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Abstract. The efficiency of heuristic search planning crucially de-
pends on the quality of the search heuristic, while succinct repre-
sentations of state sets in decision diagrams can save large amounts
of memory in the exploration. BDDA* – a symbolic version of A*
search – combines the two approaches into one algorithm. This pa-
per compares two of the leading heuristics for sequential-optimal
planning: the merge-and-shrink and the pattern databases heuristic,
both of which can be compiled into a vector of BDDs and be used
in BDDA*. The impact of optimizing the variable ordering is high-
lighted and experiments on benchmark domains are reported.

1 INTRODUCTION

Explicit-state heuristic search planners have shown advantages to
symbolic planners with binary decision diagrams (BDDs) [5] in cost-
optimal planning, suggesting that the increased quality of search
heuristics sometimes exceeds the structural savings for representing
and exploring large state sets in advanced data structures.
For the automated construction of search heuristics for BDD-

based planning, symbolic pattern databases (PDBs) have been pro-
posed [10]. They correspond to a complete (or partial) backward
exploration of the concrete (or abstracted) state space. These plan-
ning heuristics can be exploited in a symbolic version of A* search,
BDDA* for short [13].
The merge-and-shrink (M&S) heuristic is among the strongest es-

timates for explicit-state space planning [18]. Newer proposals fur-
ther improve its quality [22, 20] and outperform other state-of-the-art
heuristics like LM-cut [16] on a sizable number of domains. Further-
more, it can compute perfect heuristics for some simpler benchmark
domains in polynomial time.
In this paper we extract the memory structure of the M&S heuris-

tic in form of an algebraic decision diagram (ADD) [2]. This allows
to enrich a symbolic heuristic planner to exploit this expressive esti-
mate. The precomputed ADD is converted to a vector of BDDs and
plugged into BDDA* for computing cost-optimal plans. It exactly
matches the estimate quality of the explicit-search variants and is
general to all existingM&S variants. We will also look at refinements
to BDDA* and propose List BDDA*, which exploits a list represen-
tation of the search frontier (rather than a matrix representation).
PDBs perform surprisingly well compared to M&S. In our ex-

periments the former yield the perfect heuristic in more instances
than the latter. In several cases the construction does not even need
to perform abstraction, but resorts to (possibly truncated) backward
search in the concrete state space. While the M&S heuristic general-
izes PDBs [18], in case of a linear merge strategy, it has the same ex-
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pressiveness than symbolic search. Therefore, partial symbolic PDBs
including all the variables are not dominated by M&S. Furthermore,
we show that ADD reduction can yield smaller structures than the
one applied in the M&S abstraction. We will also see that the variable
ordering in the two heuristics is a crucial parameter to the exploration
and produces outcomes of large variety.
The paper is structured as follows. First, we reconsider explicit-

state and symbolic heuristic search. Next, we turn to the set of re-
finements including a new BDDA* version and to the extraction of
the M&S heuristic as an alternative to the symbolic PDB heuristic.
Limits and possibilities are discussed. In the experimental results we
compare the two heuristics and discuss the outcome and effects of
changing the variable ordering in both cases.

2 HEURISTIC SEARCH PLANNING

A planning task consists of variables of finite domain so that states
are assignments to the variables, an initial state, the goal, and a finite
set of operators each being a pair of preconditions and effects. In
cost-based planning, operators are associated with cost values, which
often are integers – or alternatively rational numbers, which can be
cast to integer values. The task is to find a path (the plan) from the
initial state to the goal. The plan is optimal if its cost is smallest
among all possible plans. A heuristic is a mapping from states to
natural numbers (or infinity), and admissible if for all possible states
the value is not greater than the cost of an optimal plan. We refer to a
finite domain variable encoding of the planning problem, abbreviated
as SAS+ planning. A planning task abstraction is a planning task
based on a mapping for the initial state, goal state as well as the
operators. We consider two heuristics based on abstraction.

2.1 Pattern Databases

The pattern database (PDB) heuristic, inspired by a selection of tiles
in the sliding-tile puzzle [6], has been extended to the selection of
state variables in other domains and in planning [9]. More general
definitions have been applied, shifting the focus from the mere se-
lection of a subset of SAS+ variables to different state-space ab-
stractions that are computed prior to the search. A PDB stores the
shortest path distance from each abstract state to the set of abstract
goal states. Partial PDBs [1] refer to not conducting the backward
search to completion but truncating the search at goal distance d and
assigning all remaining states the heuristic value d+ 1. As a slightly
better estimate, we can take the minimum value of (i + j) > d of
the goal distance i of a state within the PDB plus the cost j of an
operator.
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2.2 Merge-and-Shrink

The merge-and-shrink (M&S) heuristic is induced by a distance-
preserving abstraction, originally proposed in the context of directed
model checking [7, 8]. The abstract state space in this heuristic is
built incrementally, starting with a set of abstractions associated with
each SAS+ variable and merging two abstractions in each step, by
computing their cross-product. Most current proposals work on a lin-
ear arrangement, meaning that one variable is added at a time. The
rough idea is that SAS+ variables are greedily chosen to construct
a larger state space by computing the (synchronized) product of the
existing state space and the one induced by the next SAS+ variable.
If the state space becomes too large pairs of states are unified.
Thus, the approach is layered so that each layer correspond with

an intermediate abstraction. When a new SAS+ variable is merged,
the synchronized product produces an state in the new layer for each
combination of value of the variable and state in the previous layer.
Hence, states in each intermediate abstraction are associated to the
states in the next layer resulting from their synchronized products.
Most successful shrinking approaches are based on the notion of

bisimulation [22]. Two states s and s′ are bisimilar if they agree on
whether or not the goal is true and every planning operator leads to
the same abstract state from both s and s′ 3. If only bisimilar states
are aggregated, then M&S is guaranteed to be perfect. The bisimula-
tion shrinking strategy computes the coarsest bisimulation, and in the
shrinking step it aggregates only bisimilar (abstract) states. In most
benchmark domains, however, coarsest bisimulations are still large
even under operator projection.

Greedy bisimulation (gop) is a relaxed variant of bisimulation,
which demands the bisimulation property only for transitions (s, s′),
where the abstract goal distance from s′ is at most as large as the
abstract goal distance from s. This relaxation forfeits the guarantee
of providing a perfect estimate.
Motivated by the size of bisimulations, a more approximate

shrinking strategy (gop’) builds the coarsest bisimulation and keeps
unifying states until the size limitM is reached. The latter may hap-
pen before a bisimulation is obtained, in which case it looses infor-
mation. The strategy attempts to make errors only in more distant
states, where the errors will hopefully not be as relevant.

3 SYMBOLIC A* SEARCH

The main limitation for applying PDBs in search practice is the re-
stricted amount of RAM. For the exploration of large state spaces,
symbolic search can save huge amounts of memory and computation
time. State sets [23] are represented and modified by accessing their
characteristic functions.

Decision diagrams [25, 2, 5] are a memory-efficient data structure
used to represent Boolean (or integer-valued) functions as well as
to perform set-based search, where the diagram represents all binary
state vectors that evaluate to certain values. More precisely, a BDD
(an ADD) is a directed acyclic graph with one root and two (sev-
eral) terminal nodes, called sinks. Each internal node corresponds to
a binary variable of the state vector and has two successors (low and
high), one representing that the variable is false and the other repre-
senting that it is true. For any assignment of the variables on a path
from the root to a sink the represented function will be evaluated to
the value labeling the sink. Moreover, decision diagrams are unique
given a fixed variable ordering by applying the two reduction rules

3 Label reduction may be applied preserving the heuristic optimality value
while exponentially reducing the abstraction size.

of (1) eliminating nodes with the same low and high successors and
(2) merging two nodes representing the same variable that share the
same low successor as well as the same high successor.
In order to perform symbolic search we need two sets of variables,

one (x) representing the current states and another (x′) representing
the successor states. To find the successors of a set of states S repre-
sented in the current state variables given a BDD T for the entire set
of operators (i. e., the transition relation) we use the image operator,
i. e., image(S, x) = ∃x.S(x) ∧ T (x, x′)[x′ ↔ x], where [x′ ↔ x]
denotes the swap of the two sets of variables. Similarly, we can per-
form search in backward direction by using the pre-image operator,
i. e., pre-image(S, x′) = ∃x′.S(x′) ∧ T (x, x′)[x ↔ x′].

Symbolic PDBs [10] are PDBs that have been constructed sym-
bolically as decision diagrams for later use either in symbolic or ex-
plicit heuristic search. Their construction exploits that the transition
relation is defined as a relation. The savings observed by the sym-
bolic representation are substantial for many planning domains. Dif-
ferent to the posterior compression [3], the construction in [10] works
on compressed representation, allowing much larger databases to be
constructed. For such PDB construction, backward symbolic search
is used. In the case of partial PDBs, the construction is truncated
at some fixed point in time. While this works in the concrete state
space, PDB construction usually takes place in abstract space, im-
posed by an abstraction function that often projects some variables
to don’t cares. The automated selection of variables is important for
its success but involved [9, 11, 14, 21].
Algorithmically, we start with the abstract goal set and iterate to

successively compute the pre-image. Each state set in a layer is ef-
ficiently represented by a corresponding characteristic function. We
may assume that the variable ordering is fixed and has been opti-
mized prior to the search. For a given abstraction function the sym-
bolic PDB Heur(value, x) is initialized with the projected goal.
As long as there are newly encountered states we take the current
backward search frontier and generate the predecessor list with re-
spect to the abstracted transition relation. Then we attach the cur-
rent BFS level to the new states, merge them with the set of al-
ready reached states, and iterate. When operator costs are integers
this process can be extended from breadth-first to cost-first levels,
and it is possible to combine different symbolic heuristics by tak-
ing their maximum or by a controlled combination of their sum.
The variables encoded in value are often queried at the bottom or
at the top (in which case we obtain the equivalent to a vector of
BDDs). For BDDA* it is more convenient to choose the one where
the heuristic relation is partitioned into Heur0(x), . . ., Heurk(x),
with Heur(value, x) =

∨k

i=0(value = i) ∧Heur i(x).
BDDA* [13], a.k.a. SetA* [19], operates on a BDD priority queue

Open . In case of discrete cost-values the Open sets can be repre-
sented by BDDs. For the organization of the search that avoids BDD
arithmetics, it is convenient to partition the state space. As we aim
at cost-optimal symbolic sequential planning, the matrix-based ver-
sion of BDDA* works on a partitioning of the search space in g-
and h-values, where g is the cost of the path traversed so far and
h is the heuristic estimate on the cost to reach the goal. To guaran-
tee optimal cost, BDDA* expands this matrix along the f -diagonals
with increasing g-values. The successors of the BDD Openg,h for a
chosen transition with cost c are unified with the BDD Openg+c,h′ ,
where h′ ∈ {0, . . . , k} is the partitioning obtained by the heuristic
evaluation of the successor set.
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3.1 Basic Improvements

Our starting point is the IPC 2011 version of the planner GAMER4,
described in [21]. It applies symbolic PDB construction (15minutes)
and BDDA* search (15 minutes) for cost domains or bidirectional
BFS (30 minutes) for unit-cost domains. If backward search takes
too long, abstractions are applied, otherwise a (partial) PDB in the
concrete search space is constructed. In IPC 2011 GAMER did not
score as well as it did in 2008. Of the twelve planners it finished
ninth with only 148 solved instances, while one of the FAST DOWN-
WARD STONE SOUP versions won with a total of 185 solutions. If
we compare the number of solved instances of the domains with and
without operator costs the results are quite peculiar. For the unit-cost
domains GAMER found only 23 solutions; only one participant was
worse than that. For the domains with operator costs GAMER found
125 solutions; only three other planners were able to find more (with
the maximum being 131). Based on the results of the competition we
implemented some small improvements, which are as follows.
In the solution reconstruction for bidirectional BFS, GAMER sup-

posed that at least one forward and at least one backward step were
performed. The two easiest problems of VISITALL require only a
single step, so that the solution reconstruction crashed.
In some cases, parsing the ground input took more than 15 min-

utes, so that actually no search whatsoever was performed in the do-
mains with operator costs: At first, it was parsed in order to generate
a PDB, this was killed after 15minutes, and then the input was parsed
again for BDDA*. In the unit-cost domains it sometimes also domi-
nated the overall runtime. Thus, we decided to use a parser generator
for Java programs, with which the parsing typically takes at most a
few seconds.
In the most complex cases, generating the BDDs for the transition

relation takes a lot of time, as well. The planner had to generate them
twice in case of domains with operator costs if it did not use the ab-
straction, once for the PDB generation and once for BDDA*. Instead,
we store the transition relation BDDs, the BDD for the initial state
and that for the goal condition on the hard disk; reading them from
disk often is a lot faster than generating them again from scratch.
In two of the new domains, namely PARKING and TIDYBOT, we

found that the first backward step takes too long, often even more
than 30 minutes, so that the decision whether to use bidirectional or
unidirectional BFS could not be finished before the overall time ran
out. In these cases, the single images for all the operators were quite
fast, but the disjunction took very long. Thus, during the disjunction
steps we entered the possibility to check whether too much time, in
this case 30 seconds, has passed. If it has we stop the disjunctions
and the planner only performs unidirectional BFS (or PDB genera-
tion using abstractions). This enabled us to find some solutions in
TIDYBOT. The problem here is that the goal description allows for
too many possibilities, because variables from only very few of the
SAS+ groups are present.
While the original planner used bidirectional BFS for unit-cost do-

mains, we tried running BDDA* in all cases, no matter if we are con-
fronted with them or not. Thus, for the unit-cost domains we treated
all operators as if they had a cost of 1. We call this implementation
Matrix BDDA*.

3.2 List BDDA*

In Matrix BDDA*, all successors are classified according to their h-
value by applying conjunctions with all the heuristic BDDs. When

4 available at http://www.plg.inf.uc3m.es/ipc2011-deterministic

Algorithm 1 List-BDDA*.

Input: O: finite set of operators.
I: initial state.
G: goal description.
c : O �→ {1, . . . , C}: operator costs.
Heurh: heuristic (with h being the maximal

heuristic value).
Ta: transition relation for operator a ∈ O.

Output: cost-optimal plan.
Open0 ← I
for all f = 0, . . .

for all g = 0, . . . , f
h ← f − g
S ← Openg ∧Heurh
if (h = 0) and (S ∧ G 	= 0) return ConstructSolution
for all i = 1, . . . , C
Succi(x

′) ←
∨

a∈A,c(a)=i
∃x . S(x) ∧ To(x, x

′)

Openg+i ← Openg+i ∨ Succi[x
′ ↔ x]

the number of heuristic values grows, this can be inefficient, since
some of these conjunctions could be avoided.
The representation in the matrix can be simplified to the vector for

the states in the Open list ordered along the g-value. The reasoning
behind this strategy is to defer the heuristic calculation by computing
the conjunction of the successor set with the heuristic estimate only
when it is needed for expansion in the currently traversed f -diagonal.
The pseudo-code of the resulting algorithm List BDDA* for non-

zero cost operators is shown in Algorithm 1. All inputs to the algo-
rithm O, I,G, c,Heurh, Ta are represented as BDDs.
It is simple to add duplicate detection to the algorithm using an-

other set Closed for the set of expanded states. The handling of zero-
cost operators adds another BFS loop to the code as these operators
are to be preferred in the exploration. While Matrix BDDA* uses
BFS to get the states reachable with zero-cost operators independent
of their actual h values, the list version applies a conjunction with
the heuristic value to get only those states in the current f -diagonal.

4 SYMBOLIC MERGE-AND-SHRINK

It is not difficult to observe that the precomputed memory structure
of the M&S heuristic can be cast as a symbolic representation of an
integer-valued function. This function can be extracted in form of
an ADD [2] allowing to enrich a symbolic heuristic planner to ex-
ploit this expressive estimate. The precomputed ADD is converted to
a vector of BDDs [5] and can be plugged into an optimal symbolic
heuristic search planner. Such an approach is general to all M&S
variants using a linear merge strategy, including the latest improve-
ments based on bisimulation reductions [22].
Every intermediate abstraction corresponds to a layer in the ADD

and each abstract state corresponds to an ADD node. ADD nodes
representing an abstract state are connected with the nodes repre-
senting the states which result from its synchronized product with
the next variable. As M&S works with finite domain variables but
the ADD is defined for binary variables, each node with k successors
is converted to a binary tree with log2 k layers.
To compute the ADD of an M&S heuristic we start by generating

the sink nodes associated with the different heuristic values of the
abstract states in the last layer. Then, recursively, nodes in the previ-
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ous layer can be constructed pointing to the nodes in layers already
computed. During the ADD construction we ensure the application
of the reduction rules, so that the size of the final ADD is usually
smaller than the M&S heuristic structure.

4.1 ADD Complexity

The symbolic ADD representation of the M&S heuristic can be com-
puted in time and space O(nM), where n is the size of the Boolean
state vector and M is the pre-defined maximum number of states.
Moreover, the representation of the heuristic as a sequence of BDDs
h0, . . . , hmax can be computed in time and spaceO(hmaxnM). The
time and space complexities are implied by the maximum sizes of the
state spaces for the construction of the next-variables tables in the ex-
plicit search construction of the M&S heuristic. BDD reduction is a
linear time operation [24] and only decreases the size.
The ADD sizes for the two M&S heuristics are shown in Table 1.

For each domain we provide the number of instances in which the
heuristic computation was finished in 30 minutes as well as the sizes
of the largest ADD for each domain. Surprisingly the ADDs are
small, especially for the greedy version of M&S, showing that not
much memory is spent once the ADD has been computed.

Table 1. Number i of instances with M&S heuristic and maximum number
n of ADD nodes over all instances for all domains of the sequential optimal

track of IPC 2011.

M&S (gop’) M&S (gop)
Problem i n i n

BARMAN 20 177,294 20 45

FLOORTILE 20 1,278,950 8 6,283
NOMYSTERY 20 197,445 20 915

PARKING 0 — 20 2,260
TIDYBOT 0 — 20 15

VISITALL 20 3,225,813 20 7,381

ELEVATORS 20 62,594 0 —
OPENSTACKS 20 102,486 4 134,780

PARC-PRINTER 19 4,606,533 20 11,788
PEG-SOLITAIRE 20 42,170 0 —
SCANALYZER 16 356,698 6 29,921
SOKOBAN 20 1,339 1 33,525

TRANSPORT 20 257,898 20 753

WOODWORKING 20 248,263 20 439,489

4.2 Limits and Possibilities

M&S heuristic strictly generalizes the PDB heuristic as with only
merging variables by computing their synchronized product all pat-
tern database heuristics based on projecting the variables can be con-
structed. Moreover, [17] states that M&S can compute perfect heuris-
tics in polynomial time, where PDBs cannot. The distinguishing ex-
ample is the GRIPPER domain.
In a symbolic setting, this reasoning, however, is no longer im-

mediate. If all the variables are included in the pattern, the original
state space can be fully traversed resulting in the optimal heuristic.
As shown in [12], the BDD exploration that computes the perfect
heuristic in GRIPPER is polynomial. As the representational power
of both alternatives is equivalent (an ADD for M&S and a list of
BDDs for the symbolic PDB) both approaches can potentially derive
optimal heuristics in the same domains.
However, even if the M&S bisimulation gets the perfect heuris-

tic, it does not always result in a reduced representation of the ADD.

First, we observe that for any (e.g., the perfect) heuristic – no mat-
ter how it is computed – by the uniqueness property, the according
ADDs (following the same variable ordering) have to be the same.
Secondly, we can construct an intuitive example, where shrinking is
not able to compute the most reduced form of the heuristic.

A

B D

C

G

p

¬p

p

¬p

p p¬p

Figure 1. Example of bisimulation. A, B, C,D and G are states in one
level of the M&S process, while p and ¬p are variable assignments that

serve as a precondition of the according operators.

Figure 1 shows an example where there are not any bisimilar
states. The transition labels have already been reduced so that they
refer to variables that have not yet been merged. In the example these
labels are preconditions and they only refer to a binary variable p. All
the transitions have unit costs and the goal is to reach state G.
We say that two abstract states s and s′ are equivalent, if and only

if, for every value assignment to the variables that have not yet been
merged the goal distance remains the same. If two abstract states are
equivalent, their corresponding ADD nodes can be unified according
to the ADD reduction rule (2). It is easy to see that states A and B in
the example are equivalent because in case that p holds both have a
cost of 1, while if¬p holds both have a cost of two. However, they are
not bisimilar becauseB does not have any transition toC. Obviously,
states C and D are not bisimilar, given that their transitions have
different labels. Hence, no pair of states is reduced by bisimulation.
However, since in the end only the distance to the goal matters,

those transitions that are not part of an optimal path should not be
taken into account. In the example, if the transition A → C is not
necessary then A and B are equivalent. Checking if a transition is
necessary in any optimal path is not trivial as it needs to consider
all the combinations of values of the variables that have not been
merged. Some approaches try to consider only a subset of transitions
when computing the bisimulation [20] but either do not guarantee
optimal heuristics or do not reduce all the equivalent states.
It is possible to extend the example by adding an exponential num-

ber of equivalent states that are not bisimilar because they have dif-
ferent transitions that are not needed by any of their optimal paths.
Therefore, this may cause an exponential gap between the size of the
intermediate abstraction and the final reduced heuristic.
On the other hand, symbolic backward search iteratively con-

structs the reduced BDDs for every cost. In the absence of 0-cost
operators, the intermediate BDDs are always fully reduced. Thus,
in some domains the size of the BDDs used by symbolic partial
PDBs may be exponentially smaller than the M&S representation.
The counterpart is that these BDDs are computed with images of the
transition relation, which in some domains may be expensive.
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5 EXPERIMENTS

We use two planners as the basis for our experiments, namely FAST
DOWNWARD5 (FD) [15] offering theM&S heuristic for explicit-state
planning, and GAMER for executing symbolic heuristic search. Both
systems include their latest improvements.
The software infrastructure is taken from the resources of the In-

ternational Planning Competition 2011. Also, we used all the prob-
lems of that competition, i.e., 14 domains, four of those with being
unit-cost domains, with 20 problems each. We implemented the pro-
posed refinements in GAMER (Matrix BDDA* and List BDDA*) us-
ing the CUDD library of Fabio Somenzi (compiled for 64-bit Linux
using the GNU gcc compiler, optimization option -O3). For the ex-
periments we used our own machine (Intel Core i7 920 CPU with
2.67GHz and 24GB RAM) with the same settings concerning time-
out (30 minutes) and maximal memory usage (6GB) as in the com-
petition. While the time and memory settings are the same as in the
competition, other parameters of the computer are different.
We did experiments with two different configurations of the M&S

heuristic, one using only greedy bisimulation (gop) and one using
DFP-gop (gop’) with parameter M = 200,000. The M&S planner
presented in the competition used these two strategies serially, first
the version with gop for 800 seconds and afterward the one with
DFP-gop for 1,000 seconds. We decided to run both parts indepen-
dently to see how well we perform against a more traditional, i. e.,
non-portfolio, planner. The pattern selection for symbolic PDBs is
the same as used by GAMER in the competition [21].
We look at two different variable ordering strategies used by the

competition planners, the one applied in FD and the one applied in
GAMER. The FD ordering looks at strongly connected components
and weights of the causal graph to place variables after the ones they
depend on [15]. The GAMER ordering also looks at the dependency
of variables and is the result of a random local search to improve
the ordering according to incrementally computing the optimization
function

∑
1≤i,j,≤n,(ui,vj)∈D

(π(i) − π(j))2, where π denotes the
applied permutation and D denotes the set of causal dependencies.
Thus, highly related variables are pushed to the middle of the order-
ing. Both orderings are contradictory, since goal variables are usu-
ally the most related with others but also the most influenced, so that
GAMER attempts to place them in the middle and FD at the end.
The results are shown in Table 2. All the small improvements in

Matrix A* compared to GAMER helped mainly in the unit-cost do-
mains. There we are now able to find the two trivial solutions in VIS-
ITALL, one solution in PARKING and eight in TIDYBOT– in the com-
petition we completely failed in both domains. In the domains with
operator costs the new parser helped us to find three additional solu-
tions in the SCANALYZER domain. Overall, Matrix BDDA* solves
158 problems, which is 12 problems more than the competition ver-
sion of GAMER run on our machine.
When comparing both implementations of BDDA*, List BDDA*

is better than Matrix BDDA* when the M&S heuristic is used or
when PDBs are used in FAST DOWNWARD ordering; in case of PDBs
and GAMER ordering both find the same number of solutions. On
the other hand, explicit A* beats both BDDA* versions when using
FAST DOWNWARD ordering and one of the M&S heuristics, while
with GAMER ordering it is better with the gop M&S heuristic but
worse with the gop’ heuristic. With FAST DOWNWARD ordering and
the PDB heuristic both BDDA* versions are better than explicit A*,
while with GAMER ordering there is no difference in the total number

5 Retrieved on February 22nd 2012 from the FAST DOWNWARD repository
at http://hg.fast-downward.org.

of found solutions.
The symbolic PDB heuristic did not use abstraction in most of the

domains. With GAMER ordering abstraction is used in some prob-
lems of PARC-PRINTER, PARKING, SOKOBAN and TIDYBOT. With
FAST DOWNWARD ordering abstraction is also used in FLOORTILE
and OPENSTACKS. In all the other domains the heuristic were com-
puted by symbolic backward search until all the states had been
reached or the time limit of 15minutes had been expired. The perfect
heuristic was found for 70 problems when using GAMER ordering
and for 60 with FAST DOWNWARD ordering.
The results are highly influenced by the choice of the variable

ordering. Overall the FAST DOWNWARD ordering is better for the
M&S heuristic, while GAMER’s ordering helps the symbolic explo-
ration. Due to this, the integration of symbolic search and the M&S
heuristic is difficult because both have to use the same ordering.
The variable ordering matters not only for the kind of planner used

but also for the domain it is used on. For example, in FLOORTILE,
NOMYSTERY, PARKING, VISITALL, PARC-PRINTER, and SCAN-
ALYZER the FAST DOWNWARD ordering is better in most cases for
all planners, while in ELEVATORS, OPENSTACKS, SOKOBAN, and
WOODWORKING the GAMER ordering is the better choice.
Overall, the best choice is to use any of the three planners with

PDBs and GAMER ordering. However, as the M&S heuristic takes
less time to be computed, it is more suitable to be run more than
once. Using the same configuration as in the competition, FD with
the M&S heuristic can solve 171 problems, 2 more than in the com-
petition, probably due to some bugfixes and performance boosts in
that planner as well. On our machine, neither of the two versions
took more than 600 seconds for any of the problems, so that a com-
bination of both really is reasonable. The memory limit of 6GB is
what prevents them from finding more solutions.
Given a perfect oracle that tells us for each domain which heuris-

tic, which ordering, and which version of BDDA* to use we would
be able to find 185 solutions. In order to come up with such an oracle
we have to investigate the differences between the planners, heuris-
tics and orderings further and find out why some work better than
others in certain domains.

6 CONCLUSION

According to the outcome of the last two international planning com-
petitions, heuristic and symbolic search are two of the leading meth-
ods for sequential optimal planning.
In this paper we have seen a head-to-head race of two symbolic

high-quality estimates, namely the PDB and the M&S heuristic. Sur-
prisingly, the former won (if we stick to a single planner run). With
PDB search, we arrive at 158 solutions in the set of competition prob-
lems (30 to 32 in the unit-cost domains and 126 to 128 in those with
operator costs, dependent on the actual planner used). If we would
use Matrix BDDA* for the unit-cost domains and List BDDA* for
the domains with costs we arrive at 160 problems being solved. With
this we are still slightly behind the number of 171 problems solved
by explicit search with two different versions of the M&S heuristic.
Nevertheless, the performance of solving 128 problems with costs
is closing the gap to the state-of-the-art. With 131 found solutions
only one of the FAST DOWNWARD STONE SOUP planners are bet-
ter. Moreover, if we were to exclude the PARC-PRINTER domain,
which is special due to the extremely high and diverse operator costs,
the picture would actually be fortunate for us.
The variable ordering for the M&S heuristic influences both the

quality of the estimate and the symbolic exploration. The heuristic
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Table 2. Number of solved problems for all domains of the sequential optimal track of IPC 2011.

Domain FAST DOWNWARD Ordering GAMER Ordering
Explicit A* Matrix BDDA* List BDDA* Explicit A* Matrix BDDA* List BDDA*

gop gop’ PDB gop gop’ PDB gop gop’ PDB gop gop’ PDB gop gop’ PDB gop gop’ PDB
NOMYSTERY 13 20 14 14 20 16 15 20 16 13 12 12 14 17 14 13 18 13

PARKING 7 0 0 3 0 0 3 0 0 0 0 0 0 0 1 0 0 1

TIDYBOT 13 0 12 6 0 6 6 0 6 13 0 8 9 0 6 6 0 5

VISITALL 13 11 10 5 5 12 12 12 12 11 9 11 11 10 11 11 10 11

Total (unit cost) 46 31 36 28 25 34 36 32 34 37 21 31 34 27 32 30 28 30

BARMAN 4 4 4 4 4 4 4 4 4 4 4 4 6 5 4 4 4 4

ELEVATORS 0 11 18 0 16 19 0 16 19 6 12 19 6 14 19 5 17 19

FLOORTILE 3 7 12 3 7 12 3 7 12 3 4 11 3 4 8 3 4 8

OPENSTACKS 4 16 15 4 15 14 4 15 15 5 16 16 4 20 20 5 20 20

PARC-PRINTER 11 14 10 8 11 7 10 11 9 11 12 10 8 9 7 10 7 8

PEG-SOLITAIRE 0 19 19 0 19 19 0 19 19 0 19 19 0 19 17 0 19 17

SCANALYZER 6 10 9 6 9 9 6 9 9 3 8 9 3 8 9 3 7 9

SOKOBAN 1 20 4 1 13 12 1 12 12 3 20 17 2 18 19 2 18 19

TRANSPORT 6 7 9 6 7 9 6 7 10 6 6 9 6 6 7 6 6 8

WOODWORKING 9 6 7 10 7 5 10 7 7 9 9 13 6 8 16 13 12 16

Total (others) 44 114 107 42 108 110 44 107 116 50 110 127 44 111 126 51 114 128

Total (all) 90 145 143 70 133 144 80 139 150 87 131 158 78 138 158 81 142 158

choice applied in FD pleases the M&S heuristic, while the optimiza-
tion applied in GAMER pleases symbolic exploration. Future work
is needed to combine the two for a competitive BDDA* exploration
with the M&S heuristic.
The small ADD sizes for the M&S heuristic documented in

this paper suggest that there is sufficient memory for computing
the maximum of more than one heuristic (in ADD representation).
This results in a consistent, strictly more informed heuristic for the
(BDD)A* exploration and provides a way of combining the accuracy
of PDBs and M&S heuristics.
In many instances that are solved by BDDA* with PDBs no ab-

straction is applied, meaning that blind symbolic backward search in
the concrete state space is either finalized or truncated by the time
limit. As a consequence at least in domains where backward search
does not explode immediately (due to illegal states produced), bidi-
rectional blind symbolic search is best.
Another competitor to look at would be the planning heuristic h+.

In a restricted setting it has been compiled into a logic program and
to a d-DNNF, where d-DNNFs are another succinct representation
for Boolean functions [4].
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[8] Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski, ‘Directed
model checking with distance-preserving abstractions’, STTT, 11(1),
27–37, (2009).

[9] Stefan Edelkamp, ‘Planning with pattern databases’, in ICAPS, pp. 13–
34, (2001).

[10] Stefan Edelkamp, ‘External symbolic heuristic search with pattern
databases’, in ICAPS, pp. 51–60, (2005).

[11] Stefan Edelkamp, ‘Automated creation of pattern database search
heuristics’, in MOCHART, (2007).

[12] Stefan Edelkamp and Peter Kissmann, ‘Limits and possibilities of bdds
in state space search’, in AAAI, pp. 1452–1453, (2008).

[13] Stefan Edelkamp and Frank Reffel, ‘OBDDs in heuristic search’, in
KI, eds., Otthein Herzog and Andreas Günter, volume 1504 of Lecture
Notes in Computer Science, pp. 81–92. Springer, (1998).

[14] Patrick Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven
Koenig, ‘Domain-independent construction of pattern database heuris-
tics for cost-optimal planning’, in AAAI, pp. 1007–1012, (2007).

[15] Malte Helmert, ‘The fast downward planning system’, JAIR, 26, 191–
246, (2006).

[16] Malte Helmert and Carmel Domshlak, ‘Landmarks, critical paths and
abstractions: What’s the difference anyway?’, in ICAPS, pp. 162–169,
(2009).

[17] Malte Helmert, Patrik Haslum, and Jörg Hoffmann, ‘Flexible abstrac-
tion heuristics for optimal sequential planning’, in ICAPS, eds., Mark S.
Boddy, Maria Fox, and Sylvie Thiébaux, pp. 176–183. AAAI, (2007).
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