the use of different al-
gorithms for each domain. Therefore, we extended the bidi-
rectional symbolic BFS algorithm to bidirectional symbolic
Dijkstra search for supporting action costs, in order to com-
pare informed and blind symbolic algorithms.

The remainder of this paper is organized as follows. First,
we introduce symbolic planning concepts, followed by the
two algorithms considered in this paper: symbolic A* and
bidirectional symbolic Dijkstra search. Then, we study some
approaches for successor generation in symbolic planning.
Experimental results show that using the new image compu-
tation algorithms increases the efficiency of both symbolic
algorithms, making them competitive with other state-of-
the-art techniques.

Symbolic Planning with BDDs
A planning task consists of variables of finite domain, so
that states are assignments to the variables, an initial state,

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

206

the goal, and a finite set of actions, each being a pair of pre-
conditions and effects. In cost-based planning, actions are
associated with action cost values, which often are integers.
The task is to find a solution path from the initial state to a
goal. A solution path is optimal if its cost is smallest among
all possible solutions. A heuristic is a distance-to-goal map-
ping, and admissible if for all possible states the value is not
greater than the cost of an optimal solution path. A planning
task abstraction is a planning task based on a relaxation for
the initial state, goal state as well as the actions.

In symbolic search, binary decision diagrams (BDDs)
represent all binary state vectors that evaluate to 0 or 1. More
precisely, a BDD is a directed acyclic graph with one root
and two terminal nodes, called sinks, with values 0 and 1.
Each internal node corresponds to a binary variable of the
state vector and has two successors (low and high), one rep-
resenting that the current variable is false and the other rep-
resenting that it is true. For any assignment of the variables
on a path from the root to a sink the represented function
will be evaluated to the value labeling the sink. Moreover,
BDDs are unique, given a variable ordering, by applying the
two reduction rules of (1) eliminating nodes with the same
low and high successors and (2) merging two nodes repre-
senting the same variable that share the same low successor
as well as the same high successor.

Symbolic search classifies states in layers Sg , according
to the cost g needed to reach them. State sets are repre-
sented as BDDs by their corresponding characteristic func-
tions. We may assume that the BDD variable ordering is
fixed and has been optimized prior to the search. To gen-
erate the successors of a set of states, planning actions are
represented in the transition relation. The transition rela-
tion is a function defined over two sets of variables, one (x)
representing the current states and another (x′) represent-
ing the successor states. To find the successors with cost
g + c of a set of states Sg represented in the current state
variables (x) given a BDD Tc (the transition relation) for
the entire set of actions with cost c, the image is computed,
i. e., image(S, Tc) = ∃x . S(x) ∧ Tc(x, x′)[x′ ↔ x]. Thus,
the image is carried out in three steps. First, the conjunc-
tion with Tc(x, x

′) filters preconditions on x and applies
effects on x′. Existential quantification of the predecessor
variables x is a standard BDD operation which removes the
value relative to the predecessor states. Finally, [x′ ↔ x]
denotes the swap of the two sets of variables, setting the
value of the successor states in x. Similarly, search in back-
ward direction is done by using the pre-image operator (i. e.,
pre-image(S, Tc) = ∃x′ . S(x′) ∧ Tc(x, x′)[x↔ x′]).

Symbolic A* Planning
Symbolic A* search classifies the states according to their g
and h values, with g being the cost needed to reach the states
and h a heuristic estimate of the remaining cost to the nearest
goal. It expands the state sets in ascending order of f =
g + h. Thus, when using an admissible heuristic, expanding
all the states with f < f∗ (the cost of an optimal solution)
guarantees to obtain on optimal solution. In this paper we
consider the List A* implementation (Edelkamp, Kissmann,
and Torralba 2012), which organizes the generated states in a

list according to their g value and computes the conjunction
with the heuristic only on demand.

The word pattern in the term pattern database (PDB)
coined by Culberson and Schaeffer (1998) was inspired by
a selection of tiles in the sliding-tiles puzzle, and has been
extended to the selection of state variables in other do-
mains. More general definitions have been applied, shift-
ing the focus from the mere selection of care variables to
different state-space abstractions that are computed prior
to the search. Following the definition in (Edelkamp and
Schrödl 2012), a PDB is characterized by memorizing an
abstract state space, storing the shortest path distance from
each abstract state to the set of abstract goal states. An
efficient implementation for explicit-state PDB planning is
given by Sievers, Ortlieb, and Helmert (2012). A partial
pattern database (Anderson, Holte, and Schaeffer 2007) is
a PDB that is not fully calculated, but rather its calculation
is stopped after either a pre-defined distance to the nearest
goal or a pre-defined time-out has been reached. If all states
with a distance of d have been generated, then all the other
states can safely be assigned a value of d+ 1.

Symbolic PDBs (Edelkamp 2005) are PDBs that have
been constructed symbolically as decision diagrams for later
use either in symbolic or explicit heuristic search. In con-
trast to the posterior compression of the state set (Ball and
Holte 2008), the construction in (Edelkamp 2005) works on
the compressed representation, allowing larger databases to
be constructed. The savings observed by the symbolic rep-
resentation are substantial in many domains. For symbolic
heuristic search (Jensen, Veloso, and Bryant 2008) it is of-
ten more convenient to represent the PDB as a vector of
BDDs, i. e., where the heuristic relation is partitioned into
Heur[0](x), . . . ,Heur[maxh](x).

For symbolic PDB construction in unit-cost state spaces,
backward symbolic breadth-first search is used. For a given
abstraction function the symbolic PDB is initialized with
the projected goal. As long as there are newly encountered
states, we take the current backward search frontier and gen-
erate the predecessor list with respect to the abstracted tran-
sition relation. Then we attach the current BFS level to
the new states, merge them with the set of already reached
states, and iterate. When action costs are integers this pro-
cess can be extended from breadth-first to cost-first levels.

The implementation we based our experiments on (the
planner GAMER by Kissmann and Edelkamp (2011)) auto-
matically decides whether to use a procedure similar to the
one proposed by Haslum et al. (2007) to automatically select
a pattern or to calculate a partial PDB based on the original
non-abstracted input. In both cases, PDB creation can take
up to half the available time. In this paper, we only con-
sider the automatic pattern selection procedure, since partial
PDBs on the original state space are similar to bidirectional
blind search.

Bidirectional Symbolic Shortest Path Search
As another extreme, we implemented bidirectional shortest
path search on domains with non-unit action costs (cf. Al-
gorithm 1). The motivation for this was that in GAMER the
automatic decision procedure often chose to not abstract the

207

Algorithm 1 Bidir. Symbolic Dijkstra: A, I, G, w, T
fClosed ← bClosed ← ∅
fReach0 ← I
bReach0 ← G
gf ← gb ← 0
wtotal ←∞
while gf + gb < wtotal

if NextDirection = Forward
{g1, . . . , gn} ← fStep(fReach, gf , fClosed , bClosed)
for all g ∈ {g1, . . . , gn}

for all i ∈ {i | i < gb and bReachi 6= ∅
and g + i < wtotal}

if fReachg ∧ bReachi 6= ∅
wtotal ← g + i
update plan π

gf ← gf + 1
else // same in backward direction

return π

Procedure fStep(fReach, g, fClosed , bClosed)
Ret← {}
fReachg ← BFSc=0(fReachg) ∧ ¬fClosed
for all c ∈ {1, . . . , C}
Succ ← image(fReachg, Tc)
if Succ ∧ bClosed 6= ∅
Ret← Ret ∪ {g + c}

fReachg+c ← fReachg+c ∨ Succ
fClosed ← fClosed ∨ fReachg

return Ret

domains, but rather calculate the partial PDB until a time-
out was reached. In those cases bidirectional blind search
is more flexible, as it is able to select whether to perform a
backward or a forward step at any time.

The algorithm takes a set of actions A, the initial state
I, the goal states G, the action costs w and the transition
relation T , which is a set of BDDs Tc for each action cost
c, as input. The forward search starts at I, the backward
search at G. In case a forward step is to be performed next,
the procedure fStep is called, which removes the already
expanded states from the bucket to be expanded next in the
open list fReach . Then it computes the image to find the set
of successor states and inserts them into the correct buckets
of fReach . Whenever a newly generated successor, which is
inserted into bucket g+c in fReach , has already been solved
in backward direction we store the index g + c.

After the fStep the algorithm continues with the set of
stored indices corresponding to states that were just gener-
ated in forward direction and already expanded in backward
direction (those indices stored in Ret). It searches for the
same states in the backward buckets bReach . When it finds
a bucket that contains such a state the sum of the indices of
backward and forward direction corresponds to the smallest
cost of a solution path over such a state. If this cost is smaller
than the smallest cost found so far (wtotal) then wtotal is up-
dated and the corresponding solution path π can be created.
The procedure for the backward step looks nearly the same,

only that the forward and backward sets are swapped and
pre-images instead of images are applied.

The stopping criterion in the BDD implementation of a
bidirectional version of Dijkstra’s (1959) algorithm is not
immediate, as individual shortest paths for the states can-
not be maintained and many improvements for bidirectional
explicit state search are not immediate (Rice and Tsotras
2012). In the context of external search the following cri-
terion has been established (Goldberg and Werneck 2005):
stop the algorithm when the sum of the minimum g-values of
generated states for the forward and backward searches is
at least wtotal , the total of the cheapest solution path found
so far. They have shown that this stopping condition guar-
antees an optimal solution to be found. Since the g-value
for each search is monotone in time, so is their sum. After
the condition is met, every state s removed from a priority
queue will be such that the costs of the solution paths from
I to s and from s to G will be at least wtotal , which implies
that no solution path of cost less than wtotal exists.

To decide whether to perform a forward or backward
step, the algorithm selects the direction with lower estimated
time. The estimated time for step k, tk, is based on the time
spent on the last step tk−1 and the BDD sizes for the state
set to be expanded and the state set expanded in the last step,
sk and sk−1, respectively. A linear relation between BDD
size and image time is assumed:

tk = tk−1
sk
sk−1

Though the estimation is not perfect, it is often accurate
enough to determine the best direction. In some domains
a backward step takes a lot longer than a forward step, so
that we have implemented the possibility to abolish back-
ward search altogether and continue only in forward direc-
tion in case a backward step takes significantly longer than
the slowest forward step.

Efficient Image Computation
Having a single transition relation per action cost c, Tc =∨

a∈A,w(a)=c Ta is often infeasible due to the exponential
memory cost required to represent it. GAMER considers
a disjunctive partitioning of the transition relation with a
transition for each grounded action of the planning task,
T = {Ta | a ∈ A}. The image is computed as the dis-
junction of the individual images wrt. the transition relation
of each grounded planning action:

image(S, Tc) =
∨

a∈A,w(a)=c

image(S, Ta).

This guarantees some properties on the transition relations
of the problem. In particular, the effect of an action is ex-
pressed by a list of assignments of variables to values, which
do not depend on the preconditions1. All the variables not
appearing in the effects must retain their values. It is pos-
sible to take advantage of this structure. When computing

1More complex effects such as conditional effects can be com-
piled away with an exponential growth in the number of ac-
tions (Nebel 1999).

208

the image wrt. an action Ta, the existential quantification
and variable swapping need only to be applied over variables
modified by its effects, xa ⊆ x:

image(S, Ta) = ∃xa . S(x) ∧ Ta(x, x′)[x′a ↔ xa].

Furthermore, it is possible to divide the transition relation

Ta(x, x
′) into its precondition Tpre

a (x) and effect T eff
a (xa),

such that Ta(x, x′) = T
pre
a (x) ∧

(
T

eff
a (xa)[xa ↔ x′a]

)
.

Applying the precondition and the effect separately we can
express transition relations using only the set of predecessor
variables, so that variables representing the successor states
x′ as well as the swap operation are no longer needed:

image(S, Ta) = (∃xa . S(x) ∧ T
pre
a (x)) ∧ T eff

a (xa).

When considering precondition matching and effect ap-
plication as two separate operations, the conjunction with
the precondition of each action might be reused by several
actions sharing the same precondition. First, we extend this
idea by defining a conjunction tree that filters states in which
each action is applicable. Then, we consider combining sev-
eral transition relations, avoiding the exponential memory
blowup by imposing a limit on the transition sizes.

Conjunction Tree
In many explicit-state planners there are speed-up tech-
niques for filtering the actions that match, such as the suc-
cessor generators used in (Helmert 2006). In those succes-
sor generators, the actions are organized in a tree (see Fig-
ure 1a). Each leaf node contains a set of actions having the
same preconditions, Apre . Every internal node is associated
with a variable v and splits the actions with respect to their
precondition for v, one child for every possible value that
v can take and an additional one for the actions whose pre-
condition is independent of v. To compute the successors of
a state the tree is traversed, omitting branches labeled with
unsatisfied preconditions.

We found that the approach carries over to BDD search as
follows. As all the variables are binary2, each internal node
only has three children c0, c1 and cx, dividing the actions
into three sets: those that have v as a precondition, those
that have v as precondition and those whose precondition
does not depend on v at all, respectively. When computing
the successor states, the actions are not applied over a single
state as in explicit search. Instead, all the successors of a set
of states represented as a BDD are computed. Still, actions
in a branch of the tree only need to be applied over states
satisfying the corresponding precondition. We take advan-
tage of this by computing the subset of states satisfying the
precondition as the conjunction of the state set with the pre-
condition label. We call this method conjunction tree (CT).

Algorithm 2 shows how to compute the image of a BDD
using the conjunction tree structure. It takes as input the set
of states S and the root node of the conjunction tree and re-
turns a set of BDDs per action cost, corresponding to the im-
ages wrt. each transition relation. For each internal node one

2Finite-domain state variables are compiled into several binary
variables in the BDD representation.

Algorithm 2 CT: Image using the conjunction tree
CT-image (node, S):

if S = ∅:
return ∅

if node is leaf:
return

⋃
a∈node.A

{w(a), image(S, Ta)}

v ← node.variable
r0 ← CT-image(node.c0, S ∧ ¬v)
r1 ← CT-image(node.c1, S ∧ v)
rx ← CT-image(node.cx, S)
return r0 ∪ r1 ∪ rx

recursive call is applied for each child node, applying the
corresponding conjunction between the state set S and the
precondition associated with it. This conjunction is reused
for all the actions in that branch. Moreover, if there are no
states satisfying the preconditions of a branch, it is not tra-
versed. In the leaf nodes it computes the image wrt. all the
actions in that node. The image wrt. each action can be com-
puted using a transition relation or with separated precondi-
tion and effect BDDs.

Conjunction trees for backward search are initialized tak-
ing into account the preconditions of the inverted actions. In
the presence of 0-cost actions, before expanding a layer both
algorithms (symbolic A* and bidirectional symbolic Dijk-
stra search) need to apply a BFS based only on the 0-cost
actions until a fixpoint is reached. Since cost and 0-cost ac-
tions are applied over different sets of states, two different
conjunction trees are needed: one containing the 0-cost ac-
tions and another with the rest. Thus, in order to apply bidi-
rectional search in domains with 0-cost actions, up to four
different conjunction trees are needed.

The conjunction tree has two advantages over the previ-
ous approach of just computing the images for every tran-
sition independently. On the one hand, if the state set does
not contain any state in a branch of the tree, all the actions
regarding that branch are ignored reducing the total number
of images. On the other hand, if several actions have the
same precondition, the conjunction of the state set with that
precondition is only computed once, reducing the size of the
BDDs we are computing the images for.

However, there might be an overhead in computing and
storing intermediate BDDs in memory. To address this, the
conjunction tree should only be used when the benefits are
estimated to be enough to compensate the overhead. This
is the case when the conjunction with some precondition is
shared between several actions. Thus, the conjunction tree
can be parametrized with a parameter min operators con-
junction, so that the intermediate conjunction with a partial
precondition is only computed when needed for at least that
number of actions. If the number of actions with that pre-
condition is not enough, they are placed on the don’t care
branch of the tree and marked so that we know that an ex-
tra conjunction with their preconditions is needed. Notice
that in case that some preconditions have been conjoined and
others not, the conjunction with the preconditions is needed,

209

v1v1

v2v2 v2v2 v2v2

v1

v2

A∅Av2
Av2

v2

Av1Av1,v2Av1,v2

v2

Av1
Av1,v2Av1,v2

(a) Conjunction tree for applying an operator’s precondition on a state
set

∨

∨

A5A4

∨

∨

A3A2

A1

(b) Disjunction Tree

Figure 1: Transiton trees clustering operators.

but there may nevertheless be some benefit because the state
set has been reduced. When min operators conjunction is
set to 1 we have the full tree strategy and when it is set to
∞ the transition tree consists of only one leaf node, which is
equivalent to not having a tree at all. Setting the parameter
to intermediate values produces intermediate strategies.

Unifying Transition Relations
Even though having a monolithic transition relation per ac-
tion cost is often infeasible due to its size, unifying transi-
tion relations of several planning actions may optimize im-
age computation. The union of a set of transition relations
T is a new transition relation Union(T)(x, x′) such that the
image wrt. the new transition is equivalent to the disjunction
of the images of the individual transitions. The new tran-
sition relation cannot be represented with separated precon-
dition and effect BDDs, so that predecessor and successor
variables (x and x′) are needed again. As the cost of reach-
ing a state must be preserved, only actions with the same
action-cost may be merged.

The new transition relation modifies the value of variables
in the effect of any of the actions it is composed of. Thus,
the set of effect variables of Union(T) is the union of the
effect variables of all transitions in T : xT =

⋃
T∈T xT .

The image operation wrt. Union(T) applies an existential
quantification over all the variables in xT , replacing their
value with the corresponding successor variables x′T . Tran-
sition relations of actions not affecting some variable in
xT are combined with the biimplication between the pre-
decessor and successor state variables they must not modify,
biimp (xi, x

′
i) = (xi ∧ x′i) ∨ (xi ∧ x′i). Thus, the new tran-

sition relation is computed as:

Union(T) =
∨
T∈T

T ∧ ∧
xi∈xT ,xi /∈xa

biimp (xi, x
′
i)

 .

A critical decision is which actions to merge into one tran-
sition relation. Since the result of the image wrt. the new
transition is the same as the disjunction of the image wrt.
the individual transitions, a criterion to decide which ac-
tions should be merged could be the disjunction tree used
by GAMER to disjoint the result of each transition relation.

The disjunction tree classifies the set of actions with a
given action-cost in a binary tree (see Figure 1b) to decide

Algorithm 3 UDT: Unifying transitions using the disjunc-
tion tree
UDT (node):

if node is leaf:
return Tnode.A
Tl ← UDT(node.l)
Tr ← UDT(node.r)
if |Tl| = 1 ∧ |Tr| = 1:
T ′ ← Union(Tl ∪ Tr)
if size(T ′) ≤ MAX TR SIZE:

return {T ′}
return Tl ∪ Tr

in which order to apply the disjunction of the individual im-
age results. Each internal node applies a disjunction of the
result of its left and right branch. Leaf nodes are associated
with the image result of single transition relations. Differ-
ent organizations of disjunction trees may influence overall
performance, since the order of the disjunctions determines
the complexity of intermediate BDDs. GAMER constructs a
balanced disjunctive tree by arbitrarily splitting the actions
in each internal node in two equally sized partitions.

Algorithm 3 takes as input the root of a disjunction
tree and returns a set of transition relations. It decides
which transition relations to merge by recursively merging
branches with only two transition relations. In leaf nodes, it
simply returns the transition relation of the action associated
with the leaf. For internal nodes, first it recursively merges
its left and right branch. If both branches were successfully
merged, it merges their corresponding transition relations. If
the result does not violate maximum memory requirements
it is returned, otherwise it is discarded and the results of the
left and right children are returned (so that parent nodes will
not unify any more transitions).

However, UDT is not a good criterion to merge transitions
when using the conjunction tree. The combined transition
relation must be applied to all the states satisfying the pre-
conditions of any action it combines. Thus, in order to apply
both ideas together, we define another criterion for merging
the operators taking into account their preconditions: UCT.
UCT merges transition relations of actions present in the
same branch of the conjunction tree. Actions present in a CT

210

Algorithm 4 UCT: Unifying operators using the CT

UCT (node):
if node is leaf:

return
⋃

c∈{1,...,C} disjLeaf (node.T c)
T0 ← UCT (node.c0)
T1 ← UCT (node.c1)
Tx ← UCT (node.cX)
for all c ∈ {1, . . . , C} :
T c
x ← T c

x ∪merge(T c
0 , T c

x)
T c
x ← T c

x ∪merge(T c
1 , T c

x)
T c
x ← T c

x ∪merge(T c
0 , T c

1)
return Tx ∪ T0 ∪ T1

disjLeaf(T)
Tleaf = ∅
while |T | > 1:
T ′ ← ∅
for Ti, Tj ∈ T :
T ← T \ Ti, Tj
T ′i ← Union({Ti} ∪ {Tj})
if size(T ′i) ≤ MAX TR SIZE:
T ′ ← T ′ ∪ {T ′i}

else:
Tleaf ← Tleaf ∪ {Ti} ∪ {Tj}

T ← T ′
return Tleaf ∪ T

merge (Ti, Tj)
if |Ti| = 1 and |Tj | = 1:
T ′ ← Union(Ti ∪ Tj)
if size(T ′) ≤ MAX TR SIZE:
Ti ← ∅
Tj ← ∅
return {T ′}

return ∅

branch are guaranteed to share the preconditions checked in
the previous inner nodes. Thus, the new transition relation
only needs to be applied over states satisfying the precondi-
tions shared by all those actions.

Algorithm 4 shows the pseudo-code of the UCT proce-
dure. It takes as input a CT node and returns a set of tran-
sition relations. In the leaf nodes, the disjLeaf procedure
merges individual transitions until the maximum transition
size is reached or only one transition is left. On internal
nodes, it recursively gets sets of operators associated with
the current node’s variable. Then, for each action cost it
attempts to merge transitions from different children. The
preconditions of the new transitions no longer are related
to the variable (they are now encoded in the transition re-
lation BDD), so that they are placed in the Tx bucket. The
merge procedure gets two sets of transitions and, if both have
only one transition, it attempts to generate the union of both
transitions. If this is successful it returns the new transition,
removing the old ones from their corresponding sets. Other-
wise, they could not be merged by the maximum transition

size restriction so that the algorithm returns the empty set
and does not change the original sets. In this case, it will not
attempt to merge them again.

Whenever the resulting BDD exceeds MAX TR SIZE,
we interrupt the union operation and drop the result, so that
calculating the union of two transitions cannot get worse
than O(MAX TR SIZE). In Algorithms 3 and 4 we have
a linear (in the number of operators) number of calls to
Union , so that both run in linear time in the number of op-
erators. This is adequate for the planning problems consid-
ered in our benchmarks, where the huge number of actions
in some domains could be prohibitive for algorithms with
greater complexity.

Experiments
As the basis for the experiments we take GAMER (Kissmann
and Edelkamp 2011) for performing symbolic search opti-
mal planning. The software infrastructure is taken from the
resources of the International Planning Competition (IPC)
2011. We implemented several refinements in GAMER us-
ing the CUDD library of Fabio Somenzi (compiled for 64-
bit Linux using the GNU gcc compiler, optimization op-
tion -O3). For the experiments we used an 8-core Intel(R)
Xeon(R) X3470 CPU @2.93GHz with the same settings
concerning timeout (30 minutes) and maximal memory us-
age (6GB) as in the competition.

In order to evaluate the efficiency of the image computa-
tion approaches, we try a number of different configurations
when doing symbolic bidirectional blind search. The cover-
age of each planner is not completely informative, since in
some domains the exponential gap between problems causes
all the versions to perform the same, even if there is a huge
performance gap. To compare the planners’ efficiency we
use the time metric proposed for the learning track of IPC
2011. It evaluates the performance on a problem taking into
account the time used to solve it (t) and the minimum time
required by any planner (t∗):

1

1 + log10(t/t
∗)
.

This metric assigns a score between 0 and 1 to each planner
for each problem solved, depending on the time it took to
solve the problem with respect to the time of the best plan-
ner. Thus, the fastest planner receives 1 point, while all the
others receive less points according to a logarithmic scale.

Bidirectional blind search gives a better comparison of
the image techniques than A* search because (1) it is more
straightforward, not depending on more parameters like the
PDB generation procedure and (2) time comparisons with
A* are not fair due to the fixed 15 minutes time window for
generating the PDBs.

Table 1 shows a comparison of the time score for each
proposed image computation technique. The basic ap-
proach, TR, uses a transition relation BDD for each action.
TRA takes advantage of the planning actions structure to get
rid of the successor variables in the image computation. CT
and CT10 apply a conjunction tree, the latter setting the min
operators conjunction to 10. U1k

DT and U100k
DT merge transi-

tion relations following the disjunction tree criterion with a

211

Domains % fw TR TRA CT CT10 U1k
DT U100k

DT U1k
CT U100k

CT U1k
CT10

BARMAN 94 4.56 4.99 4.60 4.69 6.41 7.86 6.75 8.00 6.70
ELEVATORS 74 11.94 14.04 13.63 12.99 17.58 18.69 18.35 18.22 18.34
FLOORTILE 37 4.15 6.91 5.54 4.83 8.81 9.76 8.92 9.77 9.14

NOMYSTERY 57 9.17 10.58 10.28 10.34 14.36 15.73 15.40 14.74 14.39
OPENSTACKS 90 11.61 11.99 12.03 12.11 16.29 19.34 15.15 19.43 16.53

PARC-PRINTER 62 5.46 6.55 6.31 5.49 7.57 7.60 7.38 7.61 7.41
PARKING 100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PEG-SOLITAIRE 100 15.74 15.91 15.30 15.83 16.45 16.88 16.26 16.94 16.46
SCANALYZER 53 5.55 6.29 7.23 6.92 8.16 9.00 8.40 8.92 8.29

SOKOBAN 94 11.49 11.83 9.57 11.49 16.19 18.75 13.71 18.83 16.26
TIDYBOT 100 6.17 6.19 13.38 13.31 10.32 7.63 13.78 6.64 13.42

TRANSPORT 77 4.56 6.93 7.10 7.03 8.74 8.66 8.48 8.76 8.82
VISITALL 53 8.48 10.84 10.52 10.38 10.47 10.69 10.78 10.76 10.65

WOODWORKING 40 10.21 12.41 10.41 11.04 14.67 15.08 15.19 15.09 15.17
Total 74 109.09 125.46 125.90 126.45 156.02 165.67 158.55 163.71 161.58

Table 1: Time score comparison of image functions for the IPC 2011 domains.

threshold on the maximum size of each transition relation of
1,000 and 100,000 nodes, respectively. Finally, U1k

CT, U100k
CT

and U1k
CT10 use the CT as criterion to unify transition rela-

tions combining both approaches.
Column %fw shows the average percentage of steps taken

in forward direction by all versions. In PARKING, PEG-
SOLITAIRE and TIDYBOT no backward search is accom-
plished, while in BARMAN, OPENSTACKS, and SOKOBAN
the amount of backward search is negligible. Thus, in 6 out
of 14 domains bidirectional search behaves like blind for-
ward search. In contrast, FLOORTILE and WOODWORK-
ING take more advantage from backward than from forward
search. In general, bidirectional search is able to detect the
most promising direction for the search.

The comparison of TRA and TR reveals that, when con-
sidering transition relations associated with a single plan-
ning action, it is possible to take advantage of their struc-
ture increasing the performance across all domains. The use
of CT is helpful in some domains, especially in TIDYBOT,
TRANSPORT, and VISITALL, though it worsens the results
in SOKOBAN and PEG-SOLITAIRE. When choosing a suit-
able value for min operators conjunction to limit the appli-
cation of the CT, CT10 obtains more robust results on all do-
mains, not being worse than the original TR in any domain
and giving a good alternative for the conjunction tree.

However, versions unifying transitions get the best overall
performance, dominating all the previous approaches in all
domains except TIDYBOT where for some configurations the
memory bound is reached while unifying the transition rela-
tions. This suggests that unifying transition relations always
helps when there is enough memory to do so. This is also
true when comparing versions with a maximum transition
size of 100,000 nodes and versions merging transitions only
up to 1,000 nodes. Both the conjunctive and disjunctive tree
show good potential for merging transition relations. The
comparison between them depends on the parameter for the
maximum transition size. With a value of 1,000 nodes, U1k

CT
and U1k

CT10 show better performance than U1k
DT, especially

in TIDYBOT where the CT usually works best. On the other
hand, when increasing the size of transitions up to 100,000
nodes, the number of transitions decreases resulting in the
CT being less effective and reaching the memory bound in
TIDYBOT, causing U100k

CT to work worse than U100k
DT .

In order to compare the different search algorithms, some
of the previously analyzed image techniques are selected.
TR gives a good baseline comparison, CT gives similar cov-
erage results to CT10 being more different wrt. other config-
urations and U100k

DT and U1k
CT10 are the versions with the best

performance in the time and coverage metrics, respectively.
Regarding the heuristic used by the A* version, the IPC

2011 GAMER selected whether to apply abstraction or not
depending on how costly backward exploration is in the
original space. This was done by looking at the CPU times
for the first backward step. If it is too hard, then abstrac-
tion is applied instead of calculating a non-abstracted par-
tial PDB. As the partial PDBs are closer to bidirectional
search (but in a non-interleaved manner – backward search
is stopped after 15 minutes if it does not finish earlier), we
use the abstracted PDBs for all the experiments. The pat-
terns are automatically selected as explained in (Kissmann
and Edelkamp 2011).

For comparing our performance against state-of-the-art
results, we select two different competitors. One is the
winner of the last IPC, FAST DOWNWARD STONE SOUP-
1 (Helmert, Röger, and Karpas 2011), a static portfolio
using explicit state A* with several abstraction and land-
mark heuristics. The other one is the best coverage ob-
tained by any planner in the competition excluding GAMER
(which are FAST DOWNWARD STONE SOUP-1 results plus
three PARC-PRINTER problems solved by CPT-4 (Vidal
and Geffner 2006) and one problem in VISITALL solved by
FORKINIT (Katz and Domshlak 2011)). Notice that there is
a significant difference between a single-technique planner,
such as GAMER, and portfolio approaches. Indeed, the op-
timal portfolio for IPC 2011 includes GAMER among other
explicit search planners (Núñez, Borrajo, and López 2012).

Table 2 shows the coverage results on the IPC 2011 tasks

212

GAMER Bidirectional GAMER A∗ IPC 2011
Domain TR CT U100k

DT U1k
CT10 TR CT U100k

DT U1k
CT10 FDSS-1 BEST

BARMAN 8 8 8 8 4 4 5 4 4 4
ELEVATORS 19 19 19 19 17 17 19 19 18 18
FLOORTILE 7 8 10 10 11 11 12 12 7 7

NOMYSTERY 13 14 16 16 13 14 14 15 20 20
OPENSTACKS 20 20 20 20 20 20 20 20 16 16

PARC-PRINTER 7 7 8 8 9 9 9 9 14 17
PARKING 0 0 0 0 1 1 1 1 7 7

PEG-SOLITAIRE 17 17 17 17 17 17 17 17 19 19
SCANALYZER 9 9 9 9 8 9 9 9 14 14

SOKOBAN 18 18 19 18 20 19 20 20 20 20
TIDYBOT 8 14 11 14 12 14 14 14 14 14

TRANSPORT 7 9 9 9 6 6 6 6 7 7
VISITALL 9 11 11 11 11 11 11 11 13 14

WOODWORKING 16 16 16 16 16 16 19 19 12 12
Total 158 170 173 175 165 168 176 176 185 189

Table 2: Planners’ coverage for the problems of the optimal track of IPC 2011.

for symbolic bidirectional blind and A* search with the se-
lected successor generation methods. With the new image
computation approaches the results of GAMER show that
symbolic search in both variants – bidirectional blind and
symbolic A* search – is competitive with state-of-the-art
optimal planning techniques. With 175 and 176 solutions,
respectively, both versions are almost tied and they would
have been the runner-up of IPC 2011, only beaten by both
FAST DOWNWARD STONE SOUP versions. This makes
GAMER the best non-portfolio approach to cost-optimal
planning. Furthermore, it dominates all the other planners
in 6 out of 14 domains: BARMAN, ELEVATORS, FLOOR-
TILE, OPENSTACKS, TRANSPORT, and WOODWORKING.
Taking GAMER into account, the best performance achieved
by any planner for each domain reaches 212 solutions in-
stead of 189. When comparing the performance of both
algorithms, it is noticeable that for domains where back-
ward search works better (the bidirectional search decided
to take more backward steps than forward), FLOORTILE and
WOODWORKING, the A* version gets even better results
than bidirectional blind search. Also, in domains where
the bidirectional search takes almost no backward steps,
sometimes the use of abstraction is better (in PARKING or
SOKOBAN) but sometimes the h-partitioning makes the for-
ward exploration more difficult, e. g., in BARMAN.

The domains where symbolic search does not perform
well are PARC-PRINTER, PARKING, and SCANALYZER.
In those domains the new successor generator techniques
may help a bit but the performance is still far away from
state-of-the-art planners. The reason for PARC-PRINTER
is the huge amount of different action costs, resulting in
a huge number of small state sets with different g values,
so that symbolic search does not seem a good choice over
explicit state search. In PARKING and SCANALYZER the
BDD-representation for the state sets grows exponentially
with g. In PARKING this effect is even worse because back-
ward search does not scale and bidirectional search is re-
duced to blind forward search.

Conclusion
According to the outcome of the last two international plan-
ning competitions, heuristic and symbolic search are two
leading methods for sequential optimal planning. There is
no doubt that symbolic search has the effectiveness to ex-
plore large state sets, while the explicit-state heuristics are
often more informed. While the result of IPC 2011 sug-
gested a clear advantage for heuristic explicit-state search,
with the contributed new options for computing the rela-
tional product for the image using conjunctive and disjunc-
tive transition trees we have pushed the performance of sym-
bolic search planners, showing they are competitive with
state-of-the-art non-portfolio planners and closing the gap
to the portfolio ones.

Also, while the competition version of GAMER used bidi-
rectional symbolic search for unit-cost domains and sym-
bolic A* for the rest, we have compared the performance
of both approaches separately, showing close performance.
The good results of symbolic blind search are especially
surprising as after many years of research of finding re-
fined heuristics in the AI planning domain this form of blind
search still outperforms all existing planners on some do-
mains, while being close on most others. Flexibility for de-
ciding whether to advance the search in forward or backward
direction compensates the use of heuristics.

One important step is to split the transition relation into
a precondition part and an effect part. This avoids referring
to successor variables and documents a significant change to
the way symbolic search is typically performed, reducing the
variable set by a half. Future research avenues for refining
the image operator might be a partitioning based on the state
set size or by combining symbolic with explicit search.

Acknowledgments
This work has been partially supported by MICINN projects
TIN2008-06701-C03-03 and TIN2011-27652-C03-02 and
by DFG project ED 74/11.

213

References
Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial pat-
tern databases. In Symposium on Abstraction, Reformulation
and Approximation (SARA), 20–34. Springer.
Ball, M., and Holte, R. C. 2008. The compression power of
symbolic pattern databases. In International Conference on
Automated Planning and Scheduling (ICAPS), 2–11. AAAI
Press.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Burch, J. R.; Clarke, E. M.; and Long, D. E. 1991. Sym-
bolic model checking with partitioned transition relations. In
International Conference on Very Large Scale Integration,
49–58. North-Holland.
Burns, E. A.; Hatem, M.; Leighton, M. J.; and Ruml, W.
2012. Implementing fast heuristic search code. In Sympo-
sium on Combinatorial Search (SoCS). AAAI Press.
Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and Traverso,
P. 1997. Planning via model checking: A decision procedure
for AR. In European Conference on Planning (ECP), 130–
142. Springer.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Comput. Intell. 14(3):318–334.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Edelkamp, S., and Helmert, M. 2001. The model checking
integrated planning system MIPS. AI-Magazine 67–71.
Edelkamp, S., and Reffel, F. 1998. OBDDs in heuris-
tic search. In German Conference on Artificial Intelligence
(KI), 81–92.
Edelkamp, S., and Schrödl, S. 2012. Heuristic Search –
Theory and Applications. Academic Press.

Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
bolic A∗ search with pattern databases and the merge-and-
shrink abstraction. In European Conference on Artificial In-
telligence (ECAI), 306–311. IOS Press.
Edelkamp, S. 2005. External symbolic heuristic search
with pattern databases. In International Conference on Au-
tomated Planning and Scheduling (ICAPS), 51–60. AAAI
Press.
Goldberg, A. V., and Werneck, R. F. F. 2005. Com-
puting point-to-point shortest paths from external memory.
In Workshop on Algorithm Engineering and Experiments
and Workshop on Analytic Algorithmics and Combinatorics,
ALENEX /ANALCO, 26–40.
Hansen, E. A.; Zhou, R.; and Feng, Z. 2002. Symbolic
heuristic search using decision diagrams. In Symposium on
Abstraction, Reformulation and Approximation (SARA).
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In AAAI Con-
ference on Artificial Intelligence (AAAI), 1007–1012. AAAI
Press.

Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast down-
ward stone soup: A baseline for building planner portfolios.
In ICAPS-Workshop on Planning and Learning (PAL).
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Jensen, R. M.; Bryant, R. E.; and Veloso, M. M. 2002.
SetA*: An efficient BDD-based heuristic search algorithm.
In National Conference on Artificial Intelligence (AAAI),
668–673. AAAI Press.
Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2008. State-
set branching: Leveraging BDDs for heuristic search. Arti-
ficial Intelligence 172(2–3):103–139.
Katz, M., and Domshlak, C. 2011. Planning with implicit
abstraction heuristics. In 7th International Planning Com-
petition (IPC), 46–49.
Kissmann, P., and Edelkamp, S. 2011. Improving
cost-optimal domain-independent symbolic planning. In
AAAI Conference on Artificial Intelligence (AAAI), 992–
997. AAAI Press.
McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publishers.
Nebel, B. 1999. Compilation schemes: A theoretical tool
for assessing the expressive power of planning formalisms.
In German Conference on Artificial Intelligence (KI), 183–
194. Springer.
Núñez, S.; Borrajo, D.; and López, C. L. 2012. Performance
analysis of planning portfolios. In Symposium on Combina-
torial Search (SoCS). AAAI Press.
Rice, M. N., and Tsotras, V. J. 2012. Bidirectional a* search
with additive approximation bounds. In Symposium on Com-
binatorial Search (SoCS). AAAI Press.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
implementation of pattern database heuristics for classical
planning. In Symposium on Combinatorial Search (SoCS).
AAAI Press.
Vidal, V., and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence 170(3):298–335.

214

