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Abstract

Research on heuristic functions is all about estimating the
length (or cost) of solution paths. But what if there is no
such path? Many known heuristics have the ability to de-
tect (some) unsolvable states, but that ability has always been
treated as a by-product. No attempt has been made to design
heuristics specifically for that purpose, where there is no need
to preserve distances. As a case study towards leveraging
that advantage, we investigate merge-and-shrink abstractions
in classical planning. We identify safe abstraction steps (no
information loss regarding solvability) that would not be safe
for traditional heuristics. We design practical algorithm con-
figurations, and run extensive experiments showing that our
heuristics outperform the state of the art for proving planning
tasks unsolvable.

Introduction
Research on heuristic functions is all about estimating the
length (or cost) of solution paths. There even is a percep-
tion that, on unsolvable problems, state ordering does not
matter so computing a heuristic is a waste of time. That is
false for heuristics with the ability to detect (some) dead-end
states, like almost all known heuristics in planning. This is
not in itself a new observation, but it has never been system-
atically explored. Unsolvability detection has always been
treated as a by-product of estimating goal distance/cost. For
example, all relaxed-plan based heuristics (e. g. (Hoffmann
and Nebel 2001)), all landmark heuristics (e. g. (Richter and
Westphal 2010)), and the recent red-black plan heuristics
(Katz and Hoffmann 2013), are no better at unsolvability
detection than the “Methuselah heuristic” hmax. We intro-
duce unsolvability heuristics, returning either∞ or 0, as an
alternative research focus aiming to address the questions:
How to design heuristics specifically for unsolvability de-
tection? Can we leverage the lack of need to preserve dis-
tances? Is search with such heuristics competitive with other
approaches for proving unsolvability?

These are long-term research challenges, that are relevant
due to (a) the practical importance of unsolvable problems
(e. g., directed model checking (Edelkamp, Lluch-Lafuente,
and Leue 2004) and over-subscription planning (Gerevini
et al. 2009)), and (b) the practical importance of detecting
dead-ends in solvable problems (e. g., when dealing with
limited resources (Nakhost, Hoffmann, and Müller 2012;

Coles et al. 2013)).
We investigate merge-and-shrink abstractions (Helmert,

Haslum, and Hoffmann 2007) as a case study. M&S abstrac-
tions iteratively merge all state variables (build the cross-
product of these variable’s transition systems), and shrink
the intermediate outcomes to keep abstraction size at bay. A
key issue is how to shrink without losing too much informa-
tion. We identify safe abstraction steps, that do not incur any
information loss regarding solvability (but that do lose infor-
mation regarding goal distance so would not be safe for tra-
ditional heuristics). Leveraging prior work on K-catching
bisimulation (Katz, Hoffmann, and Helmert 2012), where
the behavior of a subset of actions K is reflected exactly in
the M&S abstraction, we identify sets K rendering this kind
of abstraction safe. Approximating such K yields practical
heuristics. We collect a suite of unsolvable benchmarks, and
run comprehensive experiments. Competing approaches, in-
cluding BDDs, are outperformed drastically; the advantage
over previous M&S methods is less pronounced but still sig-
nificant.

Our work is partly inspired by recent work (Bäckström,
Jonsson, and Ståhlberg 2013) on unsolvable planning prob-
lems, testing whether projections onto a subset of vari-
ables (a special case of M&S) are unsolvable, where the
tested variable subsets are systematically enumerated (start-
ing with small ones). In contrast, we stick to the stan-
dard M&S process incorporating all variables, and investi-
gate in-depth the abstraction steps (shrinking) during that
process. Two prior works (Helmert 2006a; Haslum 2007)
identify conditions under which a state variable can be pro-
jected away without affecting solvability. Helmert’s condi-
tion (Helmert 2006a) is a special case of our techniques;
Haslum’s generalized condition (Haslum 2007) is not. We
get back to this later.

Background
A planning task is a 4-tuple Π = (V,A, I,G). V is a finite
set of variables v, each associated with a finite domain Dv .
A complete assignment to V is called a state; we identify
(partial) assignments to V with sets of facts, i. e., variable-
value pairs. I is the initial state, and the goal G is a partial
assignment to V . A is a finite set of actions. Each action
a ∈ A is a pair (prea, effa) of partial assignments to V called
precondition and effect, respectively. Each action is also



associated with a real-valued cost.
The semantics of planning tasks are defined via their state

spaces, which are (labeled) transition systems. Such a sys-
tem is a 5-tuple Θ = (S,L, T, I, SG) where S is a finite set
of states, L is a finite set of labels, T ⊆ S × L × S is a
set of transitions, I ∈ S is the initial state, and SG ⊆ S
is the set of goal states. We will usually write transitions
(s, l, s′) ∈ T as s l−→ s′, or s → s′ if the label does not
matter. The state space of a planning task Π is the transition
system Θ where: S is the set of all states; L = A; s ∈ SG
if G ⊆ s; and s a−→ s′ if a is applicable to s and s′ is the
resulting state. Here, a is applicable to s if prea ⊆ s, and
s′ is the resulting state if s′(v) = effa(v) where effa(v) is
defined, and s′(v) = s(v) elsewhere. Π is solvable if Θ has
a path from I to a state in SG. We sometimes call Θ the
“concrete” state space to distinguish it from abstract ones.

For a state s, remaining cost h∗(s) is defined as the cost
of a cheapest path from s to a state in SG, or ∞ if there is
no such path. A heuristic is a function h : S → R+

0 ∪{∞}.
A heuristic is perfect if it coincides with h∗. Herein, we
consider heuristics based on abstractions. An abstraction
is a function α mapping S to a set of abstract states Sα.
The abstract state space Θα is (Sα, L, Tα, Iα, SαG), where

α(s)
l−→ α(s′) in Tα iff s l−→ s′ in T , Iα = α(I), and

SαG = {α(s) | s ∈ SG}. The abstraction heuristic hα
maps each s to the remaining cost of α(s) in Θα. We will
sometimes consider the induced equivalence relation ∼α,
where s ∼α t if α(s) = α(t). If s ∼α t, we also say that s
and t are aggregated by α.

Merge-and-shrink (Dräger, Finkbeiner, and Podelski
2006; Helmert, Haslum, and Hoffmann 2007; Dräger,
Finkbeiner, and Podelski 2009; Helmert et al. 2014), short
M&S, is a practical method to construct abstractions. The
approach builds the abstraction in an incremental fashion, it-
erating between merging and shrinking steps. Namely, M&S
abstractions are constructed using the following rules:

(i) For v ∈ V , π{v} is an M&S abstraction over {v}.
(ii) If β is an M&S abstraction over W and γ is a function

on Sβ , then γ ◦ β is an M&S abstraction over W .
(iii) If α1 and α2 are M&S abstractions over disjoint sets

W1 and W2, then α1 ⊗ α2 is an M&S abstraction over
W1 ∪W2.

Rule (i) allows to start from atomic projections. These
are simple abstractions π{v} (also written πv) mapping each
state s ∈ S to the value of one selected variable v. Rule (ii),
the shrinking step, allows to iteratively aggregate an arbi-
trary number of state pairs, in abstraction β. Formally, this
simply means to apply an additional abstraction γ to the im-
age of β. In rule (iii), the merging step, the merged abstrac-
tion α1 ⊗ α2 is defined by (α1 ⊗ α2)(s) := (α1(s), α2(s)).

Throughout the construction of α, for every intermediate
abstraction β, M&S also maintains the corresponding ab-
stract state space Θβ . The details are not relevant to our
work here.

To implement M&S in practice, we need a merging strat-
egy deciding which abstractions to merge in (iii), and a
shrinking strategy deciding which (and how many) states

to aggregate in (ii). Like all prior work on M&S in planning,
we will use linear and full merging strategies only, where
the variables V are ordered v1, . . . , vn (hence “linear”) and
we iteratively merge v1 with v2, merge their product with
v3, and so on until all variables have been merged (hence
“full”). Prior to every merging step, a shrinking step is ap-
plied to both, the current abstraction over {v1, . . . , vi} and
the atomic projection onto the variable vi+1 to be merged-in
next.

Following recent work (Katz, Hoffmann, and Helmert
2012), each shrinking step is based on the notion of K-
catching bisimulation. If Θ = (S,L, T, I, SG) is a tran-
sition system and K ⊆ L is a subset of its labels, then an
equivalence relation ∼ on S is a K-catching bisimulation
for Θ if s ∼ t implies that: (a) either s, t ∈ SG or s, t 6∈ SG;
(b) for every l ∈ K we have that {[s′] | s l−→ s′} = {[t′] |
t
l−→ t′}, where [s] for a state s denotes the equivalence class

of s. An abstraction α is aK-catching bisimulation if the in-
duced equivalence relation ∼α is. Intuitively, a K-catching
bisimulation (a) preserves goal states, and (b) preserves the
behavior of transitions labeled with K. If K = L then α is
called a bisimulation, and preserves all transition behavior
exactly. Note that a bisimulation does not actually have to
make any aggregations: the identity function is a bisimula-
tion. Whenever we say “K-catching bisimulation”, we mean
the coarsest one, aggregating maximally. Given a transition
system Θ as input, coarsestK-catching bisimulations can be
computed efficiently.

In difference to previous works, we will consider com-
posed shrinking strategies, that (within every shrinking
step) sequentially apply individual (component) shrinking
steps. We will give each individual strategy a name “X”;
“X+Y” is the sequential application of X and Y in that or-
der. The strategy names will be postfixed with “-shrinking”.
The K-shrinking strategy chooses a subset K ⊆ A of ac-
tions up front in a pre-process, and whenever rule (ii) is ap-
plied, defines γ as the coarsest K-catching bisimulation for
Θβ . When using full bisimulation (K = A), the strategy is
called A-shrinking.

It is easy to see that K-catching bisimulation is invari-
ant over M&S steps (i–iii). So, with K-shrinking, the out-
come of M&S is a K-catching bisimulation of the concrete
state space Θ, and particular choices of K allow to guaran-
tee qualities of hα. The simple limiting case is A-shrinking
where hα is perfect. More interesting choices of K were
first explored by Katz et al. (Katz, Hoffmann, and Helmert
2012); we will adapt their observations to the unsolvability
setup considered herein.

We run M&S with label reduction (Helmert, Haslum,
and Hoffmann 2007): The transition labels a = (prea, effa)
in the current abstraction over the already merged-in vari-
ables W = {v1, . . . , vi} are projected onto V \ W . This
yields the same heuristic, but it saves memory as previously
distinct labels may collapse, and it can reduce bisimulation
size exponentially.

For any W ⊆ V , we use ΘW as a short-hand for the ab-
stract state space ΘπW of the projection onto W . Any M&S
abstraction α over W can be cast as an abstraction of ΘW .



We will use s, t to denote concrete states, sα, tα to denote
abstract states, and sW , tW to denote projected states. Any
abstract state sα is identified with a set of states, namely the
equivalence class of states mapped to sα. We will view ab-
stract states as both, sets of concrete states s from Θ, and
sets of projected states sW from ΘW . We sometimes de-
note assignments

⋃
v∈U{v = d} to a subset of variables U

simply by dU .

Unsolvability Heuristics
The definition of “unsolvability heuristic” is trivial. But as
this is the basic concept distinguishing our setup from tradi-
tional heuristic search, and as that concept has (as best we
know) not been introduced before, it seems appropriate to
give it a name and make it explicit:1

Definition 1 An unsolvability heuristic is a function u :
S → {0,∞} such that u(s) =∞ only if h∗(s) =∞.

Our function u now merely indicates whether a state is
recognized to be unsolvable (u(s) = ∞), or not (u(s) =
0).2 Such truncated heuristics are useful for (a) search on
unsolvable problems, and (b) dead-end detection in solvable
problems. We can trivially obtain unsolvability heuristics
from regular ones:

Definition 2 Let h be a heuristic that returns h(s) = ∞
only if h∗(s) = ∞. Then the induced unsolvability heuris-
tic h|u is defined by h|u(s) = ∞ if h(s) = ∞, and
h|u(s) = 0 otherwise.

The perfect unsolvability heuristic u∗ is defined by u∗ =
h∗|u, and an unsolvability heuristic u is perfect if u = u∗.

Note the close connection to “disregarding action costs”:
Denoting by Π[0] the planning task with all action costs re-
duced to 0, h|u is perfect iff h is perfect in Π[0]. Moreover,
for the abstraction heuristics we consider here, and more
generally for any heuristic h whose R+

0 (i. e., non-∞) return
values result from summing up action costs in an approxi-
mate solution, we have h|u = h(Π[0]).

Unsolvability-Perfect M&S Abstractions
Abstractions induce unsolvability heuristics in the obvious
manner. Focusing on M&S, in this and the next section we
are concerned with conditions under which such use of ab-
stractions is loss-free, i. e., where the resulting unsolvability
heuristics are perfect:

Definition 3 Let α be an abstraction. Then uα is defined by
uα = hα|u. We say that α is unsolvability perfect if, for
every pair s, t of states in Θ where s ∼α t, u∗(s) = ∞ iff
u∗(t) =∞.

It is easy to see that uα is perfect iff α is unsolvability per-
fect. We derive “safety” conditions on M&S, guaranteeing
the latter property:

1Throughout the paper, we tacitly assume a planning task Π =
(V,A, I,G) with state space Θ = (S,A, T, I, SG).

2We could in principle choose arbitrary return values to make
this indication. The chosen ones {0,∞} are natural in that they
correspond to disregarding action costs (see next).

Definition 4 LetW ⊆ V and let sW , tW be projected states
in ΘW . Then sW and tW are safe to aggregate if, for ev-
ery assignment dV \W to V \W , u∗(sW ∪ dV \W ) = ∞ iff
u∗(tW ∪ dV \W ) =∞.

Let α be an abstraction of ΘW . An abstract state sα is
safe if, for every pair of projected states sW , tW ∈ sα, sW
and tW are safe to aggregate; α is safe if all its abstract
states are.

For W = V , being safe is equivalent to being unsolv-
ability perfect. But not for W ( V : The aggregated states
s ∼α t in Θ are, then, all s = sW ∪ dV \Ws , t = tW ∪ dV \Wt

where sW ∼α tW and dV \Ws , d
V \W
t are arbitrary exten-

sions to the remaining variables. By contrast, safety only
considers identical extensions dV \Ws = d

V \W
t . This is ap-

propriate provided that α will be merged with any safe ab-
straction of the remaining variables:
Lemma 1 If α1 and α2 are safe abstractions of ΘW1 and
ΘW2 respectively, then α1 ⊗ α2 is a safe abstraction of
ΘW1∪W2 .
Proof: Let sW1∪W2 and tW1∪W2 be any pair of projected
states in ΘW1∪W2 so that sW1∪W2 ∼α1⊗α2 tW1∪W2 , and
let dV \(W1∪W2) be any extension to the remaining variables.
Denote by sW1 , tW1 , sW2 , and tW2 the respective projec-
tions onto W1 and W2. By prerequisite, (1) u∗(sW1 ∪
d′V \W1) = ∞ iff u∗(tW1 ∪ d′V \W1) = ∞ for all exten-
sions d′V \W1 to V \W1, and (2) u∗(sW2 ∪d′V \W2) =∞ iff
u∗(tW2∪d′V \W2) =∞ for all extensions d′V \W2 to V \W2.
Putting (1) and (2) together shows the claim: u∗(sW1∪W2 ∪
dV \(W1∪W2)) =∞⇔ u∗(sW1 ∪ sW2 ∪ dV \(W1∪W2)) =∞
(1)⇔ u∗(tW1 ∪ sW2 ∪ dV \(W1∪W2)) =∞ (2)⇔ u∗(tW1 ∪ tW2 ∪
dV \(W1∪W2)) =∞⇔ u∗(tW1∪W2 ∪dV \(W1∪W2)) =∞. �

In other words: safety is invariant over merging steps.
Therefore, as atomic projections are trivially safe, if we start
from a safe abstraction and merge in the remaining variables,
then the final abstraction over all variables W = V is safe
and hence unsolvability perfect. Unless, of course, we apply
any more shrinking steps in between.

As M&S without shrinking steps is void, our question
now boils down to examining these steps. A safe shrink-
ing strategy is one that, given a safe abstraction β as input,
returns a safe abstraction γ ◦β as its output. Obviously, if all
components of a composed shrinking strategy are safe, then
the composed strategy is also safe.
Corollary 1 If the shrinking strategy is safe, then the final
abstraction α of Θ is safe, and thus uα is perfect.

Safe Shrinking Strategies
We introduce safe shrinking strategies based on label sim-
plifications, and safe selections of K for K-catching bisim-
ulation.

Label Inheritance and Bisimulation
Consider any M&S abstraction over W ⊆ V . Consider
transitions sW a−→ s′W in ΘW where every variable occur-
ring in a = (prea, effa) is contained in W . Clearly, such



transitions are persistent in the sense that, for every dV \W ,
sW ∪ dV \W → s′W ∪ dV \W is a transition in Θ. We re-
fer to these transitions as own-label transitions, denoted
sW

own−−−→ s′W .3 Our core observation is that we can exploit
them to safely relax bisimulation:

Definition 5 Given an M&S abstraction β of ΘW ,
ModLabelA-shrinking computes an abstraction γ of Θβ as
follows:
(1) Label inheritance. Obtain transition system Θ1 from

Θβ as follows: Set Θ1 := Θβ; whenever sα own−−−→ tα,
sα in Θ1 inherits all outgoing transitions of tα, and if
tα is an abstract goal state then sα is made an abstract
goal state in Θ1 as well.

(2) Goal-label pruning. Obtain transition system Θ2 from
Θ1 as follows: Set Θ2 := Θ1; denoting the variables
on which the goal G is defined as VG, if VG ⊆ W then
remove all outgoing transitions from abstract goal states
in Θ2.

(3) Obtain γ as a bisimulation of Θ2, and interprete γ as an
abstraction of Θβ .

Explaining this definition bottom-up, step (3) works be-
cause all of Θβ , Θ1, and Θ2 share the same set of abstract
states.4 Intuitively, step (2) is justified because β’s abstract
goal states will always remain goal states, so there is no
point in distinguishing the ways by which we can leave them
(note that this applies to any M&S abstraction, not just the
ones we consider here). Intuitively, step (1) is justified be-
cause, the transition from sα to tα being persistent, the cor-
responding concrete states will have a transition in the state
space, so if we only need to preserve solvability then we can
just as well pretend that tα’s outgoing transitions/goal-state-
flag are attached directly to sα. Note that the latter does not
work if we need to preserve path cost, as we are discounting
the cost of getting from sα to tα.

Theorem 1 ModLabelA-shrinking is safe.

Proof Sketch: We need to prove that, for all abstract states
sβ and tβ of Θβ aggregated by bisimulation relative to Θ2,
sβ ∪ tβ is safe. Our proof is by assuming any sβ , tβ , and
extension dV \W where s = sW ∪ dV \W is solvable, and
proving by induction over the length n of that solution that
t = tW ∪ dV \W is solvable as well.

In the base case, n = 0, s is a goal state. Hence tβ must
be an abstract goal state in Θ2, which (as we’re using label
inheritance) implies that tβ has a path ~p in Θβ of own-label
transitions to an abstract state xβ that contains a goal state
x0. Because dV \W must agree with the goal, we can assume
WLOG that x0 = xW0 ∪dV \W . Considering the last abstract

3As configured here, either W = {v1, . . . , vi} for the current
abstraction, or W = {vi+1} for the atomic projection onto the
variable vi+1 to be merged-in next. In the former (but not in the
latter) case, own-label transitions are exactly those whose labels
are empty after label reduction.

4We remark that the intermediate transition systems Θ1 and Θ2,
as opposed to the final abstraction γ ◦ β, are not abstractions of Θ
in our sense, as they have additional transitions and goal states with
respect to Θ.

transition on ~p, yβ → xβ , we know that there exist yW0 ∈ yβ
and xW1 ∈ xβ so that yW0 has an own-label transition to
xW1 . Obtaining x1 as x1 := xW1 ∪ dV \W , as xβ is safe
and x0 is solvable, x1 is solvable. Obtaining y0 as y0 :=
yW0 ∪ dV \W , as the transition yW0 → xW1 is persistent, there
is a transition from y0 to x1, so y0 is solvable. Iterating
this argument backwards over ~p, we obtain a solvable state
t0 = tW0 ∪ dV \W in tβ . With safety of tβ , we get that
tW ∪ dV \W is solvable as well, as we needed to prove.

In the inductive case, say the length-n solution to s starts
with action a, yielding resulting state s′ whose solution
length is n− 1. By definition of abstractions, sβ has an out-
going transition labeled with a in Θβ , say to abstract state
s′β .

We now need to distinguish case (1) where the transition
sβ

a−→ s′β was not removed by goal-label pruning so is still
present in Θ2; and the opposite case (2). In case (2), simi-
larly as in the base case, we know that tβ is an abstract goal
state in Θ2; we know that dV \W agrees with the goal simply
because V \W cannot contain any goal variables; the rest
of the proof is the same. In case (1), with Θ2-bisimilarity

of sβ and tβ , Θ2 has a transition tβ a′−→ t′β , where t′β is
Θ2-bisimilar with s′β , and a′ is an action that (per label re-
duction, if it is applied to Θβ) agrees with a on the variables
V \ W . This implies that tβ has a path ~p in Θβ of own-
label transitions to an abstract state xβ that contains a state
x0 to which a′ is applicable, yielding the resulting state t′
where t′ ∈ t′β . Because a and a′ agree on V \ W , we
can assume WLOG that x0 = xW0 ∪ dV \W . Applying the
induction hypothesis to the states s′ = s′W ∪ d′V \W and
t′ = t′W ∪ d′V \W , we get that t′ is solvable and hence x0
is solvable. From there, the argument is the same as in the
base case. �

Our fully detailed proof of Theorem 1 is available in a TR
(Hoffmann, Kissmann, and Torralba 2014). As all aggre-
gations made by ModLabelA-shrinking would be made by
A-shrinking (i. e., using just bisimulation) as well, we have:

Corollary 2 A-shrinking is safe.

Recall that, with Corollary 1, this means that, if we use
either of A-shrinking or ModLabelA-shrinking or any com-
bination thereof, then the resulting uα is perfect. Keep in
mind that the same is true for all safe shrinking strategies
we will identify in what follows.

Own-Label Shrinking
The problem with ModLabelA-shrinking, as quickly be-
came apparent in our experiments, is that label inheritance
consumes way too much runtime (and if one explicitly
copies the labels, blows up memory as well). We hence de-
fined the following sound approximation, which turns out to
be very effective in practice:

Definition 6 Given an M&S abstraction β of ΘW ,
OwnPath-shrinking computes an abstraction γ of Θβ as
follows:



(1) Own-label cycles. Compute the strongly connected
components C of Θβ when considering only own-label
transitions; aggregate each C into a single abstract
state.

(2) Own-label goal paths. Denoting the variables on which
the goalG is defined as VG, if VG 6⊆W then do nothing.
Otherwise, whenever tα is an abstract goal state: if sα
is an abstract goal state as well then aggregate sα and
tα into a single abstract state; else, if sα has an own-
label path to tα, then aggregate sα, tα, and all states on
the path into a single abstract state.

Intuitively, (1) is sound as, with persistence of own-
label paths, the strongly connected components will still be
strongly connected at the end of the M&S process so are
equivalent with respect to solvability. (2) is sound because,
with VG ⊆ W , abstract goal states remain goal states, so
there is no need to distinguish them and no need to distin-
guish states that have a persistent path to them. For formal
proof, our previous result on ModLabelA-shrinking is suffi-
cient:

Lemma 2 If a pair of abstract states is aggregated
by OwnPath-shrinking, then it would be aggregated by
ModLabelA-shrinking.

Proof: For rule (1), as the aggregated states are strongly
connected with own-label transitions, they would inherit
each other’s outgoing transitions; if any of them is a goal
state, all would be marked as goal states. Hence they would
become bisimilar, and be aggregated.

For rule (2), say sα and tα are aggregated. Then tα is an
abstract goal state, and as VG ⊆ W , its outgoing transitions
would be removed by goal-label pruning. If sα is not already
a goal, as there is an own-label path from sα to tα and tα
is a goal, label inheritance would mark sα as a goal. So
all outgoing transitions would be removed from sα as well,
making the two states bisimilar. �

Together with Theorem 1, this lemma immediately im-
plies:

Theorem 2 OwnPath-shrinking is safe.

Once all variables are merged in (so all labels are own-
labels), rule (2) will aggregate the entire solvable part of the
state space into a single abstract state. Also, if a variable
v has no incoming edges in the causal graph and a strongly
connected DTG, then, when v is merged in, all its values are
strongly connected by own-labels, so rule (1) will aggregate
all values of v into a single abstract state. In our implementa-
tion, such variables v are ignored in the M&S construction.5

ModLabelA-shrinking can be exponentially stronger than
OwnPath+A-shrinking, which can be exponentially stronger
than using just bisimulation: (the proof is in the TR)

5Such v are exactly those that satisfy Helmert’s (Helmert
2006a) “safe abstraction” condition, so in that sense our techniques
subsume that condition. The same is not true of Haslum’s (Haslum
2007) generalized condition (his Theorem 1), which exploits values
of v that are neither “externally required” nor “externally caused”.
It remains an open question whether Haslum’s condition can be
adapted to yield additional safe shrinking in M&S.

Theorem 3 There exist families of planning tasks {Πn}
and merging strategies so that M&S abstractions are ex-
ponentially smaller with ModLabelA-shrinking than with
OwnPath+A-shrinking. The same is true for OwnPath+A-
shrinking and A-shrinking.

K-Catching Bisimulation
Let us finally considerK 6= A. This is important as catching
less actions can substantially reduce bisimulation size, and
as approximate methods choosing the actions to catch will
be our primary method for generating approximate unsolv-
ability heuristics.

Definition 7 A subset K of actions is safe, or path preserv-
ing, if removing all transitions not labeled by an action from
K does not render any solvable state in Θ unsolvable. K
is shortest-path preserving if, for every solvable s in Θ, K
contains an action a starting a shortest solution path from
s.

Being shortest-path preserving obviously is a sufficient
condition for being path preserving, and is sometimes useful
as an approximation because actions can be selected locally
on a per-state basis.6

Theorem 4 If K is safe, then K-shrinking is safe.

Proof: Say β is any safe abstraction. Denote by ΘK the con-
crete state space where all non-K transitions are removed.
As solvability in ΘK is the same as in Θ, β viewed as an
abstraction on ΘK is safe. By definition, any K-catching
bisimulation γ of Θβ is a bisimulation of Θβ

K . Hence, by
Corollary 2, γ is safe as an abstraction of ΘK . Now, view-
ing γ as an abstraction on Θ, since solvability in ΘK is the
same as in Θ, γ is safe as we needed to prove. �

Practical M&S Strategies
Finding K guaranteed to be safe is not feasible (we would
need to construct the concrete state space Θ first). Katz et
al. (Katz, Hoffmann, and Helmert 2012) introduced two ap-
proximation strategies. We experimented with these as well
as a variety of modified ones adapted to our context. The
only one that turned out to be relevant empirically (i. e., for
proving unsolvability effectively) is Intermediate Abstrac-
tion (IntAbs): Run A-shrinking until abstraction size has
reached a parameter M . The labels are collected on that
abstraction, and M&S continues with K-shrinking. M con-
trols a trade-off as actions affecting only yet-to-be-merged
variables form self-loops so will not be collected. This strat-
egy was proposed by Katz et al. already. We proceed in
the same way, but where Katz et al. collect all labels start-
ing optimal paths, we instead collect a path preserving label
set K. Trying to keep K small (finding minimum-size K
is NP-hard in the size of the abstract state space), we start

6Katz et al. define “globally relevant actions”K as the set of all
actions starting a cheapest path for any solvable s. They prove that,
with such K, K-shrinking yields perfect hα. They overlook that,
for that purpose, it would actually be enough to preserve at least
one optimal solution path for each s.



from K = ∅ and iteratively include the action rendering the
largest number of yet non-covered states solvable.

Like all previous works on M&S, we also use a param-
eter N which imposes an upper bound on abstraction size
throughout M&S.

Merging strategies have so far been largely neglected in
the planning literature: a grand total of 2 strategies has been
tried (although it was observed that they can be important
empirically). We conducted a comprehensive study in the
context of proving unsolvability. There are two plausible
main objectives for the merging strategy in that context: (a)
find an unsolvable variable subset quickly; and (b) make
transition labels empty (and thus own-labels in the current
abstraction) quickly, to yield smaller bisimulations and more
OwnPath-shrinking. We approximate these by lexicographic
combinations of simple preference rules:
Goal: Prefer goal variables over non-goal variables. This
addresses (a). It was used by Helmert et al. (Helmert,
Haslum, and Hoffmann 2007) to obtain larger goal distances
within the abstraction.
CG, CGRoot, and CGLeaf: Prefer variables with an outgo-
ing causal graph arc to an already selected variable. For CG-
Root and CGLeaf, if there are several such variables v, v′,
prefer v over v′ if, in the strongly connected components
(SCC) of the causal graph, that of v is ordered before that
of v′ (CGRoot), respectively behind that of v′ (CGLeaf).
This also addresses (a): unsolvability must involve con-
nected variables, and might involve “more influential” vari-
ables close to the causal graph roots (CGRoot), respectively
“more influenced” variables close to the causal graph leaves
(CGLeaf). Helmert et al. used just CG, for the same reason
as Goal.
Empty: Prefer variables merging which maximizes the
number of empty-label transitions leading to abstract goal
states. If there are several such variables v, prefer v max-
imizing the number of empty-label transitions, and if there
are several such variables v, prefer v maximizing the num-
ber of transitions whose labels contain v. This addresses (b).
It was not used in earlier works on M&S.
LevelRoot and LevelLeaf: Derived from FD’s full linear
order (Helmert 2006b). LevelRoot prefers variables “closest
to be causal graph roots”, and LevelLeaf prefers variables
“closest to be causal graph leaves”.

Variables are added one-by-one, always selecting a most
preferred one next. Ties remaining after all criteria were
applied are broken arbitrarily. For example, CGRoot-Goal-
Empty, after selecting a goal variable, selects all its causal
graph predecessors, preferring ones close to the root and
yielding many empty labels. We use at most one of CG,
CGRoot, and CGLeaf. We use at most one of LevelRoot
and LevelLeaf, and they are included only at the end as they
allow no more tie breaking. Finally, we do not use Goal at
the start as that yields very bad performance (selecting only
goal variables neither results in unsolvable sub-problems nor
in abstraction size reductions, often breaking our memory
limit before any other variable is selected). This leaves a
total of 81 possible merging strategies.

Experiments
There is no standard set of unsolvable benchmarks.
Bäckström et al. (Bäckström, Jonsson, and Ståhlberg 2013)
have made a start, but their set consists of only 6 instances.
We have vastly extended this, hoping to establish, or at
least seed, a standard.7 The benchmarks will be made
available for download, and a full description will be in
the TR. A brief summary follows. Mystery IPC’98: 9
unsolvable instances from the standard instance set (those
not detected by FD’s pre-processor). UnsNoMystery, Un-
sRovers, UnsTPP: As used by Nakhost et al. (Nakhost,
Hoffmann, and Müller 2012) (their “large” suites for No-
Mystery and Rovers) with instances scaled systematically on
“constrainedness” C, but using C ∈ {0.5, 0.6, 0.7, 0.8, 0.9}
where there are insufficient resources. UnsTiles: The slid-
ing tiles puzzle with initial states from the unsolvable part
of the state space; we used 10 8-Puzzle instances, and 10
(rectangular) “11-Puzzle” instances. UnsPegsol: As in the
net-benefit track of IPC’08, but with the traditional goal
state having only a single peg in the middle of the board (in
this setting, all these instances are unsolvable); we skipped
the 6 instances detected by FD’s pre-processor. 3UNSAT
(extended from (Bäckström, Jonsson, and Ståhlberg 2013)):
random unsolvable 3SAT formulas from the phase transi-
tion region, with n ∈ {5, 10, 15, 20, 25, 30} variables and 5
random instances per n value. Bottleneck (extended from
(Bäckström, Jonsson, and Ståhlberg 2013)): n agents travel
to individual goal positions on an n × n grid. Once a cell
has been visited, it becomes impassable. The agents all start
on the left-hand side, and there is a wall in the middle with
a hole of size m < n. We used n ∈ {4, 5, 6, 7, 8}, with all
m = 1, . . . , n− 1 for each n.

All our techniques are implemented in Fast Downward.
All experiments were run on a cluster of Intel E5-2660 ma-
chines running at 2.20 GHz, with runtime (memory) limits
of 30 minutes (4 GB). Similarly as Katz et al. (Katz, Hoff-
mann, and Helmert 2012), as a hypothetical experiment we
collected perfect label sets K, in instances small enough for
that purpose. We cannot describe this for lack of space. The
overall conclusion is that our label sets typically are smaller
than Katz et al.’s, yielding mostly moderate, and sometimes
strong, abstraction size reductions.

Consider Table 1. We compare against the main compet-
ing approaches for proving unsolvability, and we conduct
comprehensive experiments with our practical M&S strate-
gies. “Blind” is a heuristic that returns 0 on goal states
and 1 elsewhere; note that this dominates, in terms of dead-
end detection power vs. runtime overhead, any heuristic that
does not have the ability to detect dead ends, such as cer-
tain kinds of landmark-based heuristics (e. g., (Karpas and
Domshlak 2009)). Similarly, hmax is a canonical and cheap
heuristic whose dead-end detection power is equivalent to
hFF as well as the state-of-the-art admissible heuristic LM-

7Bäckström et al. considered two domains, “Grid” and
“Trucks”, that we do not adopt: Unsolvability is trivially detected
by h2, and the domains appear non-natural in using a “key cy-
cle” irrelevant to unsolvability (Grid) respectively consisting of two
completely separate sub-problems (Trucks).



BestOf KHH Own+K Merging Strategies
BDD N100k M100k A Own+A N1m M500k N100k M100k Own+A

domain (# instances) Blind hmax BJS H2 std H2 OldMrg Mrg1 OldMrg Mrg1 std H2 MLA std hmax stdKKHH hmaxKKHH std hmax Mrg1 Mrg2 Mrg3

Bottleneck (25) 10 21 10 10 10 15 10 10 5 5 5 10 5 9 15 4 4 10 21 5 11 7
3UNSAT (30) 15 15 0 0 15 15 15 15 15 15 15 15 14 14 14 12 15 15 15 15 12 15
Mystery (9) 2 2 6 9 3 9 2 6 1 6 6 9 5 6 6 6 6 6 6 6 1 1
UnsNoMystery (25) 0 0 8 0 5 14 23 23 25 25 25 25 15 25 25 25 25 25 25 25 25 23
UnsPegsol (24) 24 24 0 0 24 24 24 24 24 24 24 24 0 24 24 24 24 24 24 24 0 0
UnsRovers (25) 0 1 3 3 6 10 0 9 0 17 17 17 7 11 11 11 11 9 9 17 17 0
UnsTiles (20) 10 10 10 0 10 10 10 10 0 0 10 10 0 10 10 10 10 10 10 10 10 10
UnsTPP (25) 5 5 2 1 0 1 14 11 17 9 9 9 3 11 8 10 8 11 9 9 17 19

Total (183) 66 78 39 23 73 98 98 108 87 101 111 119 49 110 113 102 103 110 119 111 93 75

Table 1: Coverage results on unsolvable benchmarks, i. e., number of instances proved unsolvable within the time/memory
bounds. “Mrg1” stands for CGRoot-Goal-LevelLeaf, “Mrg2” for Empty-CGRoot-Goal-LevelLeaf, “Mrg3” for CGLeaf-Goal,
and “OldMrg” for the shrinking strategy of (Helmert, Haslum, and Hoffmann 2007).

cut (Helmert and Domshlak 2009). “H2” runs h2 (Haslum
and Geffner 2000) just once, on the initial state; we use the
implementation of Torralba and Alcázar’s recent work on
constrained BDDs (Torralba and Alcázar 2013), where h2
forms part of an extended FD pre-processor. “BDD H2”
are these constrained BDDs. “BDD std” is that implemen-
tation with all h2 parts switched off (thus representing a
standard BDD state space exhaustion). “(Bäckström, Jon-
sson, and Ståhlberg 2013)” is Bäckström et al.’s enumera-
tion of projections (their implementation in C#). We did not
run hm heuristics (for m > 2) (Haslum and Geffner 2000)
and pattern database heuristics (Haslum et al. 2007) because
they are dominated by “(Bäckström, Jonsson, and Ståhlberg
2013)” in Bäckström et al.’s paper (plus, the hm implemen-
tation in FD is extremely ineffective, and pattern databases
are not geared towards proving unsolvability); we leave a
detailed comparison to these heuristics for future work.

Regarding M&S strategies, “BestOf (Katz, Hoffmann,
and Helmert 2012)” is, for each of the two underlying merg-
ing strategies, the best-performing M&S configuration (in
terms of total coverage on our benchmarks) of the 12 ones
shown in Table 2 of (Katz, Hoffmann, and Helmert 2012);
the same configuration N=100k M=100k is best for both
merging strategies.8 “A” is for A-shrinking, “Own+A” for
OwnPath+A-shrinking, “MLA” for ModLabelA-shrinking,
and “Own+K” for OwnPath+K-shrinking. We run a strat-
egy geared towards selecting an accurate label set and not
doing much additional shrinking (N=1million M=500k),
and a strategy geared towards greedy label selection and
shrinking (N=100k M=100k, like in BestOf (Katz, Hoff-
mann, and Helmert 2012)). In the “hmax” variants of
Own+K, the heuristic we use is max(hmax, uα). In the
“K(Katz, Hoffmann, and Helmert 2012)” variants, we use
Katz et al.’s “globally relevant labels” (the best label selec-
tion method in (Katz, Hoffmann, and Helmert 2012)) instead
of our path preserving label set. All heuristic functions (ex-
cept h2) are run in greedy best-first search.

Let us first discuss merging strategies (rightmost part

8In (Katz, Hoffmann, and Helmert 2012), that configuration is
listed as “N=∞M=100k”, but there was a bug in the implemen-
tation causing it to behave exactly like N=100k M=100k.

of Table 1). For this part of the evaluation, we fixed
Own+A as a canonical well-performing shrinking strategy.
It turns out that, of the 81 possible merging strategies, 3
are enough to represent the highest coverage achieved in
every domain. CGRoot-Goal-LevelLeaf (Mrg1) has max-
imal total coverage, as well as maximal coverage in all
domains except Bottleneck and UnsTPP. Empty-CGRoot-
Goal-LevelLeaf (Mrg2) has maximal coverage among a total
of 13 merging strategies that achieve coverage 11 and 17 in
Bottleneck and UnsTPP, respectively. CGLeaf-Goal (Mrg3)
is the only strategy with coverage > 17 in UnsTPP. The rea-
sons for this behavior are fairly idiosyncratic per domain.
CGRoot-Goal-LevelLeaf seems to make a good compromise
between “influential” and “influenced” variables (note here
how these two conflicting directions are traded against each
other via a preference for “more influential” variables in CG-
Root and a preference for “more influenced” variables in
LevelLeaf).

For the evaluation of shrinking strategies (middle part of
Table 1), we fixed the best merging strategy (Mrg1). The
only exceptions are BestOf KHH and A, where we also ran
the best previous merging strategy (“OldMrg”), for compar-
ison.

The competing approaches (leftmost part of Table 1) are
clearly outperformed by M&S. Coverage in most cases is
dominated either by Own+A or by Own+K with N=100k
M=100k. The most notable exception is hmax, which is best
in Bottleneck. The “H2” column for Own+A employs Tor-
ralba and Alcázar’s (Torralba and Alcázar 2013) extended
FD pre-processor. This shows that Own+A benefits as well,
though not as drastically as BDD H2, because in difference
to that approach which uses h2 mutexes to prune the BDDs,
we do not use these mutexes within the M&S abstraction;
doing so is a topic for future work.

The closest competitors are the previous M&S configura-
tions, i. e., BestOf KHH and A. From the OldMrg vs. Mrg1
columns, the importance of our new merging strategies is
immediately apparent.

For OwnPath-shrinking, compare “A Mrg1” vs. “Own+A
std” (which differ only in not using vs. using OwnPath-
shrinking). Own+A has a coverage advantage, but only
due to the sliding tiles puzzle. Apart from that domain,



commonly OwnPath+K
solved N1m M500k N100k M100k

domain instances hmax std hmax std hmax

Bottleneck 9 1844.61 1.45 21560.89 2.74 28022.86
3UNSAT 14 3.18 ∞ ∞ ∞ ∞
Mystery 2 5.26 ∞ ∞ ∞ ∞

UnsPegsol 24 1.84 1.01 1.86 1.01 1.86
UnsTiles 10 1.00 1.00 1.00 1.00 1.00
UnsTPP 4 49.99 ∞ ∞ 4450.88 4572.16

Table 2: Number of expansions relative to blind search:
Median, over instances commonly solved by all shown ap-
proaches, of the ratio blind/X, taken to be∞ where X has 0
expansions.

OwnPath-shrinking yields significant advantages in NoMys-
tery, and moderate advantages in Bottleneck. This does not
result in increased coverage here, but results in increased
coverage, e. g., in Nakhost et al.’s (Nakhost, Hoffmann, and
Müller 2012) “small” NoMystery test suite (which contains
less packages etc. but 2 trucks instead of 1): Coverage goes
up from 84% to 100% when C is close to 1, i. e., when there
is just not enough fuel. In our other domains, OwnPath-
shrinking has no effect at all. The picture is similar for
approximate strategies, i. e., for (OwnPath+)K-shrinking.
ModLabelA-shrinking (MLA), on the other hand, yields
some reduction in all domains except UnsPegSol, but never
pays off due to the overhead it incurs.

For the effect of our new label catching strategy, con-
sider the Own+K part of the table. When using Katz et al.’s
“globally relevant labels” (K(Katz, Hoffmann, and Helmert
2012)), leaving everything else the same (in particular still
using OwnPath-shrinking), coverage remains the same for
N=100k M=100k and hence no separate data is shown. But
performance does become considerably weaker for N=1m
M=500k. Katz et al.’s method, while selecting more labels
resulting in more expensive abstractions, does not provide
more accurate estimates. This is drastic in Bottleneck, re-
ducing coverage, and yields larger total runtimes in all other
domains (except 3UNSAT with hmax) as well, most signifi-
cantly in UnsPegSol with a mean of 200 vs. 76 seconds.

Table 2 sheds some light on the number of expansions re-
quired by approximate approaches (imperfect unsolvability
heuristics). In difference to hmax, our M&S strategies yield
excellent dead-end detectors in half of these domains. In
Bottleneck, where hmax is drastically better, combining both
heuristics yields an advantage (which does not pay off in to-
tal runtime, due to the abstraction overhead). The intended
advantage of N1m M500k over N100k M100k, yielding a
more accurate heuristic, manifests itself in UnsTPP, as well
as in 3UNSAT and UnsPegsol (not visible in the median)
and UnsRovers (not contained in this table for lack of com-
monly solved instances).

Conclusion
A crystal clear message from our experiments is that heuris-
tic search, in particular with M&S heuristics, is a viable
method to prove unsolvability in planning. It clearly beats

BDDs, a method traditionally used for state space exhaus-
tion. The empirical impact of our merging strategies is good.
Our theory results (i. e., OwnPath-shrinking) yield signif-
icant advantages in 2 of 8 domains. It remains an open
question whether that can be improved, e. g., by approxi-
mating ModLabelA-shrinking more tightly or by exploiting
Haslum’s (Haslum 2007) notions.

The big open lines of course are the use of unsolvability
heuristics for dead-end detection on solvable tasks (we had
limited success with this so far), and tailoring other heuris-
tics to unsolvability detection. An example that immediately
springs to mind are semi-relaxed plan heuristics obtained
from explicit compilation of a fact conjunction set C (Key-
der, Hoffmann, and Haslum 2012), where (a) unsolvability
heuristics correspond to hmax so are easier to extract, and (b)
one may tailor the selection of C.
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ings of the 6th Annual Symposium on Combinatorial Search
(SOCS’13), 29–37. AAAI Press.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2013. A
hybrid LP-RPG heuristic for modelling numeric resource
flows in planning. Journal of Artificial Intelligence Research
46:343–412.
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