
On State-Dominance Criteria in Fork-Decoupled Search

Álvaro Torralba and Daniel Gnad and Patrick Dubbert and Jörg Hoffmann
Saarland University

Saarbrücken, Germany
{torralba, gnad, hoffmann}@cs.uni-saarland.de; s9padubb@stud.uni-saarland.de

Abstract
Fork-decoupled search is a recent approach to classical plan-
ning that exploits fork structures, where a single center com-
ponent provides preconditions for several leaf components.
The decoupled states in this search consist of a center state,
along with a price for every leaf state. Given this, when
does one decoupled state dominate another? Such state-
dominance criteria can be used to prune dominated search
states. Prior work has devised only a trivial criterion. We de-
vise several more powerful criteria, show that they preserve
optimality, and establish their interrelations. We show that
they can yield exponential reductions. Experiments on IPC
benchmarks attest to the possible practical benefits.

Introduction
Fork-decoupled search is a new approach to state-space de-
composition in classical planning, recently introduced by
Gnad and Hoffmann (2015). The approach partitions the
state variables into disjoint subsets, factors, like in fac-
tored planning (e. g. (Amir and Engelhardt 2003; Kelareva
et al. 2007; Fabre et al. 2010; Brafman and Domsh-
lak 2013)). While factored planning is traditionally de-
signed to handle arbitrary cross-factor interactions, fork-
decoupling assumes these interactions to take a fork struc-
ture (Katz and Domshlak 2008; Katz and Keyder 2012;
?), where a single center provides preconditions for several
leaves. A simple pre-process can determine whether such a
fork structure exists, and extract a corresponding factoring
if so.

Fork factorings identify a form of “conditional indepen-
dence” between the leaf factors: Given a fixed center path
πC , the compliant leaf moves – those leaf moves enabled
by the preconditions supplied along πC – can be selected
independently for each leaf. The decoupled search thus
searches only over center paths πC . Each decoupled state
in the search represents the compliant leaf moves in terms
of a pricing function, mapping each leaf-factor state sL to
the cost of a cheapest πC-compliant path achieving sL. As
Gnad and Hoffmann (henceforth: GH) show, this can expo-
nentially reduce state space size. It may also cause exponen-
tial blow-ups though.

The worst-case exponential blow-ups result from irrele-
vant distinctions in pricing functions. One means to combat
this, and more generally to improve search, is dominance

pruning, pruning a state sF if a better state tF has already
been seen. But, given the complex structure of decoupled
states, when is one “better” than another? GH employ the
trivial criterion, where sF and tF must have the same cen-
ter state and tF needs to have cheaper prices than sF for all
leaf states. Here we introduce advanced methods, analyzing
the structure of decoupled states to identify (and then, disre-
gard) irrelevant distinctions. We devise several such meth-
ods, using different sources of information. We show that
the methods preserve optimality, and we characterize their
relative pruning power. We show that they can yield ex-
ponential search reductions. Experiments on International
Planning Competition (IPC) benchmarks attest to the possi-
ble practical benefits.

For space reasons, we can only outline our proof argu-
ments. The full proofs are available in an online TR (Tor-
ralba et al. 2016).

Background
We use finite-domain state variables (Bäckström and Nebel
1995; Helmert 2006). A planning task is a tuple Π =
〈V,A, I, G〉. V is a set of variables, each associated with
a finite domain D(v). I is the initial state. The goal G is
a partial assignment to V . A is a finite set of actions, each
a triple 〈pre(a), eff(a), cost(a)〉 of precondition, effect, and
cost, where pre(a) and eff(a) are partial assignments to V ,
and cost(a) ∈ R0+. For a partial assignment p, we denote
with V(p) ⊆ V the subset of variables on which p is de-
fined. For V ⊆ V(p), we denote with p[V] the assignment
to V made by p. We identify (partial) variable assignments
as sets of variable/value pairs, written as (var, val). A state
is a complete assignment to V . Action a is applicable in
state s if pre(a) ⊆ s. Applying a in s changes the value of
all v ∈ V(eff(a)) to eff(a)[v], and leaves s unchanged else-
where. We will sometimes write s a−→ t for a transition from
s to t with action a. A plan for Π is an action sequence π
iteratively applicable in I which results in a state sG where
G ⊆ sG. The plan is optimal if its summed-up cost, denoted
cost(π), is minimal among all plans for Π.

We next give a recap of GH’s definitions. A fork fac-
toring F is a partition of V identifying a fork structure.
Namely, (i) every action a ∈ A affects (touches in its ef-
fect) exactly one element (factor) of F , which we denote
F (a). And (ii) there is a center FC ∈ F s.t., for every

37

a ∈ A, V(pre(a)) ⊆ FC ∪ F (a). We refer to the factors
FL ∈ FL := F \ {FC} as leaves. We refer to actions af-
fecting FC as center actions, and to actions affecting a leaf
as leaf actions. By construction (each action affects only
one factor) these two kinds of actions are disjoint. Center
actions are preconditioned only on FC , leaf actions may be
preconditioned on FC and the leaf they affect. In brief: the
center provides preconditions for the leaves, and there are
no other cross-factor interactions.

As a running example, we use a Logistics-style planning
task with a truck variable t, a package variable p, and n lo-
cations l1, . . . , ln. I = {(t, l1), (p, l1)} and G = {(p, l2)}.
Action drive(x, y) moves the truck from any location x to
any other location y. The package can be loaded/unloaded at
any location x with actions load(x)/unload(x) respectively.
Then F = {{t}, {p}} is a fork factoring where {t} is the
center and {p} is the single leaf. If we have m packages pi,
we can set each {pi} as a leaf.

Not every task Π has a fork factoring. GH analyze Π’s
causal graph (e. g. (Knoblock 1994; Jonsson and Bäckström
1995; Brafman and Domshlak 2003; Helmert 2006)) in a
pre-process, identifying a fork factoring if one exists, else
abstaining from solving Π. We follow this approach here.
In what follows, we assume a fork factoring F . Variable
assignments to FC are called center states, and for each
FL ∈ FL assignments to FL are leaf states. We denote
by SL the set of all leaf states, across FL ∈ FL. For each
leaf, sLI denotes the initial leaf state. For simplicity (wlog),
we will assume that every leaf has a single goal leaf state,
sLG.

Decoupled search searches over sequences of center ac-
tions πC , called center paths, that are applicable to I . For
each πC , it maintains a compact representation of the leaf
paths πL that comply with πC . A leaf path is a sequence of
leaf actions applicable to I when ignoring preconditions on
FC . Intuitively, given the fork structure, a fixed center path
determines what each leaf can do (independently of all other
leaves, as they interact only via the center). This is captured
by the notion of compliance: πL complies with πC if it uses
only the center preconditions supplied along πC , i. e., if πL
can be scheduled alongside πC s.t. the combined action se-
quence is applicable in I . Decoupled search goes forward
from I until it finds a center path πC to a center goal state
where every leaf has a πC-compliant leaf path πL to its goal
leaf state. The global plan then results from augmenting πC
with the paths πL.

In detail: A decoupled state sF is given by a center
path cp(sF). Its center state cs(sF) and pricing function
prices(sF) : SL 7→ R0+ are induced by cp(sF), as fol-
lows. cs(sF) is the outcome of applying cp(sF) to sLI .
prices(sF) maps each leaf state sL to the cost of a cheap-
est cp(sF)-compliant leaf path ending in sL (or ∞ if no
such path exists).1 The initial decoupled state IF has the
empty center path cp(IF) = 〈〉. A goal decoupled state
sFG is one with a goal center state cs(sFG) ⊇ G[FC] and

1Pricing functions can be maintained in time low-order poly-
nomial in the size of the individual leaf state spaces. See GH for
details.

where, for every leaf factor FL ∈ FL, its goal leaf state
sLG has been reached, i. e., prices(sFG)[sLG] < ∞. The
actions applicable in sF are those center actions a where
pre(a) ⊆ cs(sF). Applying a to sF results in tF where
cp(tF) := cp(sF)◦ 〈a〉, inducing cs(tF) and prices(tF) as
above.

In the running example, cs(IF) = {(t, l1)},
prices(IF)[(p, l1)] = 0, prices(IF)[(p, t)] = 1, and
prices(IF)[(p, li)] = ∞, for all i 6= 1. Observe that
prices(IF)[(p, t)] represents the cost of a possible package
move, not a move we have already committed to. The
actions applicable to IF are drive(l1, li). Applying any
such action, in the outcome decoupled state sF we have
prices(sF)[(p, li)] = 2, while all other prices remain
the same. If we apply drive(l1, l2), then sF is a goal
decoupled state. The global plan is then extracted from sF

by augmenting the center path cp(sF) = 〈drive(l1, l2)〉
with the compliant goal leaf path 〈load(l1),unload(l2)〉.

A completion plan for sF consists of a center path πC

leading from sF to some goal center state, augmented with
goal leaf paths compliant with cp(sF)◦πC . That is, we col-
lect the postfix path for the center, and the complete path for
each leaf. The completion cost of sF , denoted hF∗(sF), is
defined as the cost of a cheapest completion plan for sF . By
dF∗(sF), we denote the minimum, over all optimal comple-
tion plans πF , of the number of center actions (decoupled-
state transitions) in πF .

Decoupled State Dominance
A binary relation � over decoupled states is a decoupled
dominance relation if sF � tF implies that hF∗(sF) ≥
hF∗(tF) and dF∗(sF) ≥ dF∗(tF). In dominance prun-
ing, given such a relation �, we prune a state sF at gen-
eration time if we have already seen another state tF (i. e.,
tF is in the open or closed list) such that sF � tF and
g(sF) ≥ g(tF). Intuitively, tF dominates sF if it has an
at least equally good completion plan and center path. The
center path condition is needed only in the presence of 0-cost
actions, and ensures that the completion plan for tF does not
have to traverse sF . If tF can be reached with equal or better
g-cost, pruning sF preserves completeness and optimality of
the search algorithm.

We derive practical decoupled dominance relations by ef-
ficiently testable sufficient criteria. The relations differ in
terms of their pruning power. We capture their relative
power with two simple terms of two simple notions. First,
we say that �′ subsumes � if �′⊇�, i. e., if �′ recognizes
every occurrence of dominance recognized by �. Second,
we say that�′ is exponentially separated from� if there ex-
ists a family of planning tasks in which the decoupled state
space is exponential in the size of the input task under domi-
nance pruning using � and polynomial when using �′.2 We
will devise several decoupled dominance relations, weaker
and stronger ones. Weaker relations are useful in practice
(only) when they cause less computational overhead.

2More precisely, as the pruning depends on the expansion order:
in which this statement is true for any expansion order.

38

Previous work only considered what we will refer to as
the basic decoupled dominance relation, denoted �B .

Definition 1 (�B relation) �B is the relation over decou-
pled states defined by sF �B tF iff cs(sF) = cs(tF) and,
for all sL ∈ SL, prices(sF)[sL] ≥ prices(tF)[sL].

This method simply does a point-wise comparison be-
tween prices(sF) and prices(tF), whenever both have the
same center state. Basic dominance pruning often helps to
reduce search effort, but is unnecessarily restrictive in its
insistence on all leaf prices being cheaper. This is inappro-
priate in cases where sF has some irrelevant cheaper prices.
It may, indeed, cause exponential blow-ups as, e. g., in our
running example.

The standard state space in our running example is small,
since |V| = 2. Yet the decoupled state space has size
exponential in the number n of locations. Through the
leaf state prices, the decoupled states “remember” the lo-
cations visited by the truck in the past. For example,
the decoupled state reached through the center sequence
〈drive(l1, l3), drive(l3, l4)〉 has finite prices for (p, l1),
(p, t), (p, l3), and (p, l4), and price∞ elsewhere; while the
decoupled state reached through the sequence 〈drive(l1, l4)〉
has finite prices for (p, l1), (p, t), and (p, l4). Intuitively, the
difference between the two pricing functions does not mat-
ter, because, with initial location l1 and goal location l2, the
prices for (p, li), i > 2 are irrelevant. But without recogniz-
ing this fact, the decoupled state space enumerates (pricing
functions corresponding to) every combination of visited lo-
cations.

It is remarkable here that the blow-up occurs in a simple
Logistics task. This is a new insight. GH already pointed
out the risk of blow-ups, but only in complex artificial exam-
ples. On IPC benchmarks, empirically the decoupled state
space always is smaller than the standard one. Our insight
here is that this is not because blow-ups don’t occur, but be-
cause the blow-ups (e. g. remembering truck histories) are
hidden behind the gains (e. g. not enumerating combinations
of package locations). Indeed, in the standard IPC Logistics
benchmarks, the blow-up above occurs for all non-airport lo-
cations within every city, and these blow-ups multiply across
cities. All our advanced dominance pruning methods get rid
of this blow-up (though none guarantees to avoid blow-ups
in general).

Frontier-Based Dominance
Our first dominance relation is based on the idea that dif-
fering prices on a leaf state sL do not matter if “sL has no
purpose”. In our running example, say that we are check-
ing whether sF � tF and prices(sF)[(p, l3)] = 2 while
prices(tF)[(p, l3)] = ∞, and thus sF 6�B tF . However,
say that prices(sF)[(p, t)] = 1. Then the cheaper price for
(p, l3) in sF does not matter, because the only purpose of
having the package at l3 is to load it into the truck. Indeed,
the only outgoing transition of the leaf state (p, l3) leads to
(p, t).

We capture the relevant leaf states in sF in terms of its
frontier: those leaf states that are either themselves relevant

(this applies only to the goal leaf state), or that can still con-
tribute to achieving cheaper prices somewhere.

Definition 2 (Frontier) We define the frontier of a decou-
pled state sF , F (sF) ⊆ SL as F (sF) := {sLG} ∪ {sL |
∃sL a−→ tL : prices(sF)[sL] + cost(a) < prices(sF)[tL]}.

We now obtain a decoupled dominance relation by com-
paring prices only on the frontier of sF :

Definition 3 (�F relation) �F is the relation over decou-
pled states defined by sF �F tF iff cs(sF) = cs(tF) and,
for all sL ∈ F (sF), prices(sF)[sL] ≥ prices(tF)[sL].

Theorem 1 �F is a decoupled dominance relation.

Comparing the prices on the frontier is enough because,
in any completion plan for sF , if a compliant leaf path πL
decreases the price of the goal leaf state (e. g., from ∞ to
some finite value), then πL must pass through a frontier state
sL. Hence, in a completion plan for tF , we can use the
postfix behind sL. This completion plan can only be better
than that for sF because prices(sF)[sL] ≥ prices(tF)[sL].

It is easy to see that �F is strictly better than �B :

Theorem 2 �F subsumes �B and is exponentially sepa-
rated from it.

The first part of this claim is trivial as both relations
are based on comparing prices, but �F does so on a sub-
set of leaf states. A task family demonstrating the sec-
ond part of the claim is our running example. The only
leaf action applicable in any leaf state (p, li) is load(li),
leading to (p, t). However, for any reachable sF , we have
prices(sF)[(p, t)] = 1 because this price is already achieved
in the initial state, and prices can only decrease. So the
only possible frontier state, apart from (p, t), is the goal
(p, l2). But only two different prices are reachable for
(p, l2), namely∞ and 2. This shows the claim.

Effective-Price Dominance
Our next method appears orthogonal to frontier-based dom-
inance at first sight, but turns out to subsume it. The method
is based on replacing the prices in tF , i. e., the dominating
state in the comparison sF � tF , with smaller effective
prices, denoted Eprices(tF). We then simply compare all
such prices:

Definition 4 (�E relation) �E is the relation over decou-
pled states defined by sF �E tF iff cs(sF) = cs(tF) and,
for all sL ∈ SL, prices(sF)[sL] ≥ Eprices(tF)[sL].

The modified comparison is sound because the effec-
tive prices are designed to preserve hF∗(tF). Precisely:
(*) For any center path πC starting in tF , and for any
leaf state sL of leaf FL, if πLs is a πC-compliant leaf
path from sL to sLG, then there exists a path πL from
sLI to sLG that complies with cp(tF) ◦ πC such that

39

cost(πL) ≤ Eprices(tF)[sL] + cost(πLs). In other words,
if prices(tF)[sL] > Eprices(tF)[sL], then any completion
plan can be modified to use some other leaf state which does
provide a total price of Eprices(tF)[sL] + cost(πLs) or less.

It turns out that this can be ensured with the following
simple definition. We define Eprices(tF) as the point-wise
minimum pricing function p that satisfies:

p[sL] =

prices(tF)[sL] if sL = sLG
min{prices(tF)[sL],

max
sL

a−→tL

(
p[tL]− cost(a)

)
} otherwise

For each FL, Eprices(tF) can be computed by a simple
backwards algorithm starting at the goal leaf state sLG. To
illustrate the definition, consider any tF in our running ex-
ample. The price of (p, t) is 1, and its effective price also
is 1 because its successor leaf state sLG = (p, l2) always has
effective price ≥ 2. For any irrelevant location li, i > 2,
however, due to the transition to (p, t) whose effective price
is 1, we get Eprices(tF)[(p, li)] = 0 regardless of what
the actual price of (p, li) in tF is. The effective price 0 is
sound because, in any completion plan for tF starting with
load(li), we can use load(l1) instead to get (p, t) with price
1.

Theorem 3 �E is a decoupled dominance relation.

To prove Theorem 3, observe that, whenever sF �E
tF , given a completion plan for sF , we can construct an
equally good completion plan for tF by using the same
center path πC , and, with (*) above, constructing equally
good or cheaper compliant goal leaf paths. It remains to
prove (*). Consider any tF , center path πC , leaf state
sL, and πC-compliant goal leaf path πLs starting in sL. In
our example, e. g., say tF is reached from IF by applying
drive(l1, l3); that πC = 〈drive(l3, l2)〉; that sL = (p, l3);
and that πLs = 〈load(l3), unload(l2)〉. Then, exists πL =
〈load(l1), unload(l2)〉 that is compliant with cp(tF) ◦ πC .

Formally, denote πLs = 〈a1, . . . , an〉 and denote the leaf
states it traverses by sL = sL0 , . . . , s

L
n = sLG. Observe

that, as Eprices(tF)[sLn] = prices(tF)[sLn], πLs necessar-
ily passes through a leaf state sLi whose effective and actual
prices in tF are identical. Let i be the smallest index for
which that is so. Then, for all j < i, Eprices(tF)[sLj] 6=
prices(tF)[sLj], and thus by the definition of effective prices
we have that Eprices(tF)[sLj] ≥ Eprices(tF)[sLj+1] −
cost(aj+1). Accumulating these inequalities, we get (**)
Eprices(tF)[sL0] ≥ Eprices(tF)[sLi] − ∑i

j=1 cost(aj).
Consider now the path πL from sLI to sLG constructed as
the concatenation of: a cheapest cp(tF)-compliant path to
sLi (in our example, 〈load(l1)); with the postfix of πLs be-
hind sLi (in our example, 〈unload(l2)). Then cost(πL) =
prices(tF)[sLi] +

∑n
j=i+1 cost(aj). As Eprices(tF)[sLi] =

prices(tF)[sLi], we get cost(πL) = Eprices(tF)[sLi] +∑n
j=i+1 cost(aj). With (**), we get the desired prop-

erty that cost(πL) ≤ Eprices(tF)[sL0] +
∑i
j=1 cost(aj) +

∑n
j=i+1 cost(aj) = Eprices(tF)[sL] + cost(πLs), conclud-

ing the proof.

Theorem 4 �E subsumes �F and is exponentially sepa-
rated from it.

To prove the exponential separation, we extend our run-
ning example with a teleport(li, lj) action, for i, j > 2, that
moves the package between irrelevant locations if the truck
is at l2. Then, as long as l2 and at least one such li have
not been visited yet, all leaf states (p, li) for i > 2 with fi-
nite price are in the frontier, and �F suffers from the same
blow-up as �B . The effective prices of (p, li), however, re-
main 0 as before.

To see that �E subsumes �F , observe that the for-
mer can be viewed as a recursive version of the latter,
when reformulating the frontier condition to “∃sL a−→ tL :
p[sL] < p[tL] − cost(a)”. Formally, one can show that,
if Eprices(tF)[sL] ≤ prices(sF)[sL] holds for all frontier
states sL ∈ F (sF), then it also holds for all non-frontier
states sL 6∈ F (sF). This shows the claim as, for sF �F tF ,
we have prices(sF)[sL] ≥ prices(tF)[sL] on sL ∈ F (sF),
and thus prices(sF)[sL] ≥ Eprices(tF)[sL] on these states.

Note that, with the above, to evaluate �E it suffices to
compare the price of sF vs. effective price of tF on F (sF).
This is equivalent to, but faster than, comparing all prices.

Simulation-Based Dominance
We use the concept of simulation relations (Milner 1971;
Gentilini et al. 2003) on leaf state spaces in order to identify
leaf states tL which can do everything that another leaf state
sL can do.3 In this situation, suppose that we are checking
whether sF � tF , and prices(tF)[sL] > prices(sF)[sL],
but prices(tF)[tL] ≤ prices(sF)[sL]. Then tF can still
dominate sF , because if a solution for sF relies on sL, then
starting from tF we can use tL instead.

Definition 5 (Leaf simulation) Let FL be a leaf factor. A
binary relation �L on FL leaf states is a leaf simulation if:
sLG 6�L sL for all sL 6= sLG; and whenever sL1 �L tL1 , for
every transition sL1

a−→ sL2 either (i) sL2 �L tL1 or (ii) there

exists a transition tL1
a′−→ tL2 s.t. sL2 �L tL2 , pre[FC](a′) ⊆

pre[FC](a), and cost(a′) ≤ cost(a).

This follows common notions, except for (i) which, intu-
itively, “allows tL1 to stay where it is”, and except for allow-
ing in (ii) different actions a′ so long as they are at least as
good in terms of center precondition and cost.

It is easy to see that, whenever sL �L tL, if a leaf path
πLs starting in sL complies with a center path πC , then
there exists a πC-compliant leaf path πLt starting in tL s.t.
cost(πLt) ≤ cost(πLs). Consequently, we allow sL to take a
cheaper price from any leaf state that simulates it:

3This is inspired by, but differs in scope and purpose from, the
use of simulation relations on the state space for dominance prun-
ing in standard search (Torralba and Hoffmann 2015).

40

Definition 6 (�S Relation) The relation �S over decou-
pled states is defined by sF �S tF iff cs(sF) =
cs(tF) and, for all sL ∈ SL, prices(sF)[sL] ≥
minsL�LtL prices(tF)[tL].

Theorem 5 �S is a decoupled dominance relation.

It is easy to see that this is strictly better than �B :

Theorem 6 �S subsumes �B and is exponentially sepa-
rated from it.

The first part of this claim holds simply because �L
is reflexive (and therefore minsL�LtL prices(tF)[tL] ≤
prices(tF)[sL]). For the second part, we use again our run-
ning example. Leaf simulation captures that (p, li) �L (p, t)
for all i > 2, since (p, t) is the only successor of any (p, li)
and naturally (p, t) �L (p, t). So, �S reduces the price of
such (p, li) to 1, avoiding the exponential blow-up.

Inspired by (Torralba and Kissmann 2015), we also em-
ploy leaf simulation to remove superfluous leaf states and
leaf actions, discovering transitions that can be replaced by
other transitions, then running a reachability check on the
leaf state space (details are in the TR). This reduces leaf
state space size, and may sometimes improve the heuristic
function due to the removal of some actions.

Method Interrelations and Combination
We have already established the relation of our methods rel-
ative to�B , as well as the relation between�E and�F . We
next design a combination �ES of �E and �S , with their
respective strengths, and we establish the remaining method
interrelations. Figure 1 provides the overall picture.

�B
�F �E

�S
�ES6

Figure 1: Summary of method interrelations. “A → B”: B
subsumes A and is exponentially separated from it. “A 6↔
B”: A is exponentially separated from B and vice versa.

The combined relation �ES is obtained by modifying the
effective prices underlying �E , enriching their definition
with a leaf simulation, �L. We define ESprices(tF) as the
point-wise minimum pricing function p that satisfies:

p[sL] =

prices(tF)[sL] if sL = sLG
min{minsL�LtL prices(tF)[tL],

max
sL

a−→tL

(
p[tL]− cost(a)

)
} otherwise

We integrate the information from a leaf simulation into
the effective prices by allowing sL to take cheaper prices
from simulating states tL. This amounts to substituting
prices(tF)[sL] with minsL�LtL prices(tF)[tL] in the equa-
tion. We thus obtain, again, a decoupled dominance relation:

Definition 7 (�ES Relation) �ES is the relation over de-
coupled states defined by sF �ES tF iff cs(sF) = cs(tF)
and, for all sL ∈ SL, prices(sF)[sL] ≥ ESprices(tF)[sL].

Theorem 7 �ES is a decoupled dominance relation.

Theorem 7 is shown by adapting the property (*) under-
lying the proof of Theorem 3. Say πLs = 〈a1, . . . , an〉
is a πC-compliant goal leaf path starting in sL, travers-
ing the leaf states sL = sL0 , . . . , s

L
n = sLG. Then, with

the same arguments as before, there exists i such that (a)
ESprices(tF)[sL0] ≥ ESprices(tF)[sLi] −∑i

j=1 cost(ai),
and (b) ESprices(tF)[sLi] = minsLi �LtL prices(tF)[tL].
We construct our desired path πL from sLI to sLG by a cheap-
est cp(tF)-compliant path to a tL minimizing the expression
in (b), concatenated with a πC-compliant goal leaf path πLt
starting in tL where cost(πLt) ≤ cost(πLs). Such πLt exists
by the properties of leaf simulation, as in Theorem 5.
�ES subsumes each of its components. The exponen-

tial separations therefore follow directly from the individual
ones:

Theorem 8 �ES subsumes �E and �S , and is exponen-
tially separated from each of them.

One can also construct cases where �ES yields an ex-
ponentially stronger reduction than both �E and �S , i. e.,
where �ES is strictly more than the sum of its components.
We complete our analysis by filling in the missing cases:

Theorem 9 �S is exponentially separated from �E , and
therefore also from �F . �F , and therefore also �E , is ex-
ponentially separated from �S .

Experiments
We implemented our dominance pruning methods within the
fork-decoupled search variant of FD (Helmert 2006) by GH.
Our baseline is GH’s basic pruning �B . For simplicity,
we stick to the factoring strategy used by GH. This method
greedily computes a factoring that maximizes the number
of leaf factors. In case there are less than two leaves, the
method abstains from solving a task. The rationale behind
this is that the main advantage of decoupled search origi-
nates from not having to enumerate leaf state combinations
across multiple leaf factors. Like GH, we show results on all
IPC domains up to and including 2014 where the strategy
does not abstain.

We focus on optimal planning, the main purpose of
optimality-preserving pruning. We run a blind heuristic to
identify the influence of different pruning methods per se,
and we run LM-cut (Helmert and Domshlak 2009) as a state-
of-the-art heuristic. GH introduced two decoupled variants
of A∗, “Fork-Decoupled” A∗ and “Anytime Fork-Root” A∗,
which to simplify terminology we will refer to as Decou-
pled A∗ (DA∗) and Anytime Decoupled A∗ (ADA∗). DA∗

is a direct application of A∗ to the decoupled state space.
ADA∗ orders the open list based on the heuristic estimate of

41

remaining center-cost, uses the heuristic estimate of remain-
ing global-cost for pruning against the best solution so far,
and runs until the open list is empty. Both algorithms re-
sult in similar coverage, with moderate differences in some
domains. Our techniques turn out to be more beneficial for
ADA∗, which tends to have larger search spaces but less per-
node runtime than DA∗. We show detailed data for ADA∗,
and include data for baseline DA∗ (with �B) for compari-
son. All experiments are run on a cluster of Intel E5-2660
machines running at 2.20 GHz, with time (memory) cut-offs
of 30 minutes (4 GB).

Blind Heuristic LM-cut
ADA∗ DA∗ ADA∗

Domain # �B �F �E �S �ES �B �B �F �E �S �ES

Driverlog 20 11 11 11 11 11 13 13 13 13 13 13
Logistics00 28 22 22 22 22 22 28 25 25 27 26 28
Logistics98 35 4 4 5 5 5 6 6 6 6 6 6
Miconic 145 36 45 45 45 45 135 135 135 135 135 135
NoMystery 20 17 20 20 20 20 20 20 20 20 20 20
Pathways 29 3 3 3 3 3 4 4 4 4 4 4
Rovers 40 7 6 6 7 6 9 9 9 9 9 9
Satellite 36 6 6 6 6 5 7 9 9 8 9 9
TPP 27 23 23 22 23 22 18 23 23 22 22 22
Woodwork08 13 5 5 5 5 5 10 11 11 11 11 11
Woodwork11 5 1 1 1 1 1 4 5 5 5 5 5
Zenotravel 20 11 11 12 12 12 13 11 11 12 12 13∑

418 146 157 158 160 157 267 271 271 272 272 275

Table 1: Coverage data.

Table 1 shows the number of instances solved, compar-
ing to both baselines DA∗ and ADA∗. Data for DA∗ with
the blind heuristic is not shown as it is identical to that for
ADA∗. The main gain for blind search stems from Miconic
(+9), and NoMystery (+3). When using LM-cut, the ad-
vantage over �B is much smaller. We still gain +3 (+2)
instances in Logistics00 (Zenotravel). In Satellite and TPP,
we lose 1 instance in some configurations due to overhead at
no search space reduction. �ES reliably removes the disad-
vantages of ADA∗ relative to DA∗, and is best in the over-
all. We never strictly improve coverage over both baselines,
though. As we shall see below, this is due to benchmark
scaling, i. e., there are domains where runtime is improved
over both baselines.

We next analyze the search space size reduction (top part
of Table 2). In general, the blind heuristic has more margin
of improvement except in Logistics98, where the improve-
ment with LM-cut gets magnified due to the relevance analy-
sis performed when enabling �S . In that domain, removing
irrelevant leaf states and leaf actions renders LM-cut a lot
stronger.4 Regarding the relative behavior of pruning tech-
niques, in two domains, namely Miconic and NoMystery,
already the simplest technique (�F) gets the maximal im-
provement factor. In four domains, enabling effective-price

4It may be surprising that, elsewhere, the improvements in Lo-
gistics are moderate, despite the inherent blow-up we explained
earlier. This is because, in the commonly solved instances, the
number of non-airport locations in each city is very small, mostly
1.

pruning on top of frontier pruning results in additional prun-
ing. Combining all techniques in �ES always inherits the
strongest search space reduction of its components and in
Logistics with LM-cut, it often is strictly better.

Consider now runtime, Table 2 bottom. One key observa-
tion is that, whenever the search space is reduced, the same
holds for runtime, even for small search space reduction fac-
tors like, e. g., in Zenotravel. Remarkably, in some domains
(e. g. Woodworking) where no search reduction is obtained,
runtime decreases nevertheless for some simple methods
such as �F . This is due to the cheaper dominance check
– prices are compared only on frontier leaf states. There
are also some bad cases, though, mainly in TPP, but also in
Pathways, Rovers, and Satellite. These are also the domains
in which coverage slightly decreases. What makes these do-
mains special is the structure of their leaf state spaces. In
Pathways, Rovers, and Satellite, all leaves are single vari-
ables with a single transition, sLI → sLG, so there is no room
for improvement. In TPP, the leaf state spaces are quite large
(up to 5000 states), so our methods incur substantial over-
head, but are unable to perform pruning. Presumably, this is
because most of the leaf states can play a role in optimally
reaching the goal.

Coming back to our previous observation that coverage
is never improved over both baselines, the runtime analy-
sis reveals an improvement over both baselines in several
domains. ADA∗ with �S is faster than DA∗ with �B in all
domains except Zenotravel, where the geomean per-instance
runtime factor is 0.7. The other factors are: Driverlog 2.3;
Logistics00 2.3; Logistics98 3.4; Miconic 2.7; NoMystery
3.2; Pathways 1.1; Rovers 2.1; Satellite 2.9; TPP 23.2;
Woodworking08 1.4; and Woodworking11 2.0. In particu-
lar, in Driverlog, both Logistics domains, NoMystery, and
Woodworking11, ADA∗ with �S improves runtime over
both baselines.

Finally, consider the use of our pruning methods in DA∗.
For blind search, the numbers are almost identical to those
for ADA∗ in Table 2, as DA∗ and ADA∗ differ mainly in
their use of a (non-trivial) heuristic. With LM-cut, the prun-
ing methods do not work as well for DA∗. For example, for
�S , the geomean per-instance runtime factors are: Driverlog
1.8; Logistics00 and Logistics98 2.5; NoMystery 2.0; TPP
0.9; Woodworking08 0.9; Woodworking11 1.3; Zenotravel
1.2; and 1.0 in the other domains. The picture is similar for
the other pruning methods. The big runtime advantages ob-
served with ADA∗ vanish, but the method also becomes less
risky, i. e., the big runtime disadvantage in TPP vanishes as
well. This makes sense since DA∗ searches less nodes (it
has less potential for pruning) while spending more time on
each node (making the dominance-checking overhead less
pronounced).

Conclusion
Dominance pruning methods can be quite useful for decou-
pled search. Our analysis of such methods is fairly complete,
although of course other variants may be thinkable. More
pressingly, the question remains whether there exist dupli-
cate checking methods guaranteeing to avoid all blow-ups.

42

Expansions with Blind Heuristic: Improvement factor relative to�B Expansions with LM-cut: Improvement factor relative to�B

�F �E �S �ES �F �E �S �ES

Domain #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max

Driverlog 11 1.0 1.0 1.0 5.0 1.8 6.5 2.4 1.3 2.8 5.0 1.8 6.5 13 1.0 1.0 1.0 2.4 1.3 4.3 1.9 1.2 3.4 2.4 1.3 4.3
Logistics00 22 1.2 1.0 1.2 2.5 1.4 3.8 2.5 1.4 3.8 2.5 1.4 3.8 25 1.0 1.0 1.0 2.1 1.2 2.3 1.4 1.3 3.0 2.2 1.4 3.0
Logistics98 4 1.0 1.0 1.0 3.9 2.1 4.2 2.3 1.7 2.4 3.9 2.1 4.2 6 1.0 1.0 1.0 1.7 1.3 1.7 109.8 10.2 1245.2 134.7 10.8 1245.2
Miconic 36 3.3 1.7 5.2 3.3 1.7 5.2 3.3 1.7 5.2 3.3 1.7 5.2 135 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
NoMystery 17 4.4 1.7 8.5 4.4 1.7 8.5 4.4 1.7 8.5 4.4 1.7 8.5 20 6.3 1.7 9.2 6.3 1.7 9.2 6.8 1.9 9.3 6.8 1.9 9.3
TPP 22 1.0 1.0 1.0 1.0 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.2 22 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Zenotravel 11 1.0 1.0 1.0 1.4 1.1 1.6 1.3 1.1 1.5 1.4 1.1 1.6 11 1.0 1.0 1.0 1.2 1.1 1.4 1.2 1.0 1.3 1.2 1.1 1.4

Runtime with Blind Heuristic: Improvement factor relative to�B Runtime with LM-cut: Improvement factor relative to�B

�F �E �S �ES �F �E �S �ES

Domain #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max #
∑

D GM max
∑

D GM max
∑

D GM max
∑

D GM max

Driverlog 9 0.9 0.9 1.0 30.7 2.6 38.9 10.3 2.2 14.4 35.3 2.9 47.5 5 0.8 0.9 1.0 5.5 2.6 14.3 4.4 2.5 11.3 5.5 2.7 14.6
Logistics00 7 1.4 1.3 1.5 6.4 5.9 15.2 8.4 8.3 22.5 7.5 7.0 19.7 9 0.9 0.9 0.9 3.8 1.5 4.6 2.7 3.7 6.4 4.1 3.5 5.0
Logistics98 3 0.8 0.8 0.8 21.2 4.1 22.4 12.1 5.4 12.3 26.4 6.2 27.5 4 0.9 0.9 0.9 2.2 1.2 2.2 895.9 30.4 2643.9 750.2 26.2 2259.3
Miconic 19 24.0 10.0 53.9 24.3 9.0 47.9 22.6 8.6 45.7 23.5 8.8 47.0 81 0.9 1.0 1.2 1.0 0.9 1.1 1.0 1.0 1.2 0.9 0.9 1.0
NoMystery 9 47.3 5.6 157.1 36.2 4.1 118.8 64.2 7.4 210.2 53.7 6.0 182.7 12 13.3 3.0 21.0 12.6 2.9 22.4 16.2 3.8 28.9 14.6 3.6 26.0
Pathways 2 0.9 0.9 0.9 0.7 0.7 0.7 1.0 1.0 1.0 0.6 0.6 0.6 1 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0 0.9 0.9 0.9
Rovers 2 0.8 0.8 0.8 0.5 0.5 0.6 1.0 1.0 1.0 0.5 0.5 0.5 5 0.9 0.9 0.9 0.7 0.7 0.8 1.0 1.0 1.0 0.7 0.7 0.8
Satellite 3 0.9 0.9 1.0 0.6 0.7 0.9 1.0 1.0 1.0 0.5 0.6 0.8 4 1.0 1.0 1.0 0.9 0.8 0.9 1.0 1.0 1.0 0.9 0.8 0.9
TPP 13 0.8 0.8 1.0 0.0 0.1 0.3 0.1 0.3 0.8 0.0 0.1 0.3 11 0.8 0.8 1.0 0.1 0.2 0.4 0.1 0.4 0.8 0.1 0.1 0.3
Woodwork08 2 1.5 1.2 1.5 0.7 0.8 1.0 1.5 0.3 1.5 1.0 0.3 1.0 8 1.0 1.0 1.1 1.0 1.0 1.0 1.2 0.9 1.7 1.1 0.8 1.4
Woodwork11 1 1.5 1.5 1.5 0.7 0.7 0.7 1.5 1.5 1.5 1.0 1.0 1.0 5 1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.2 1.3 1.3 1.2 1.3
Zenotravel 4 0.8 0.8 1.0 1.2 1.2 1.4 1.7 1.8 2.9 1.3 1.3 1.8 4 0.9 0.9 1.0 1.1 1.0 1.2 1.3 1.3 1.6 1.1 1.1 1.3

Table 2: Improvement factor on commonly solved instances relative to �B , using ADA∗. We show expansions up to last f -
layer (top), and runtime (bottom), with the blind heuristic (left) and LM-cut (right). In the top part, some domains are skipped
as all their factors are rounded to 1.0. In the bottom part, we only take into account the instances that are not trivially solved by
all planners (< 0.1s).

∑
D: Ratio over the per-domain sum. GM (max): geometric mean (maximum) of per-instance ratios.

Acknowledgments
This work was partially supported by the German Re-
search Foundation (DFG), under grant HO 2169/6-1, “Star-
Topology Decoupled State Space Search”.

References
Eyal Amir and Barbara Engelhardt. Factored planning. In
G. Gottlob, editor, Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI’03), pages
929–935, Acapulco, Mexico, August 2003. Morgan Kauf-
mann.
Christer Bäckström and Bernhard Nebel. Complexity results
for SAS+ planning. Computational Intelligence, 11(4):625–
655, 1995.
Ronen Brafman and Carmel Domshlak. Structure and com-
plexity in planning with unary operators. Journal of Artifi-
cial Intelligence Research, 18:315–349, 2003.
Ronen Brafman and Carmel Domshlak. On the complexity
of planning for agent teams and its implications for single
agent planning. Artificial Intelligence, 198:52–71, 2013.
Eric Fabre, Loı̈g Jezequel, Patrik Haslum, and Sylvie
Thiébaux. Cost-optimal factored planning: Promises and
pitfalls. In Ronen I. Brafman, Hector Geffner, Jörg Hoff-
mann, and Henry A. Kautz, editors, Proceedings of the
20th International Conference on Automated Planning and
Scheduling (ICAPS’10), pages 65–72. AAAI Press, 2010.

Raffaella Gentilini, Carla Piazza, and Alberto Policriti.
From bisimulation to simulation: Coarsest partition prob-
lems. Journal of Automated Reasoning, 31(1):73–103, 2003.
Daniel Gnad and Jörg Hoffmann. Beating LM-cut with
hmax (sometimes): Fork-decoupled state space search. In
Ronen Brafman, Carmel Domshlak, Patrik Haslum, and
Shlomo Zilberstein, editors, Proceedings of the 25th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS’15). AAAI Press, 2015.
Malte Helmert and Carmel Domshlak. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Alfonso Gerevini, Adele Howe, Amedeo Cesta, and Ioan-
nis Refanidis, editors, Proceedings of the 19th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’09), pages 162–169. AAAI Press, 2009.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Peter Jonsson and Christer Bäckström. Incremental plan-
ning. In European Workshop on Planning, 1995.
Michael Katz and Carmel Domshlak. Structural patterns
heuristics via fork decomposition. In Jussi Rintanen, Bern-
hard Nebel, J. Christopher Beck, and Eric Hansen, editors,
Proceedings of the 18th International Conference on Au-
tomated Planning and Scheduling (ICAPS’08), pages 182–
189. AAAI Press, 2008.
Michael Katz and Emil Keyder. Structural patterns be-
yond forks: Extending the complexity boundaries of clas-

43

sical planning. In Jörg Hoffmann and Bart Selman, editors,
Proceedings of the 26th AAAI Conference on Artificial Intel-
ligence (AAAI’12), pages 1779–1785, Toronto, ON, Canada,
July 2012. AAAI Press.
Elena Kelareva, Olivier Buffet, Jinbo Huang, and Sylvie
Thiébaux. Factored planning using decomposition trees.
In M. Veloso, editor, Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI’07), pages
1942–1947, Hyderabad, India, January 2007. Morgan Kauf-
mann.
Craig Knoblock. Automatically generating abstractions for
planning. Artificial Intelligence, 68(2):243–302, 1994.
Robin Milner. An algebraic definition of simulation between
programs. In Proceedings of the 2nd International Joint
Conference on Artificial Intelligence (IJCAI’71), pages 481–
489, London, UK, September 1971. William Kaufmann.
Álvaro Torralba and Jörg Hoffmann. Simulation-based ad-
missible dominance pruning. In Qiang Yang, editor, Pro-
ceedings of the 24th International Joint Conference on Ar-
tificial Intelligence (IJCAI’15), pages 1689–1695. AAAI
Press/IJCAI, 2015.
Álvaro Torralba and Peter Kissmann. Focusing on what re-
ally matters: Irrelevance pruning in merge-and-shrink. In
Levi Lelis and Roni Stern, editors, Proceedings of the 8th
Annual Symposium on Combinatorial Search (SOCS’15),
pages 122–130. AAAI Press, 2015.
Álvaro Torralba, Daniel Gnad, Patrick Dubbert, and
Jörg Hoffmann. On state-dominance criteria in
fork-decoupled search (technical report). Techni-
cal report, Saarland University, 2016. Available at
http://fai.cs.uni-saarland.de/hoffmann/
papers/ijcai16b-tr.pdf.

44

