Simulation-Based Admissible Dominance Pruning

Alvaro Torralba and Jorg Hoffmann
Saarland University
Saarbriicken, Germany
torralba@cs.uni-saarland.de, hoffmann @cs.uni-saarland.de

Abstract

In optimal planning as heuristic search, admissible pruning
techniques are paramount. One idea is dominance pruning,
identifying states “better than” other states. Prior approaches
are limited to simple dominance notions, like “more STRIPS
facts true” or “higher resource supply”. We apply simula-
tion, well-known in model checking, to compute much more
general dominance relations based on comparing transition
behavior across states. We do so effectively by expressing
state-space simulations through the composition of simula-
tions on orthogonal projections. We show how simulation can
be made more powerful by intertwining it with a notion of la-
bel dominance. Our experiments show substantial improve-
ments across several IPC benchmark domains.

Introduction

Heuristic search is the predominant approach to cost-optimal
planning. But the number of states that must be explored to
prove optimality often grows exponentially even when us-
ing extremely well-informed heuristics (Helmert and Roger
2008). Therefore, recent years have seen substantial effort
devoted to identifying and exploiting structure allowing to
prune redundant parts of the state space. Known techniques
of this kind pertain to symmetries (e. g. (Fox and Long 1999;
2002; Domshlak, Katz, and Shleyfman 2012)), partial-order
reduction based methods like expansion-core (Chen and Yao
2009) or strong stubborn sets (Valmari 1989; Wehrle and
Helmert 2012; Wehrle et al. 2013; Wehrle and Helmert
2014), and dominance pruning (Hall et al. 2013). We follow
up on the latter here.

Dominance pruning is based on identifying states “better
than” other states. For example, consider a Logistics task
where one truck must carry several packages to location G.
Consider the position of any one package p. All other state
variables having equal values, the best is to have p at GG, and
it is better for p to be in the truck than at any location other
than G. We refer to this kind of relation between states as a
dominance relation. (Hall et al. use the term “partial-order”,
which we change here to avoid ambiguity with, e. g., partial-
order reduction.)

Two main questions need to be answered: (/) How to
discover the dominance relation? (2) How to simplify the
search (and/or planning task) given a dominance relation?
Hall et al. answered (2) in terms of an admissible prun-

ing method, pruning state s if a dominating state ¢, with
an at-most-as-costly path, has already been seen. We fol-
low that idea here, contributing a BDD implementation. Our
main contribution regards (1). Hall et al. use dominance re-
lations characterized by consumed resources: state ¢ dom-
inates state s if s and ¢ are identical except that ¢t(r) >
s(r) for all resources r.! Herein, we instead find the dom-
inance relation through simulation, used in model checking
mainly to compare different system models (Milner 1971;
Gentilini, Piazza, and Policriti 2003).

A simulation is a relation < on states where, whenever
s = t, for every transition s — s’ there exists a transition
t — t' using the same action, such that ' < ¢’. In words,
t simulates s if anything we can do in s, we can do also in
t, leading to a simulating state. (For the reader familiar with
the use of bisimulation in merge-and-shrink (Helmert et al.
2014): simulation is “one half of” bisimulation.) A simula-
tion clearly qualifies as a dominance relation. But how to
find a simulation on the state space?

We employ a compositional approach, obtaining our sim-
ulation relation on the state space from simulation relations
on orthogonal projections, i.e., projections whose variable
subsets do not overlap. We enhance simulation with a con-
cept of label (action) dominance, in addition to states. In
our Logistics example above, e. g., for each package this de-
tects the described relation (G is better than being in the
truck is better than being at any location other than G). This
yields a very strong dominance relation that allows to ignore
any state in which a package is unnecessarily unloaded at
an irrelevant location. Empirically, we find that indeed our
pruning method often substantially reduces the number of
expanded nodes.

For space reasons, we omit some proofs. Full proofs, and
more examples, will be made available in a TR.

Background
A planning task is a 4-tuple IT = (V, A, I, G). V is a finite
set of variables v, each v € V being associated with a fi-

1Precisely, Hall et al. consider numeric state variables r and an-
alyze whether higher r is always good, or is always bad, or neither.
In Metric-FF’s (Hoffmann 2003) linear normal form, this is equiva-
lent to the formulation above. Hall et al. also handle STRIPS facts,
as variables with domain {0, 1}. But, there, their notions trivialize
to “t dominates s if t O s”.

nite domain D,. A partial state over V is a function s on
a subset V(s) of V, so that s(v) € D, forallv € V(s); s
is a state if V(s) = V. The initial state I is a state. The
goal G is a partial state. A is a finite set of actions, each
a € A being a pair (pre,, eff ,) of partial states, called its
precondition and effect. Each a € A is also associated with
its non-negative cost c(a) € R

A labeled transition system (LTS) is a tuple © =
(S, L, T, so, Sg) where S is a finite set of states, L is a finite
set of labels each associated with a label cost c(l) € R,
T C S x L x S is aset of transitions, sy € S is the start
state, and S C S is the set of goal states.

The state space of a planning task II is the LTS Oy
where: S is the set of all states; sg is the initial state I of
II; s € Sg iff G C s; the labels L are the actions A, and
s < s is a transition in T if s complies with pre,, and
s'(v) = eff ,(v) for v € V(eff,) while s’(v) = s(v) for
v € V\V(eff,). A plan for a state s is a path from s to any
sa € Sg. The cost of a cheapest plan for s is denoted h*(s).
A plan for sq is a plan for I, and is optimal iff its cost equals
h*(so). As defined by Wehrle and Helmert (2014), a plan for
s is strongly optimal if its number of 0-cost actions is min-
imal among all optimal plans for s. We denote by h%*(s) the
number of 0-cost actions in a strongly optimal plan of s.

Abstractions and abstract state spaces are quite common
in planning (e. g. (Helmert, Haslum, and Hoffmann 2007)).
We build on this work, but only indirectly. We use merge-
and-shrink abstractions as the basis from which our simula-
tion process starts. That process itself will be described in a
generic form not relying on these specific constructs. Hence,
in what follows, we provide only a summary view that suf-
fices to present our contribution.

Say we have a task IT = (V, A, I, G) with state space
On = (S,A,T,1,5;), and a variable subset W C V.
The projection onto W is the function 7'V : § +— SW
from the states S over V into the states SV over W, where
7% (s) is the restriction of s to W. The projected state
space O is the LTS (SW, A, TW 7" (I),5}), where
TV = {(#W(s),l, 7™ (s")) | (s,1,8') € T} and S :=
{7 (sg) | sc¢ € Sc}. Given two variable subsets W
and U, (the projections onto) W and U are orthogonal if
W N U = (. Orthogonality ensures the following recon-
struction property: O} ® 0% = O}V for orthogonal
W and U, where ® is the synchronized product opera-
tion. Namely, given any two labeled transition systems ©1 =
(SY, L, T, s}, SL) and ©2 = (52, L, T?, s3, SZ) that share
the same set L of labels, ©! ® ©2 is the labeled transition
system with states S' x S?, labels L, transition (s, s2) LN

(s}, sh)iff s, & 8| € T' and s, > s, € T2, start state
(sp, s8), and goal states {(s;, s%) | s& € S&, s%, € S 1.
Merge-and-shrink abstractions (Helmert, Haslum, and
Hoffmann 2007; Helmert et al. 2014) construct more gen-
eral abstraction functions, and the corresponding abstract
state spaces, by starting from atomic abstractions (projec-
tions onto single state variables), and interleaving merging
steps (replacing two abstractions with their synchronized
product) with shrinking steps (replacing an abstraction with
an abstraction of itself). It has been shown that, if every

shrinking step replaces the selected abstraction with a bisim-
ulation of itself, then the final abstraction is a bisimulation
of the overall state space Op;. It has also been shown that
such shrinking can be combined with exact label reduction
(Sievers, Wehrle, and Helmert 2014). A label reduction is
a function 7 from the labels L into a set L™ of reduced la-
bels preserving label cost i.e. ¢(1) = ¢(7(l)). Given an LTS
O, denote by 7(O) the LTS identical to © except that all la-
bels [have been replaced by 7(1). Given aset {©*, ..., OF}
of LTSs sharing labels L, a label reduction 7 is exact if
7O ®---@7(0%) = 7(0'®---® OF). Reducing labels
in this way, and using bisimulation shrinking, merge-and-
shrink delivers a bisimulation of 7(Ory).

Simulation Relations

Given a planning task with states S, a dominance relation
is a binary relation <C S x .S where s < ¢ implies h*(t) <
h*(s) and, if h*(t) = h*(s) then h%*(t) < h¥*(s). This is
exactly what is needed for admissible pruning during search,
as discussed in the next section.

To find dominance relations in practice, we focus on
the special case of simulation relations. These are well
known in model-checking (e. g. (Grumberg and Long 1994;
Loiseaux et al. 1995)). Here we use a variant adapted to
planning (only) in making explicit the distinction between
goal states and non-goal states:

Definition 1 (Simulation) Ler © = (S, L, T, 59, Si) be an
LTS. A binary relation <C S x S is a simulation for O if,
whenever s < t (in words: t simulates s), for every transi-

tion s % s there exists a transition t - t' s.t. s' < t'. We
call < goal-respecting for O if, whenever s < t, s € Sg
implies that t € Sg.

We call < the coarsest goal-respecting simulation if, for
every goal-respecting simulation =<', we have <'C=.

A unique coarsest goal-respecting simulation always ex-
ists and can be computed in time polynomial in the size of
O (Henzinger, Henzinger, and Kopke 1995). Note that the
coarsest simulation is always reflexive, i.e., s < s; the same
is true of all simulation relations considered here. Intuitively,
every state “dominates itself”.

Observe that s < ¢ implies h*(t) < h*(s), because any
plan for s can be also applied to t. Hence a goal-respecting
simulation over states is a dominance relation. But, for ob-
taining that property, goal-respecting simulation is unnec-
essarily strict. It suffices to preserve, not the label [of the
transition s — &, but only its cost:

Definition 2 (Cost-Simulation) Ler © = (S, L, T, so, Si)
be an LTS. A binary relation <C S x S is a cost-simulation
for © if, whenever s < t, s € Sq implies that t € S¢g, and

.. l . .. 4
for every transition s — s’ there exists a transition t — t'
s.t. 8 <t and c(I') < c(l).

A cost-simulation still is a dominance relation, and any
goal-respecting simulation is a cost-simulation but not vice

Hall et al. (2013) include an equivalent definition, calling it
“compatibility” and not relating it to simulation.

versa. However, in our compositional approach where in-
dividual dominance relations are computed on orthogonal
projections, we need to preserve labels for synchroniza-
tion across these projections. Hence, to ensure we obtain
a dominance relation of the state space, we must use goal-
respecting simulation (rather than cost-simulation) on each
projection.

For our notion of label dominance, it will be important to
consider LTSs with NOOPs added. For any LTS ©, we de-
note by ©,,00p the same LTS but with a new additional label
noop where c(noop) = 0 and, for every state s, a new tran-

.. noop . . .

sition s —— 5. Obviously, any dominance relation over
Op00p 18 a dominance relation over ©. So for our purposes
it suffices to find a dominance relation over the state space
(©11) noop With NOOPs added.

Admissible Dominance Pruning

By A* with dominance pruning, we refer to the following
modification of A*: Whenever a node N with state s(N)
and path cost g(N) is generated, check whether there exists
a node N' in the open or closed lists, with state s(N') and
path cost g(N'), so that s(N) < s(N') and g(N') < g(N).
If so, prune N, i. e. do not insert it into the open list, nor into
the closed list.

As s =< t implies h*(t) < h*(s), any plan through N
costs at least as much as an optimal plan through N’, so A*
with dominance pruning guarantees optimality. In presence
of 0-cost actions, one must be careful to not prune s if this
eliminates all possible plans for . However, s cannot belong
to the strongly optimal plan of ¢ because s < ¢ and h*(t) =
h*(s) implies h%* (t) < h%*(s).

Dominance pruning can reduce A*’s search space, but
comes with a computational overhead. First, checking cost,
the runtime required for checking whether there exists a
node N’ in the open or closed lists, with the mentioned prop-
erties. Second, maintenance cost, the runtime and memory
required for maintaining whichever data structure is used to
keep checking cost (which is excessive in a naive implemen-
tation) at bay. Depending on which of these two costs tend
to be higher, variants of dominance pruning make sense.

Hall et al.’s (2013) dominance relations are characterized
by resources r. They maintain, for each r, the set S(r) of
seen states with a positive value for r. Given a new state s,
their check iterates over the states in the intersection of S(r)
for those r where s(r) is positive. This implementation has
high checking cost but low maintenance cost. Hence Hall
et al. perform the check not at node-generation time, but at
node-expansion time, reducing the number of checks that
will be made.

To deal with our much more general dominance rela-
tions, we developed a BDD-based (Bryant 1986) implemen-
tation. This has low checking cost but high maintenance
cost. Hence we perform the check at node-generation time,
but only against the closed list, reducing the number of
maintenance operations needed.

We maintain a BDD B, for the set of states simulated by
any s(IN') where N’ is a previously expanded node with
g(N'") = g. This is done for every g-value of the expanded

nodes so far. Every time a node N’ is expanded, we deter-
mine the set of states S<(-) simulated by s(N’), and add
S<s(nvy into Bgnry. The checking operation then is very
fast: when a node N is generated, test membership of s(N)
in B, for all g < g(NV). Each such test takes time linear in
the size of the state.

The Compositional Approach

As hinted, our approach is compositional, constructing the
dominance relation over the state space O as the com-
position of simulation relations over orthogonal projections
thereof. Stating this in a generic manner (and simplifying to
the atomic case of two orthogonal projections), we have an
LTS ©'2 which equals the synchronized product ! ® 62
of two smaller LTSs. We obtain a simulation for ©'2 from
simulations for ©! and ©?:

Definition 3 (Relation Composition) Let O! =
(SY, L, T, s}, SL) and ©2 (S%,L,T? s%,S2) be
LTSs sharing the same labels. For binary relations
=<1C 51 x 51 and =%2,C S5 X Sy, the composition of <1 and
<o, denoted <1 ® =9, is the binary relation on S1 X So
where (s1,52)(=1 ® =2)(t1,t2) iff s1 =1 t1 and so =<5 t.

Proposition 1 Let ©'2 = 0! @ 02, and let <, and =
be goal-respecting simulations for ©' and ©? respectively.
Then =1 ® =9 is a goal-respecting simulation for 012,

The proof is direct by definition, and is almost identical
to that of a similar result concerning bisimulation, stated by
Helmert et al. (2014).

Our basic idea can now be described as follows. Say we
have a planning task IT = (V, A, I, G) with state space Oy,
a partition Vi,...,V} of the task’s variables, and a goal-
respecting bisimulation abstraction «; of each T(@l‘—?) where
T is an exact label reduction. This is precisely the input we
will get from merge-and-shrink abstraction. We will hence-
forth refer to this input as our initial abstractions. Say we
construct a goal-respecting simulation =<; for each abstract
state space ©*. Because bisimulation is a special case of
simulation, =<; is a goal-respecting simulation for T(@K)
Applying Definition 3 and Proposition 1 iteratively, &), <;
is a goal-respecting simulation for), 7(0F). Because T is
exact, ®, 7(0) = 7(), ©}7), and by the reconstruction
property 7(Q), O)) = 7(Or). Because the label reduction
is cost-preserving, ®i =; 1s a cost-simulation for O, and
hence a dominance relation as desired.

One can use this result and method as-is, obtaining a new
dominance pruning method as a corollary of suitably assem-
bling existing results and methods. However, empirically,
this method’s ability to find interesting dominance relations
is quite limited. We now extend the simulation concept to
overcome that problem.

Label-Dominance Simulation

Sievers et al. (2014) introduce label “subsumption”, where
1" subsumes [if it labels all transitions labeled by [. To inter-
twine dominance between labels with dominance between
states, we extend that concept as follows:

Definition 4 (Label Dominance) Let © be an LTS with
states S, let <= C S x S be any binary relation on S, and
let 1,1" be labels. We say that I dominates | in © given < if

. ! .
c(l") < ¢(l), and for every transition s — s’ there exists a
. v
transition s — t' s.t. 8/ < t'.

The relation < here is arbitrary, but will be a simulation in
practice. Hence, intuitively, a label dominates another one if
it “applies to the same states and always leads to an at least
as good state”. To give a simple example, consider the LTS
corresponding to a single vehicle’s position, and say we have
a 0-cost “beam” action which takes us from any position to
the vehicle’s goal. Provided that every position is, per =,
simulated by the goal position, “beam” dominates all other
labels.

In IPC benchmarks, typically Definition 4 is important not
for regular actions, but for NOOPs.

Example 1 say we have a truck variable vr, two locations
A and B, and a package variable vp whose goal is to be
at B. Our variable partition is the trivial one, Vi = {vr}
and Vo = {vp}. Bisimulation using exact label reduction
will return LTSs as shown in Figure 1. The “load” and “un-
load” actions get reduced in a way allowing to synchronize
with the correct truck position; the distinction between the
truck “drive” actions is irrelevant so these are reduced to
the same label. Clearly, no label dominates any other in ei-
ther of these two LTSs. However, consider ©' and ©2 with
NOOPs added. The new label noop dominates the load/un-
load actions in ©', and dominates the drive actions in ©2,
provided <1 and =4 are reflexive as will be the case in prac-
tice.

1A B

o' .
(truck) dr a
dr

dr dr dr
el
(package) A B
A 1A \Tj 1B B

Figure 1: Label-reduced bisimulations, i. e. the input to our
simulation process, in the Logistics example.

This behavior allows us, e. g., to conclude that, in ©2, B
dominates T': While T' has an outgoing transition to B, la-
beled IB, B itself has no such outgoing label. However, B
has the outgoing label noop leading to B. The transition

B 2"y B simulates T E) B, except that it uses label
" = noop instead of label | = IB. This is admissible (only)
if I dominates l in all other LTSs involved. In our case here,
the only other LTS is ©', and indeed the label I' = noop
dominates | = [B in that LTS.

We exploit this kind of information as follows:

Definition 5 (Label-Dominance Simulation) Letr 7 =
{©1,...,0"%} be a set of LTSs sharing the same labels. De-
note the states of ©* by S;. A set R = {=X1,..., =2k} of

binary relations <;C S; x S; is a label-dominance simula-
tion for T if, whenever s =; t, s € S& implies that t € S,

.. l . ; . .
and for every transition s — s’ in ©", there exists a transi-

tiont L5 ¢ in © such that c(l') < c(l), 8" =; t', and, for
all j # i, I dominates | in ©7 given <.

We call R the coarsest label-dominance simulation if, for
every label-dominance simulation R' = {=X'1,..., =<'y} for
T, we have ='; C=; for all i.

A unique coarsest label-dominance simulation always ex-
ists, and can be computed in time polynomial in the size of
T. We will prove this in the next section as a corollary of
specifying our algorithm for doing this computation.

l . .
In the example, T' <5 B holds because s — s’ in 02 is
noop

T 1B, B, and the simulating ¢ Y vin 02is B — B,
which works because ¢(noop) = 0 < 1 = ¢(IB), B =2 B,
and noop dominates [B in ©'. In the same fashion, pro-

vided that A <5 B, the transition T' ', Ais simulated by

B 2, B. Note that neither of these two inferences could
be made with the standard concept of simulation (even after
exact label reduction), because that concept insists on using
the same labels, not dominating ones.

We now prove soundness of label-dominance simula-
tion, i.e., that label-dominance simulations R yield cost-
simulations of the original state space. Similarly to before,
we iteratively compose R’s element relations, as captured
by the following lemma:

Lemmal Let T = {©Y,...,0F} be a set of LTSs shar-
ing the same labels, and let R = {=<1,..., =y} be a label-
dominance simulation for T. Then {=<1 ® =<2, <3,..., =k}
is a label dominance simulation for {©'®02,03, ... 6OF}.
Proof Sketch: The claim regarding <3, ..., = is simple.
For <71 ® =, consider states (s1,s2) =12 (t1,t2) and

. ! Sy o
a transition (s1, s2) — (s}, s5). We identify a dominating

transition (¢1, t2) LI (t},t5) as follows: 1. As s; < t1, ob-

Jtmp

. .. L l .
tain a transition ¢t; — timp dominating s; — s} in ©. 2.

. ey
As ["™P dominates [in ©2, obtain a transition sy — 557

. 1 . .

dominating so — s5 in ©2. 3. As s5 <4 fo, Obtain a tran-
g 2

.. 4 .. tme .

sition to — ¢, dominating s5 — s;mp in ©2. 4. As I

. I .
dominates [*™P in ©1, obtain a transition t; — t; dominat-
1
[tmp ¢

ing t; — ¢;"" in O O

Theorem 1 Let T = {©',... 0%} be a set of LTSs shar-
ing the same labels, and let R = {=1,...,3k} be a
label-dominance simulation for T. Then ®Z =, IS a cost-
simulation for), ©°.

Proof: Applying Lemma 1, we get that), =; is a label-
dominance simulation for {), ©%}. Now, for such a single-

. .. v
ton set of LTSs, the requirements on the transition ¢ — ¢’

replacing s Ly & are that c(l’) < ¢(l), and s’ <; t'. Hence
label-dominance simulation simplifies to cost-simulation,
and the claim follows. |

To clarify the overall process, assume now again the initial
abstractions provided by merge-and-shrink abstraction, i. e.,
a partition Vi, ..., V} of the variables, and a goal-respecting
bisimulation abstraction «;, with abstract state space ©%,
of each 7(©) where 7 is an exact label reduction. We
compute the coarsest label-dominance simulation R =
{Z1,. 2} for T = {O0L,,..., 00k, }. As adding
NOOPs does not affect bisimulation and is interchangeable
with the synchronized product, with Theorem 1 we have that
), =i is a cost-simulation for [®), 7(O};)] oop» and hence
a cost-simulation for O as desired.

Computing R
We now show how to operationalize Definition 5: Given
T = {©',...,6F}, how to compute the coarsest label-

dominance simulation R for 7?

It is well known that the coarsest simulation can be com-
puted in time polynomial in the size of the input LTS (Hen-
zinger, Henzinger, and Kopke 1995). The algorithm starts
with the most generous relation < possible, then iteratively
removes pairs s < t that do not satisfy the simulation con-
dition. When no more changes occur, the unique coarsest
simulation has been found. This method extends straightfor-
wardly to label-dominance simulation.

Proposition 2 Let T = {O%,...,0%} be a set of LTSs
sharing the same labels. Then a unique coarsest label-
dominance simulation for T exists.

Proof: The identity relation is a label-dominance simula-
tion. If R = {=Xq,..., %k}t and R' = {='1,..., <}
are label-dominance simulations, then {=<; U='y,..., =g
U="4}, also is a label-dominance simulation. O

Denote the states of O by S;. Define the Boolean function
OK(i, s,t), where s <; ¢, to return true iff the condition for
label-dominance simulation holds, i.e., iff s € SZ-G implies

.. l . -
that ¢t € SiG , and for every transition s — s’ in ©" there

exists a transition ¢ — ¢’ in ©' such that cl') <ce(l), s =
', and, for all j # 4, I’ dominates [in ©7 given <;. Our
algorithm proceeds as follows:

For all i, set <;:= {(s,t) | s,t € S;,s & S& ort € S&}
while ex. (7, s,t) s.t. not Ok(i, s,t) do
Select one such triple (4, s, t)
Set <;:==; \{(s,7)}
endwhile
return R := {<Xq,..., <}

Proposition3 Let T = {O',...,0%} be a set of LTSs
sharing the same labels. Our algorithm terminates in time
polynomial in the size of T, and returns the coarsest label-
dominance simulation for T .

Proof: Each iteration reduces one =<; by one element. This
gives a polynomial bound on the number of iterations, and
every iteration takes polynomial time.

The returned R is a label-dominance simulation as
that is the termination condition. R is coarsest as every
label-dominance simulation must refine the initial relations

{(s,t) | s,t € Siys & SLort € SL}, and every time
we remove a pair (s,t) we know that s A; ¢ in any label-
dominance simulation.

Example 2 Consider again our Logistics example. The ini-
tial relation =<1 for the truck is complete, i. e. 1= {(4, A),
(A,B), (B,A), (B,B)} because the truck has no own
goal. In the initial relation <o for the package, we have
all pairs (s,t) except ones where s is in the goal but t is
not: <o= {(A, A), (A, T), (T, A), (T,T), (A, B), (T, B),
(B,B)}.

Figure 1 shows the LTSs the fixed point algorithm will
work on. Considering the package relation =<, note that

(2,T,A) is not Ok: A cannot match the transition T B
because the only value dominating B is B itself, and A does

not have any outgoing transition to B. Now consider the
truck variable. Note first that (1, A, B) is not Ok: A has the

. o 1A .
outgoing transition A — A. B could only match this via

B % A B E) B, or B 2Py B but neither dr, IB, nor

noop dominate A in the package LTS ©2 since (T, A) is
not in <o anymore. The same holds similarly for (1, B, A)

because of the outgoing transition B B, B of B.

Hence =<1 is reduced to the identity relation and <5 is re-
duced to {(A’ A)7 (A’ T)7 (T7 T)7 (A7 B)’ (T’ B)’ (B’ B)}
Note that this relation corresponds to the statement “’I' dom-
inates A, and B dominates T”, which is exactly what we
wanted to obtain. Indeed, the algorithm stops here, i. e., all
elements of <o are now Ok. This is trivial for the identity
pairs (A, A), (T, T), (B, B). Regarding (A,T), transition

noop

A M T s simulated by T —— T because noop dom-
inates 1A in ©'. Regarding (T, B), we already discussed

above tffg’g both T B Band T 2 A are simulated
by B 22y B. The same is true, regarding (A, B), for

AL T

Note that standard simulation relation does not derive any
dominance relation other than the identity relation in our ex-
ample. The desired relation is only obtained thanks to using
label-dominance and the noop operation.

Experiments

Our techniques are implemented in Fast Downward (FD)
(Helmert 2006). We ran all optimal-track STRIPS plan-
ning instances from the international planning competitions
(IPC’98 — IPC’14). All experiments were conducted on a
cluster of Intel E5-2660 machines running at 2.20 GHz,
with time (memory) cut-offs of 30 minutes (4 GB). We run
A* with FD’s blind heuristic, and with LM-cut (Helmert
and Domshlak 2009). We perform an ablation study of
label-dominance simulation, vs. standard simulation (nei-
ther NOOPs nor label-dominance), vs. bisimulation as com-
puted by merge-and-shrink (not doing any work on top
of merge-and-shrink, just using its output for the prun-
ing). To represent the state of the art in alternative prun-
ing methods, we include the best-performing partial-order
reduction based on strong stubborn sets, which dominates

Blind LM-cut
Coverage Evaluations Gen/sec. Coverage Evaluations Gen/sec.
Domain # A Lo L S B P L S B P L P A Lo L S B P L S B P L P
Airport 50| 22 -7 -7 -7 0o -1 1.2 1.2 1 4.4| 341 11.3] 28 =3 -1 -1 -1 441 1 1 1 4.7 1.1 2
Driverlog 20 7 42 42 (o] 0 0| 15.8 2 2 1| 48 2.8|| 13 0 0 0 0 0 1.9 1.2 1.2 1] 1.1 1.2
Elevators0O8 30(f 14 -1 (o] (o] o] (o] 1 1 1 1.1 0.9 4.1|| 22 O o o] o] o] 1 1 1 1.3 1 1.2
Elevators11 20(f 12 -1 (o] (0] o] (o] 1 1 1 1.1 1 4.2(| 18 O o (o] o] o] 1 1 1 1.2 1 1.2
Floortile11 20 2 44 +44 +44 o] o] 177 177 1.8 1.3| 5.7 3.7 741 41 +1 o] o] 6.4 6.4 1 1 1.1 1.1
Floortile14 20 0O +5 45 +5 0 (0] - - - - - - 6 +2 42 42 0] 0] 6.3 6.3 1 1} 1.3 1.1
FreeCell 80(| 20 -7 0] o 0 -6 1 1 1 1 1 31.2(| 15 -1 (0] 0] 0] 0] 1 1 1 1/ 0.9 1.4
Gripper 20 8 +6 +6 +6 +6 053968 53968 28353 1] 292 3.1 T +7T +7 +7 +7 014662 14662 10049 1/31.9 1.3
Hiking14 20|| 11 0] 0] o 0 -3 2.4 1.9 1.8 1| 3.1 30.5 9 0] (o] 0 0 0] 1.7 1.5 1.5 11 1.9 1.8
Logistics00 28 10 47 46 o 0 0| 32.7 3.1 1.2 1| 9.3 3 20 0] (0] (0] 0] 0] 1.9 1.1 1.1 29| 0.8 1.4
Logistics98 35 2 41 41 o 0 (0] 6.7 1.2 1.2 1.5 4 4.4 6 0 o] (0] 0] 0] 1.3 1 1 43| 09 1.3
Miconic 150|| 55 +6 +6 -1 0 -—-5| 583 8.7 3.4 1|15.6 5.5||141 O 0o 0 0 (o] 2.1 1.5 1.1 1| 0.6 1.1
Mprime 35| 20 -1 -1 o] o -1 1.1 1 1 1| 18 18.5|| 22 O 0o 0 0 0 1.1 1 1 1 1 1.1
Mystery 30| 15 -3 -3 -3 0 0 1.9 1.9 1 1.1129.2 14.2|| 17 0 0o 0 0 0 3.5 3.5 1 1.4| 34 1.8
NoMystery 20 8 +10 +10 +1 +1 0| 2497 128 29.1 1.1|46.4 23| 14 +6 46 +3 0 0 6.5 3.1 1 1] 0.6 1.2
OpenStack08 30|| 22 +2 42 42 +1 0 2.1 2 1.8 2| 81 9.3|]| 21 O 0o 0 0 0 2.5 2.4 2.1 1.8| 2.3 2
OpenStackll 20|| 17 42 42 42 +1 0 2.1 2 1.8 2| 7.8 9.3|| 16 O 0 0 0 0 2.5 2.4 2.1 1.8] 2.3 2.1
OpenStack14 20 3 0 0 (o] 0 +1 2.8 2.8 2.5 1.8 7 7.8 3 0 0o 0 0 0 2.9 2.8 25 1.8] 2.4 2.1
ParcPrint08 30| 10 +6 45 +3 +1 420 862 10 1.5 18349(|13.6 532 18 0 0 0 0 +12 5 1.2 1.1 1028 2.2 20.3
ParcPrint11 20 6 +6 +5 +3 +1 414 869 10 1.5 21826(11.2 371 13 0 (o} 0 0 +7 5 1.2 1.1 1246 2.4 17.8
PegSol08 30| 27 o (o] (o] o] o] 1 1 1 1 1 3.8(| 28 -1 o (o] o -1 1 1 1 1 1 14
PegSolll 20 17 0 0 o) 0 0 1 1 1 1 1 3.8|| 18 —1 0 0 0o -1 1 1 1 1 1 1.4
PipesNoTank 50(| 17 -8 -1 -1 0o -3 1 1 1 1| 1.1 10.3|| 17 -3 0 0 0 0 1 1 1 1 1 1.1
PipesTank 50| 12 -1 0] o 0o -3 1.1 1.1 1.1 1/16.8 25.2|| 12 0] (0] 0] o -1 1.8 1.8 1.8 1) 1.1 1.2
Rovers 40 6 42 42 +1 0 +1| 33.4 9.6 1.7 2(20.6 3 742 42 41 +1 42 6.1 3.8 1.2 4.4 1.8 1.8
Satellite 36 6 0o 0o o] 0o 0| 72.9 35.3 9.9 10.7| 8.4 3.8 7 43 43 43 +3 +4 4.8 1.8 1.7 21.5| 0.9 2.3
Scanalyzer08 30 || 12 0] 0] o 0o -4 1 1 1 1 1 87|15 -1 -1 -1 0 0 1 1 1 1 1 1.2
Scanalyzerll 20 9 (0] 0] o 0o -4 1 1 1 1 1 87|12 -1 -1 -1 0 0 1 1 1 1 1 1.2
Sokoban08 30| 22 -9 0o o o -1 1 1 1 1| 1.7 82| 29 =7 -1 (o] (o] (o] 1 1 1 1| 1.1 1.2
Sokoban11 20| 19 -9 0o o] o -1 1 1 1 1| 1.6 8.1|| 20 -2 0o 0 0 0 1 1 1 1] 1.1 1.2
Tetris 17 9 -6 —1 —1 —1 -4 1 1 1 1| 5.2 52.2 6 -3 -2 -2 -2 -1 1 1 1 1 1 1.3
Tidybot11 20 9 -8 -7 -7 —1 =2 5.5 5.5 1 1.8159.4 8.5 14 -2 -2 -2 0 0 6.8 6.8 1 1.5/ 2.6 1.3
Tidybot14 20 2 -2 -2 -2 -1 =2 - - - - - - 9 -7 -7 -7 —1 -1 3.9 3.9 1 1.7 3.1 1.4
TPP 30 6 0 0 0o 0 0 6.5 4 1 1122.7 3.3 6 +1 41 41 41 0 1.2 1.1 1 1] 1.3 1.1
Transport14 20 7 0 0 0 0o -1 1 1 1 1 1 9.1 6 0 0o 0 0 0 1.4 1.4 1.4 1] 1.4 1.2
Trucks 30 6 42 42 (o] 0 0| 24.8 21.9 2.8 1]13.8 6| 10 o0 0o 0 0 0 2.7 2.3 1 1] 1.2 1.2
VisitAlll1 20 9 0 0 (o] 0 0 30 25.5 1 1| 104 3.5(| 10 41 41 41 0 0 7 6.8 1 1] 1.5 1.1
VisitAll14 20 3 41 41 41 o] 0| 27.8 234 1 1(92.8 3.5 5 0 0o (o] o] o] 5.2 5.1 1 1| 1.6 1.1
Woodwork08 30 8 4+10 410 +5 +4 +7 981 112 87.8 488| 7.6 7.5|| 17 +7 47 45 +5 410| 91.4 23.7 16.9 762| 1.8 3.1
Woodworkll 20 3 49 49 +5 +4 46| 1059 116 92.2 514 6.7 6.3|| 12 +5 +5 44 +4 47| 91.6 23.8 17 772 1.8 2.9
Zenotravel 20 8 +1 41 0 0 0| 41.6 1.5 1.1 1] 4.3 6.2 13 8] 4] 0 3] 0 3.6 1.6 1 1 1 1.2
> 1271|]605 419 +57 +16 +16 48 1.8 1.7 1.5 1.4] 4.2 7.4||833 +3 420 +14 +17 438 0 0 0 0| 1.7 1.5

Table 1: Experiments. “A”

: A* without pruning. ”Ly”, “L”: label-dominance simulation; “S”: simulation; “B”: bisimulation;

“Ly” is without safety belt (see text), all others with safety belt. “P”: partial-order reduction. Domains where no changes in
coverage occur anywhere are omitted. “Evaluations” is the factor by which the per-domain summed-up number of evaluated
states, relative to “A”, decreases. “Gen/sec.” is the factor by which the per-node runtime (summed-up number of generated
nodes divided by summed-up search time), relative to “A”, increases.

other partial-order pruning approaches such as expansion-
core (Wehrle et al. 2013).

Our initial abstractions are obtained using merge-and-
shrink with exact label reduction, bisimulation shrinking,
and the non-linear merge DFP strategy (Dréger, Finkbeiner,
and Podelski 2006; 2009; Sievers, Wehrle, and Helmert
2014). We impose two bounds on this process, namely a time
limit of 300 seconds, as well as a limit M on the number of
abstract transitions. When either of these limits is reached,
the last completed abstractions form the starting point for
our simulation process, i.e., are taken to be the initial ab-
stractions. With this arrangement of parameters, the trade-
off between merge-and-shrink overhead incurred vs. bene-
fits gained is relatively easy to control. The bound on tran-
sitions works better than the more usual bound on abstract
states, because the same number of abstract states may lead
to widely differing numbers of transitions and thus actual
effort. A reasonably good “magic” setting for M, in our cur-
rent context, is 100k. For M = 0, i.e. computing the com-
ponent simulations on individual state variables only, per-
formance is substantially worse. For M = 200k, the over-
head becomes prohibitive. In between, overall coverage un-

dergoes relatively small changes only (in the order of 5 in-
stances).

Consider Table 1. With our pruning method, nodes are
first generated and then checked for pruning, so the evalu-
ated states are exactly the non-pruned generated ones. Hence
the number of evaluated states assesses our pruning power,
and the ratio between generated nodes and search time as-
sesses the average time-per-node. The “safety belt” disables
pruning if, after 1000 expansions, no node has been pruned.
This is a simple yet effective method to avoid runtime over-
head in cases where no or not much pruning will be ob-
tained.

Compared to partial-order reduction, simulation-based
pruning tends to be ‘“stronger on its own, but less com-
plementary to LM-cut”. Consider first the blind heuristic,
which assesses the pruning power of each technique “on
its own”. Simulation-based pruning typically yields much
stronger evaluation reductions, the only clear exception be-
ing ParcPrinter where partial-order reduction excels. This
results in much better coverage in many domains and over-
all. With LM-cut, on the other hand, while simulation-based
pruning still applies more broadly — there are 14 test suites

T T W T ey
1000 F + *&ﬁ“’f‘— 1000 1000 4
+§¢# +++tr§ 4 Qﬁ* + i
PRI T +
100 | ER S B +4 100 | 100 | 4
e yﬁ@;} + + 1
Mﬁ+#ﬁ+ ++ +
CRINES LI
10 | T ERTT 4 10F 10 | 4
TR A *
e B4 e
4 +
1E N 4 1F 1F 4
+
R +
0.1 F 4 01 0.1 F K
| | | | . . | .

1000 0.1 1 10 100 1000 0.1 1 10 100

(a) total time (b) — M&S time (c) — simulation time (d) — BDD setup time

Figure 2: Runtime of A* with LM-cut, without pruning on the x-axis, with simulation-based pruning on the y-axis. We distin-
guish the successive pre-processing overheads in our current implementation by deducting them iteratively. Version with max
number transitions of 100 000.

T T g Ty
1000 F + " 141000 | 1000 + 1000
+ + o+
+ i +
+ . + 44t +*+#¢i ++Mf "4
100 F o, ﬁf feoo+4 100 b 100 F 100
+++ L. S ¥
L Lt + H
+ T
10 | 4+ * 4 10 10 b 10
e + +
+:§£ﬁ—¢+ ++*¢# ¥
s o " 1 1k 1k 1
Nl +
F v
o1 ¥ 1 o1 pF 4 01 p ¥ 0.1
2l L L L L et L L L L -l L L L L

0.1 1 10 100

(a) total time (b) — M&S time (c) — simulation time

(d) — BDD setup time

Figure 3: Runtime of A* with LM-cut, without pruning on the x-axis, with simulation-based pruning on the y-axis. We distin-
guish the successive pre-processing overheads in our current implementation by deducting them iteratively. Version with max

number transitions of 10 000.

where it reduces evaluations but partial-order reduction does
not — the extent of the reduction is dramatically diminished.
Partial-order reduction suffers from this as well, but retains
much of its power in ParcPrinter and Woodworking, and
consistently causes very little runtime overhead relative to
this slow heuristic function. Thus partial-order reduction has
better overall coverage. It does not dominate simulation-
based pruning though, which yields better coverage in Floor-
tile, Gripper, NoMystery, TPP, and VisitAll.

Label-dominance simulation clearly pays off against stan-
dard simulation as well as bisimulation. The latter already
is very helpful in some domains, like Gripper and Wood-
working. Simulation does add over this, but suffers in some
domains, like Tidybot, from the additional runtime over-
head. Label-dominance simulation has such issues as well,
but makes up for them by more pronounced gains on other
domains.

The per-node runtime overhead in simulation-based prun-
ing is almost consistently outweighed by the search space
size reduction (compare the respective “Gen/sec.” vs. “Eval-
uations” columns in Table 1). The most substantial runtime
overhead stems from computing the simulation relations.
Our current implementation of that process is largely naive.
We experimented with ideas from model checking for doing
this more effectively, but with limited success due to the dif-
ferent context (especially, label-dominance). It remains an
important open topic to improve this part of our machinery.

Figure 2 shows a comparison of the time to solve a prob-
lem with and without dominance pruning when considering

different parts of the preprocessing or not. We subdivide pre-
processing time into three separated components: the time
to generate the M&S abstractions, the time to compute the
simulation relation and the time to initialize the BDDs. The
plots show the comparison of total time and then substract
the three parts of the preprocessing, one at a time.

The per-node overhead is almost consistently outweighted
by the search space size reduction, as shown by the search
time comparison in Figure 2d. Thus, runtime is improved
in large instances, where the preprocessing runtime is dom-
inated by the search runtime, but not on small ones due to
spending up to 300 seconds in the preprocessing phase (see
Figure 2).

However, the time spent in preprocessing can be con-
trolled by lowering the parameter max number of transitions,
M. Smaller M avoids much of the preprocessing overhead,
at a small price in overall coverage. Figure 3 shows the time
comparison when the abstraction size is kept below 10 000
transitions. In this case, the overhead of computing the label-
dominance simulation and BDD initialization is heavily re-
duced. Most of the overhead is due to the creation of the
M&S abstractions. Reducing M does not increase cover-
age since the main cause for failing at problems solved by
the baseline is that M&S runs out of time or memory dur-
ing label reduction. Total coverage is 846, seven problems
less than the version with abstractions of 100 000 nodes. The
coverage decreases in Woodworking (—3), Scanalyzer (—2),
and Gripper(—7), but the reduced overhead makes coverage
increase in OpenStack(+4) and Sokoban(—+1).

Conclusion

The idea of pruning states based on some form of “domi-
nance” is old, but has previously been incarnated in plan-
ning with simple special cases (“more facts true”, “more re-
sources available”) only. Simulation relations are the natural
framework to move beyond this. Our work constitutes a first
step towards leveraging the power of simulation relations in,
as well as extending them for, admissible pruning in plan-
ning. The method is orthogonal to existing pruning meth-
ods, and empirically exhibits complementary strengths rela-
tive to partial-order reduction, so there is potential for syn-
ergy. A major challenge in our view is how to intelligently
control initial-abstraction size, investing a lot of overhead
where simulation pruning is promising and, ideally, avoid-
ing any overhead altogether where it is not.

Proofs

Proposition 1 Ler 02 = 0! @ 02, and let <, and <
be goal-respecting simulations over ©' and ©? respectively.
Then =<1 ® =y is a goal-respecting simulation for ©12,

Proof: Denote, for simplicity, <1 ® =5 by =<15. First, we
show that <1, is a simulation of ©'2. For every (s1, 52) <12

t1,t) and transition (s1, s2) - (s, s,) in ©12, we have to
1,52

. i ! .
show that there exists a transition (t1,t2) — (t;,t5) in ©'2
such that (s}, s5) <12 (t],t5).

As (s1,52) 4 (8%, s5), by the definition of the synchro-

nized product, s; LN s is a transition in ©' and s, LN shis
a transition in ©2. From (s1, s2) <12 (t1,%2), by construc-
tion of <15 we know that s; <y t; and so =<9 t5. Therefore,
because <; and < are simulations over ©! and ©2 respec-

tively, there exist transitions ¢; 4 t1 in ©! and ¢, 4 t, in
©? such that s} < t} and s§ <5 t5. We have (s, s5) <12
(t},t5) by construction of <15. Moreover, by the definition

of the synchronized product, (¢1,%2) 4 (th,t5) in ©12 as
desired.

We now prove that <15 is goal-respecting. Suppose for
contradiction that (s1, s2) <12 (¢1,t2) and (s1, s2) is a goal
state, but (¢1,¢2) is not. Then both s; and sy must be goal
states, and at least one of ¢; or £o must be a non-goal state.
By construction of <19, 51 =<1 t; and sy =<9 to. Therefore,
either <y or <5 is not goal-respecting, in contradiction. [J

Lemma 1 Let T = {©',... O} be a set of LTSs shar-

ing the same labels, and let R = {=<1,..., =<y} be a label-
dominance simulation for T. Then {=1 ® <o, =3, s =k}
is a label dominance simulation for {©'®02 03, ... 6k}

Proof: Denote, for simplicity, <; ® =5 by <15 and O! ®
©2 by ©'2. We first show that <1, satisfies its part of the
claim: For every (s1,s82) =12 (t1,t2) we show that (i) if
(s1, 82) is a goal state in ©'2 then (¢4, t) also is a goal state

. . » !
in ©12, and (ii) for every transition (s1, s2) — (s}, s5), there

exists a transition (t1,t2) LN (th,t5) where c(l') < ¢(I),
(s7,s5) =12 (t],t5) and I’ dominates [/ in ©7 given <; for
all j > 3.

Part (i) is easy to see: As R is a label dominance simula-
tion, and s; =< t; as well as so <y to by construction of
<12, we know that s; € SZG implies t; € SiG (fori =1,2).
The claim then follows directly from the definition of the
synchronized product.

. .. l .
Regarding part (ii), observe first that, because s; —] is
a transition in ©1, and R is a label dominance simulation,

tmp

there is a transition t; — ¢;"* in ©' such that ¢(1?"?) <

c(l), sy =1t and I dominates [in ©7 given <; for
. . . ! .

all j > 2. As I*™P dominates [in ©2, and sy — shis a

... . 2 . .. rime tmp - 2
transition in ©~, there is a transition s, — s5 = in ©%,
t .
where s}, <5 s5' 7. Now, as sy =<2 to and R is a label dom-

inance simulation, there is a transition to — t} in 02 such
that (') < c(1'™), s5™ <, th, and I dominates ["™ in
©7 given <; for all j # 2. Because I’ dominates /"™ in ©!

. ey
given <1, and t; — t;"" is a transition in ©1, there is a

transition ¢4 LI t1 in ©1, where timp =1 t].

We now have (a) transitions ¢, l—> t} in O! and t, l—)
th in ©2, where c(l') < c(I'™P) < ¢(l). We furthermore
have s} =<3 timp and timp =3 t}, from which because all
relations in a label-dominance simulation must be transitive
we have that (b) s} < t}. Similarly, from s}, <5 s5™ and
siP <o th we get () sh <o th. Together, (a—c) clearly
show what we needed to prove.

Consider now the relations <3, ..., <x. Since these are
unchanged from the original label-dominance simulation R,
for their part of the claim it suffices to prove that, if I’ dom-
inates [in ©! with respect to <; and in ©% with respect to

=, then I’ dominates [in ©'2 with respect to <15. Hence we
.. !
have to prove that, for every transition (s1,s2) — (¢1,t2),

. .. v
there exists another transition (s1,s2) — (¢},t5) where
(t1,t2) =12 (t],15).
As I’ dominates [in ©' with respect to <, there exists a

.. I . . .
transition s; — t} in ©! with ¢; <y ;. As I’ dominates [

in ©2 with respect to <o, there exists a transition ss l—) th
in ©2 with ty <5 th,. The claim follows directly from the
definitions of the synchronized product and <,. (|

References

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. [EEE Transactions on Computers
35(8):677-691.

Chen, Y., and Yao, G. 2009. Completeness and optimal-
ity preserving reduction for planning. In Proc. 21st Inter-

national Joint Conference on Artificial Intelligence (IJCAI
2009), 1659-1664.

Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In Proc. 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS’12).

Driger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed
model checking with distance-preserving abstractions. In

Proceedings of the 13th International SPIN Workshop (SPIN
2006), volume 3925 of Lecture Notes in Computer Science,
19-34.

Driger, K.; Finkbeiner, B.; and Podelski, A. 2009. Directed
model checking with distance-preserving abstractions. STTT
11(1):27-37.

Fox, M., and Long, D. 1999. The detection and exploitation
of symmetry in planning problems. In Proc. 16th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-99),
956-961.

Fox, M., and Long, D. 2002. Extending the exploitation
of symmetries in planning. In Proc. 6th International Con-
ference on Artificial Intelligence Planning and Scheduling
(AIPS-02), 83-91.

Gentilini, R.; Piazza, C.; and Policriti, A. 2003. From bisim-
ulation to simulation: Coarsest partition problems. Journal
of Automated Reasoning 31(1):73-103.

Grumberg, O., and Long, D. E. 1994. Model checking and
modular verification. ACM Transactions on Programming
Languages and Systems (TOPLAS) 16(3):843-871.

Hall, D.; Cohen, A.; Burkett, D.; and Klein, D. 2013.
Faster optimal planning with partial-order pruning. In Proc.
23rd International Conference on Automated Planning and
Scheduling (ICAPS’13).

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What'’s the difference anyway? In
Proc. 19th International Conference on Automated Planning
and Scheduling (ICAPS’09), 162—169.

Helmert, M., and Roger, G. 2008. How good is almost
perfect? In Proc. 23rd National Conference of the American
Association for Artificial Intelligence (AAAI-08), 944-949.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R.
2014. Merge & shrink abstraction: A method for generat-
ing lower bounds in factored state spaces. Journal of the
Association for Computing Machinery 61(3).

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc. 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), 176—183.

Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research 26:191-246.

Henzinger, M. R.; Henzinger, T. A.; and Kopke, P. W. 1995.
Computing simulations on finite and infinite graphs. In 36th

Annual Symposium on Foundations of Computer Science.,
453-462.

Hoffmann, J. 2003. The Metric-FF planning system:
Translating “ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20:291-341.

Loiseaux, C.; Graf, S.; Sifakis, J.; Bouajjani, A.; and Ben-
salem, S. 1995. Property preserving abstractions for the
verification of concurrent systems. Formal Methods in Sys-
tem Design 6(1):11-44.

Milner, R. 1971. An algebraic definition of simulation be-
tween programs. In Proc. 2nd International Joint Confer-
ence on Artificial Intelligence (IJCAI-71), 481-489.

Sievers, S.; Wehrle, M.; and Helmert, M. 2014. Generalized
label reduction for merge-and-shrink heuristics. In Proc.
28th AAAI Conference on Artificial Intelligence (AAAI’14),
2358-2366.

Valmari, A. 1989. Stubborn sets for reduced state space gen-
eration. volume 483 of Lecture Notes in Computer Science,
491-515.

Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proc. 22nd International Conference on Automated Plan-
ning and Scheduling (ICAPS’12).

Wehrle, M., and Helmert, M. 2014. Efficient stubborn sets:
Generalized algorithms and selection strategies. In Proc.
24th International Conference on Automated Planning and
Scheduling (ICAPS’14).

Wehrle, M.; Helmert, M.; Alkhazraji, Y.; and Mattmiiller, R.
2013. The relative pruning power of strong stubborn sets

and expansion core. In Proc. 23rd International Conference
on Automated Planning and Scheduling (ICAPS’13).

