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Abstract

In the context of heuristic search within automated planning, abstraction heuristics map the problem into an abstract
instance and use the optimal solution cost in the abstract state space as an estimate for the real solution cost. Their
flexibility in choosing different abstract mappings makes abstractions a powerful tool to obtain domain-independent
heuristics. Different types of abstraction heuristics exist depending on how the mapping is defined, like Pattern
Databases (PDBs) or Merge-and-Shrink (M&S).

In this paper, we consider two variants of PDBs, symbolic and perimeter PDBs, combining them to take advan-
tage of their synergy. Symbolic PDBs use decision diagrams in order to efficiently traverse the abstract state space.
Perimeter PDBs derive more informed estimates by first constructing a perimeter around the goal and then using it
to initialize the abstract search. We generalize this idea by considering a hierarchy of abstractions. Our algorithm
starts by constructing a symbolic perimeter around the goal and, whenever continuing the search becomes unfeasible,
it switches to a more abstracted state space. By delaying the use of an abstraction, the algorithm derives heuristics
as informed as possible. Moreover, we prove that M&S abstractions with a linear merge strategy can be efficiently
represented as decision diagrams, enabling the use of symbolic search with M&S abstractions as well as with PDBs.
Our experimental evaluation shows that symbolic perimeter abstractions are competitive with other state-of-the-art
heuristics.
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1. Introduction

Classical planning deals with the generation of plans, i.e., sequences of actions that an agent can execute to achieve
a set of goals. A planning task consists of a set of variables that describe the current state of the world, a set of actions
that the agent may perform to modify the value of such variables, the initial state, and the agent’s goals. In cost-optimal
planning, we are interested in finding a plan whose cost is minimal for any planning task given as input.

State-space search with A∗ [1] is a prominent approach for cost-optimal planning [2]. A∗ enumerates states
reachable from the initial state until a plan is found and proven to be optimal. The order in which A∗ considers the
states depends on a heuristic function that estimates the cost from each state to the goal, helping to focus the search
effort on those states that are closer to the goal. Even though in most cases the size of the reachable state space grows
exponentially in the size of the planning task, this approach has been very successful thanks to a broad research on
domain-independent admissible heuristics [3, 4, 5] and pruning methods [6, 7, 8] that help to reduce the number of
states that must be visited by A∗.

Abstraction heuristics are a class of heuristics that map the state space to a smaller one, and use the cost of the
optimal solution in the abstract state space as an admissible estimate of the cost in the original task. The cost from
every abstract state to the goal is precomputed prior to the search by traversing the entire abstract state space with a
backward uniform-cost search starting from the abstract goal. These costs are stored in a look-up table, so that the
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evaluation of the heuristic during the search is very efficient. However, this requires the abstract state space to be
small enough so that the look-up table fits into memory.

The key is how to derive “good” abstractions so that the abstract instance can be solved efficiently while providing
useful estimates. For that reason there exist different types of abstraction heuristics. Pattern Databases (PDBs) select
a subset of variables of the problem and ignore the rest [9, 10]. This is a simple way of defining abstractions that is
able to produce good heuristics across many domains. However, a limitation of PDBs is that they always completely
ignore at least one variable, which may render the heuristic uninformative in some domains. As an alternative, Merge-
and-Shrink [11, 12] (M&S) is an algorithm to derive abstractions that take into account all variables.

Perimeter heuristics aim to obtain more accurate heuristics by constructing a perimeter around the goal states in
the original state space. The perimeter corresponds to the set of states from which the goals can be achieved with a
given cost. Perimeter heuristics estimate the cost from a state to the goal as the cost from the state to any state in the
perimeter, plus the cost from the perimeter to the goal. The main drawback is that computing the heuristic becomes
more expensive, since it requires to estimate the minimum cost to any state in the perimeter. Abstraction heuristics are
a good match for this task, because one can estimate such minimum cost directly without any overhead; it just suffices
to initialize the abstract state space exploration that precomputes all costs with all the abstract states in the perimeter,
instead of only with the abstract states representing the goals.

We generalize the idea of perimeter PDBs by considering a hierarchy of PDBs, instead of only one. This hierarchy
contains abstractions of different sizes, ranging from trivial PDBs with only one variable to the original state space
(with all variables). Instead of traversing all these abstract state spaces completely, they are only partially explored.
Our algorithm starts constructing a perimeter in the original state space and, whenever the search becomes unfeasible
(according to some predefined time and memory limits), it switches to a coarser abstraction by abstracting away a new
variable. That way, the search is conducted in an abstract state space as close to the original task as possible, deriving
more informative heuristics.

Applying perimeter PDBs in domain-independent planning poses some challenges due to the difficulties of regres-
sion in large state spaces with multiple goal states [13]. We show how such challenges can be successfully addressed
by using symbolic PDBs, which use symbolic search to traverse the abstract state space [14]. Symbolic search uses
Binary Decision Diagrams [15] (BDDs) to compactly represent sets of states, often with an exponential gain in mem-
ory with respect to their explicit enumeration. Thanks to this, symbolic search has been shown to be a very efficient
method for exhaustive exploration of state spaces, especially after recent improvements [16, 17]. Another advantage
of representing the heuristic function with decision diagrams is that, by avoiding a lookup table with an entry per
abstract state, we can handle larger abstract state spaces. This is important for our algorithm, which considers arbi-
trarily large abstractions whose entire state space does not fit in memory. To exploit the synergy between symbolic
and perimeter PDBs, we define the BDD operations that can be used to effectively generate the set of abstract states
that correspond to states in the perimeter without explicitly enumerating all the states involved.

We define a hierarchy of M&S abstractions, which we call Symbolic M&S (SM&S) in which variables are ab-
stracted one by one, as in the case of PDBs. The difference with respect to the PDB hierarchies is that abstracted
variables can be partially considered instead of being completely ignored. We prove that, if a linear merge strategy
(that considers variables one by one in a linear ordering) is used, sets of M&S abstract states can be efficiently repre-
sented with BDDs. This bounds the size of any BDD involved in the abstract search with respect to the total number
of abstract states, ensuring that the symbolic search will be tractable on small enough abstract state spaces. Therefore,
we can use our algorithm in combination with hierarchies of PDB or M&S abstractions. We call the algorithm and
the resulting heuristics Symbolic Perimeter Abstractions (SPA) in general or SPPDB/SPM&S, if we want to restrict
the type of abstractions used to PDBs or M&S respectively.

We perform an in-depth experimental analysis comparing the performance of SPA when using different hierarchies
of PDB and M&S abstractions. Our results show that symbolic abstractions are very informative heuristics. Despite
the fact that they have not been widely used by explicit-state search planners, symbolic PDBs or symbolic perimeters
guiding A∗ are already very competitive and outperform the popular LM-CUT heuristic [4] in many domains. SPA can
further improve the results of the symbolic perimeter in a number of domains, especially when using PDB hierarchies.
We provide insights into the types of domains, analyzing when a perimeter can be useful or detrimental to enhance
symbolic PDBs.
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A preliminary version of our work was presented in a conference paper [18].1 In this article, we provide a more
general and detailed description of our technique, as well as a more thorough experimental evaluation. The rest of
the article is structured as follows. Section 2 describes the basics and nomenclature that we will use in the rest of
the paper. Section 3 reviews the state of the art in abstraction heuristics. In Section 4 we present our definition of
perimeter abstraction heuristics. The details for using symbolic search to traverse M&S abstractions are explained in
Section 5. The overall SPA algorithm that puts together the different parts described in previous sections is presented
in Section 6. Section 7 presents the evaluation of symbolic perimeter abstraction heuristics. The article concludes in
Section 8 with a summary of the main contributions and conclusions.

2. Preliminaries

This section presents the basic definitions of classical planning, heuristic search, and symbolic search.

2.1. Classical Planning
A planning task in finite-domain representation (FDR) is a 4-tuple Π = (V,A, I,G). V is a finite set of variables

v, each v ∈ V being associated with a finite domain Dv . A partial state over V is a function s on a subset V (s) of
V , so that s(v) ∈ Dv for all v ∈ V (s); s is a state if V (s) = V . I is the initial state and the goal G is a partial state.
A is a finite set of actions, each a ∈ A being a pair (prea, eff a) of partial states, called its preconditions and effects.
Each a ∈ A is also associated with its non-negative cost denoted as cost(a) ∈ R+

0 .
A labeled transition system (LTS) is a tuple Θ = (S, L, T, s0, S?) where S is a finite set of states, L is a finite set

of labels each associated with a label cost cost(l) ∈ R+
0 , T ⊆ S × L × S is a set of transitions, s0 ∈ S is the start

state, and S? ⊆ S is the set of goal states.
The state space of a planning task Π is the LTS ΘΠ where: S is the set of all states; s0 is the initial state I of Π;

s ∈ S? if and only if G ⊆ s; the labels L correspond to the actions A, and s a−→ s′ is a transition in T if prea ⊆ s,
and s′(v) = eff a(v) for v ∈ V (eff a) while s′(v) = s(v) for v ∈ V \ V (eff a). A plan for a state s is a sequence of
actions that defines a path from s to any sG ∈ S?. The cost of a plan π is defined as the sum of the costs of its actions,
cost(π) =

∑
ai∈π cost(ai). The cost of a cheapest plan for s is denoted as h∗(s). A plan for s0 is a plan for Π, and it

is optimal if and only if its cost equals h∗(s0).

2.2. Planning as Heuristic Search
Most state-of-the-art cost-optimal planners employ heuristic search [2]. A heuristic is a function h : S → R+

0 ∪
{∞}which estimates the optimal cost to reach a goal state from each state (remaining cost), or returns +∞ if the goals
are known to be unreachable from the state. A heuristic is perfect if it coincides with h∗. A heuristic is admissible if
it never overestimates the remaining cost, that is, ∀s : h(s) ≤ h∗(s). A heuristic is consistent if for every transition
(s, a, s′) ∈ T , h(s) ≤ h(s′) + c(a).

The most popular algorithm for cost-optimal planning is A∗ with an admissible heuristic [1]. A∗ keeps an open
list, initialized with the initial state, and a closed list, initialized empty. At each step, A∗ selects a node m from the
open list with lowest f(n) = g(n) + h(n). g(n) is the current best cost from the root to node n and h(n) is the
heuristic estimation. Then, A∗ expands m, inserting m into the closed list, generating all its successors and inserting
each successor m′ generated by applying an action a to the state in m into the open list with g(m′) = g(m) + c(a).
The expansion order of A∗ guarantees that no node with f(n) > h∗(I) is ever expanded. If the heuristic is consistent,
A∗ will never re-expand a node because nodes are expanded with their optimal g-values.

A number of admissible heuristics for cost-optimal planning exist in the literature. They include critical-path
heuristics (hm) [3], landmark heuristics (LM-CUT) [4], flow-based heuristics [19, 20], and potential heuristics [5],
among others. In this paper, we focus on abstraction heuristics which are reviewed in detail in Section 3. In practice,
more than one heuristic may be used, either in a portfolio [21, 22] or other methods to combine multiple estimates
in a single search [23, 24]. There also exist several search enhancements for A∗ that are orthogonal to the heuristics
used. Some examples include partial-order pruning [7], symmetries [6, 25] or dominance pruning methods [26, 8].

1We originally called our technique symbolic M&S [18]. We rename it to Symbolic Perimeter M&S to highlight that it is a perimeter abstraction
heuristic.
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2.3. Symbolic Search
Symbolic search originated in the context of model checking and verification [27, 28, 29] where it has been widely

used to determine reachability in transition systems [30]. It is also a successful technique for state space exploration
both in classical [31] and non-deterministic planning [32, 33].

Symbolic search algorithms take advantage of succinct data-structures to efficiently represent sets of states. A set
of states S ⊆ S is represented by its characteristic function fS(x1 . . . xn) : S → {1, 0} that represents whether a
given state in S belongs to S (1) or not (0). The input of the function is the bit-vector description of a state represented
by binary variables xi, so that the function signature may be written as fS : {0, 1}n → {1, 0}. Each finite-domain
variable υ ∈ V with domain Dυ is represented with dlog2 |Dv|e binary variables.2 To simplify the notation, we use
the same symbol, S, to denote a set of states and its characteristic function.

Binary Decision Diagrams (BDDs) [15] are data structures that can be used to compactly represent Boolean
functions, such as the characteristic functions of sets of states. A BDD is a rooted labeled directed acyclic graph with
two types of terminal nodes or sinks: > and ⊥. Non-terminal or inner nodes are defined by a 3-tuple p = 〈xi, p0, p1〉,
where xi is a variable and p0 and p1 are either sink or inner nodes representing functions that do not depend on xi. For
a node 〈xi, p0, p1〉, p0 corresponds to the case of assigning variable xi the value false (⊥), thus giving the so-called low
(or 0) successor; p1 corresponds to the case of assigning variable xi the value true (>), giving the high (or 1) successor.
For any assignment of variables in a path from the root to a sink, the represented function will be evaluated to the
value labeling the sink. We consider reduced ordered BDDs, which have the additional requirement that variables
on any path from the root to the sinks always appear in the same order. This allows the application of reduction
rules that remove unnecessary and redundant parts from the BDD. Algebraic Decision Diagrams (ADDs) [34] are
a useful extension of BDDs, which can have any number of terminal nodes. ADDs can describe integer functions,
fS(x1 . . . xn) : S → Z, such as heuristic functions.

BDDs allow us not only to succinctly represent sets of states but also to operate with them through function
transformations. For example, the union (∪) and intersection (∩) of sets of states are derived from the disjunction (∨)
and conjunction (∧) of their characteristic functions, respectively. Also, the complement set (S \ S) corresponds to
the negation (¬) of the characteristic function. Quantification of variables is another type of function transformation
commonly found in symbolic search. The existential quantification of a variable υ ∈ V with respect to a function f
removes the dependency of f on variable υ such that ∃υ : f = f |υ=1 ∨ f |υ=0, where f |υ=1 and f |υ=0 are the sets of
assignments to variables V \{υ} so that they make f true whenever υ = 1 and υ = 0, respectively. Thus, the result of
the existential quantification corresponds to the projection of the set of states to the set of variables V \{υ}. Similarly,
the universal quantification ∀υ : f removes the dependency of f on variable υ such that ∀υ : f = f |υ=1 ∧ f |υ=0.
This means that when a variable υ ∈ V is universally quantified away, the resulting function f ′ is satisfied only by
those cases in which f is true for every possible assignment of υ (i.e., υ = 1 and υ = 0).

In order to search the state space, the set of actions A is represented with one or more Transition Relations (TRs).
A TR is a function Tc(x, x′) that represents one or more actions with the same cost, c. TRs are defined using two sets
of variables, the source-set and the target-set of variables, denoted as x and x′, respectively. Both sets of variables
have the same cardinality as the set of variables of the characteristic function, so that each variable in the source- and
target-sets corresponds to a variable in the characteristic function: the variables of the source-set describe the states in
which the action is applicable (the preconditions of the actions) and the variables of the target-set describe the states
after the execution of the action (the effects of the actions). Given a set of states S and a TR Ti, the image operation is
used to compute the set of successor states that can be reached from any state in S by applying any action represented
by the TR. The image corresponds to the operation image(S(x),Ti(x, x

′)) := (∃x (S(x) ∧ Ti(x, x
′))) [x′/x]. The

conjunction S(x) ∧ Ti(x, x
′) corresponds to all pairs of states 〈s, s′〉 such that s ∈ S and s′ = a(s) for an action a

represented by Ti. Then, the existential quantification ignores predecessor states and the variable swapping, [x′/x],
represents the resulting states s′ with the standard set of variables x.

Similarly, the pre-image operation computes the set of predecessor states, i. e., states that can reach some state in
S through some action in the TR. Formally:

pre-image(S(x),Ti(x, x
′)) = ∃x′ ((S(x)[x/x′]) ∧ Ti(x, x

′))

2Based on this transformation, when discussing the representation of sets of states as decision diagrams, we assume FDR variables to be binary
without loss of generality.
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3. Abstractions

In this section, we describe previous work on abstraction heuristics, starting with the basic definitions that we
adopt, as well as techniques to generate domain-independent abstraction heuristics, such as PDBs, Merge-and-Shrink,
and Perimeter PDBs.

3.1. Preliminary Definitions
Abstractions are simplifications of the task that transform the state space into a smaller one, called abstract state

space. The corresponding abstract planning task is optimally solved and the cost of its solution is used to guide the
search in the original state space.

Definition 1 (Abstraction [12]). Let Π be a planning task with state space ΘΠ = (S, L, T, s0, S?). An abstraction of
Θ is a surjective function α : S → Sα mapping S to a set of abstract states, Sα.

An abstraction α defines an abstract state space Θα = 〈Sα, L, Tα, sα0 ,Sα? 〉 where Sα is the set of abstract states,
L is the set of labels, Tα = {(α(s), l, α(t)) | (s, l, t) ∈ T}, sα0 = α(s0) and Sα? = {sα | ∃s ∈ S?, sα = α(s)}. The
size of α, denoted as |α|, is the number of abstract states, |Sα|. The transformation Θ → Θα is a homomorphism,
i. e., a structure-preserving mapping such that for all s, t ∈ S and l ∈ L, (s, l, t) ∈ T , implies (α(s), l, α(t)) ∈ Tα.

Definition 2 (Abstraction heuristic [12]). Let α be an abstraction with an associated abstract state space Θα. The
induced abstraction heuristic hα(s) is a heuristic function that returns the cost of the cheapest path from α(s) to Sα?
in Θα.

Abstraction heuristics are admissible and consistent, since Θα is a homomorphism and, thus, paths in the original
state space are preserved in the abstract state space. Every abstraction α induces an equivalence relation on S, ∼α,
defined as s ∼α t if and only if α(s) = α(t), i. e., any two states mapped to the same abstract state are considered to
be equivalent by the abstract state space. Hence, each abstract state sαi may be interpreted as a set of states Sαi such
that it contains every state mapped to sαi , i. e., Sαi = {s | α(s) = sαi }. Therefore, we will freely refer to an abstract
state as an equivalence class or a set of states of the original state space.

Definition 3 (Relevant variables of an abstraction [12, 35]). Let α be an abstraction of a planning task with variable
set V . We say that α depends on variable v ∈ V if and only if there exist states s and t such that α(s) 6= α(t) and
s[v′] = t[v′] for all v′ ∈ V \ {v}. The set of relevant variables for α, written Vα, is the set of variables in V on which
α depends.

Note that abstractions are transitive: if α is an abstraction of a transition system, Θ, and α’ is an abstraction of Θα,
then their composition, α′ ◦α, is also an abstraction of Θ. Let α1 and α2 be two abstractions of a given state space Θ.
We say that α2 is a coarsening abstraction of α1 if and only if for every pair of states s, t ∈ S, α1(s) = α1(t) implies
α2(s) = α2(t). In that case, α1 is a refinement of α2.

3.2. Pattern Databases
Pattern Databases (PDBs) are a kind of abstraction based on abstraction patterns. Patterns were originally defined

as a selection of tiles in the sliding-tile puzzle [9] and later extended to other domains where more general definitions
have been considered, shifting the focus from the mere selection of care variables to different state-space abstrac-
tions [36]. In planning, a pattern is usually defined as a selection of state variables, while the value of other variables
is ignored [10]

Definition 4 (Projection [12, 35]). A projection α of a planning task over a subset of variables W ⊆ V is defined
by restricting the initial state, goals and preconditions/effects of the actions to W such that s ∼α t if and only if
s[v] = t[v] for all v ∈W .

The performance of PDBs greatly depends on the patterns chosen to create the abstractions. When PDBs are
constructed using explicit search, few variables may be included in the pattern so that the size of the abstract state
space is small enough to be enumerated. To compensate for the fact that each PDB only considers a few variables,
multiple PDBs are generated and these are combined additively. A set of PDBs can be additively combined if they are
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disjoint [37] (i. e., if no operator is relevant for more than one of them) or if the cost of the operators is divided with
a cost-partitioning schema [10, 38]. Several algorithms for pattern selection of explicit PDBs have been proposed in
the context of automated planning:

• iPDB [39] starts considering the patterns consisting of a single goal variable and uses a hill-climbing search. At
each iteration, it attempts all possible ways to add a new variable to an existing pattern, such that the variable is
relevant for the pattern (i. e. either it is a goal or it provides a precondition for an operator that modifies another
variable in the pattern). The algorithm stops when the improvement is marginal. All the resulting PDBs are
combined using the canonical heuristic method, that takes the maximum over all additive subsets of PDBs.

• gaPDB [40] uses a genetic algorithm to derive multiple PDBs using a 0-1 cost-partitioning so that they are
additive.

• CPC [41] runs multiple instances of gaPDB in order to generate a set of complementary PDBs.

In symbolic search the abstract state space does not need to be explicitly enumerated, so an arbitrary number of
variables may be considered in a single PDB. Symbolic PDBs have been mainly used by symbolic search planners,
which use a BDD variant of A∗ [42], as the planner GAMER [43]. GAMER uses an automatic pattern selection
algorithm based on iPDB to construct a single PDB. It starts considering the pattern of all goal variables. Then,
it conducts a hill-climbing search, attempting to add all relevant variables to the current best pattern and selecting
the best variable. To speed-up the process, in case that several variables provide the same improvement, the pattern
containing all such variables is constructed. Kissmann and Edelkamp [43] also considered the creation of a symbolic
perimeter and mentioned the possibility of combining the perimeter with abstraction heuristics. In this paper we
explore this idea in full detail.

3.3. Merge-and-Shrink

Merge-and-shrink (M&S) is an algorithm that derives abstractions that take into account all variables, thus over-
coming the major limitation of PDB abstractions. M&S was originally proposed in the context of directed model
checking [44, 11] and later applied to planning [35, 12]. Formally, M&S abstractions are constructed using the fol-
lowing rules:

(A) Atomic projections: For v ∈ V , the atomic projection πv of the task over a single variable v is an M&S
abstraction over {v}.

(M) Merge: If α1 and α2 are M&S abstractions over disjoint sets of variables W1,W2 ⊂ V,W1 ∩W2 = ∅, then
α1 ⊗ α2 is an M&S abstraction over W1 ∪W2.The merged abstraction α1 ⊗ α2 is defined by (α1 ⊗ α2)(s) :=
(α1(s), α2(s)). In other words, the new abstraction has |α1| × |α2| states, one for each pair sα1

∈ Θα1 , sα2
∈

Θα2 . The state space of the merged abstraction corresponds to the synchronized product of the state spaces of
α1 and α2, Θα1⊗α2 = Θα1 ⊗Θα2 = (S ′, L, T ′, s′0,S ′?) where S ′ = Sα1 × Sα2 , T ′ = {((s1, s2), l, (s′1, s

′
2)) |

(s1, l, s
′
1) ∈ Tα1 ∧ (s2, l, s

′
2) ∈ Tα2}, s′0 = (Iα1 , Iα2) and S ′? = {(s1, s2) | s1 ∈ Sα1

? ∧ s2 ∈ Sα2
? }. The

constraint W1 ∩W2 = ∅ ensures that Θα1 ⊗Θα2 is isomorphic to Θα1⊗α2 .

(S) Shrink: If the size of any new abstraction β resulting from merging two abstractions goes over a given memory
limit, the Shrink operation generates a smaller abstraction by applying an abstraction γ over Θβ . If β is a
M&S abstraction over a set of variables W ⊆ V and γ is an abstraction from Sβ to Sγ , then γ ◦ β is an M&S
abstraction overW . This further abstracts an abstraction β by aggregating an arbitrary number of abstract states
into the same abstract state.

Rule (A) allows the algorithm to start from atomic projections, one for each variable. Given that the size of the
new abstraction can grow exponentially by repeatedly applying Rule (M), Rule (S) allows M&S to reduce the size of
abstractions.

Algorithm 1 shows the pseudocode of the M&S algorithm. It takes as input a planning task and a parameter N
that imposes a bound on the abstraction size, i. e., no abstraction in the process will have more than N abstract states.
The algorithm initializes a pool of abstractions with the atomic projection with respect to every variable v ∈ V . While
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Algorithm 1: Merge-and-shrink [12]
Input: Planning task Π, size bound N
Output: M&S abstraction α

1 A := {πv | v ∈ V } // Rule (A)
2 while |A| > 1 do
3 Select α1, α2 ∈ A
4 Shrink α1 and/or α2 until |α1| × |α2| ≤ N // Rule (S)
5 α′ := α1 ⊗ α2 // Rule (M)
6 A := (A \ {α1, α2}) ∪ {α′}
7 return the only abstraction in A

there is more than one abstraction left in the pool, the algorithm selects two abstractions and merges them, replacing
them by their combination. If necessary for the merged abstraction to satisfy the size bound N , a shrinking step is
applied to both selected abstractions, prior to every merging step. To implement M&S in practice, we need a merge
strategy deciding which abstractions to merge by rule (M), and a shrink strategy deciding which (and how many)
states to aggregate by rule (S). The performance of M&S greatly depends on the policies chosen for these steps.

M&S is a generalization of PDBs; for any PDB, we can construct an equivalent M&S abstraction just by merging
the atomic abstractions that correspond to variables in the pattern. Values of variables not in the pattern are shrunk
to a single abstract state, so that the abstraction does not distinguish the value of those variables, just as in the case
of PDBs. However, using different shrink strategies M&S can derive abstract state spaces that PDBs cannot, e. g.,
considering all the variables of the task while keeping the abstract state space small.

We say that a merge strategy is linear if it always selects at least one atomic abstraction to be merged. Hence,
linear merge strategies are characterized by the order in which variables are chosen, v1, . . . , vn. Even though the
original work of Dräger et al. in Model Checking used a non-linear strategy, in planning most works have considered
linear merge strategies [12, 45, 46]. Non-linear merge strategies have recently been introduced in planning by Sievers
et al. [47] and promising approaches have been proposed [48, 49]. A shrink strategy takes as input an abstract state
space and decides which abstract states must be aggregated to keep the number of abstract states below N . Several
shrink strategies have been defined, like fh-shrinking [35], or bisimulation-based shrinking [45, 46].

3.4. Cascading-Tables Representation of M&S
To represent the mapping from states to abstract states, M&S abstractions internally use the cascading-tables

representation, first introduced by Dräger et al. [44] and discussed in detail by Helmert et al. [12]. This representation
will be important for later describing our algorithm that transforms them to a symbolic ADD representation. The
cascading-tables representation is built incrementally, representing every intermediate M&S abstraction by means of
a table, as shown in the example of Figure 1. This example shows a logistics task in which a number of packages must
be transported from a location L to another location R. The task has one variable per package to identify its position
(at L, at R, or in the truck T ) and one for the truck (at L or at R).

vi
L 0
T 1
R 2

(A) πi

H
HHHHπ1

π2 0 1 2

0 0 1 2
1 3 4 5
2 6 7 8

(M) π1 ⊗ π2

H
HHHHπ1

π2 0 1 2

0 0 1 2
1 1 3 4
2 2 4 5

(S) α1 := γbisim ◦ (π1 ⊗ π2)

Figure 1: Example of cascading-tables M&S representation. (A), (M) and (S) correspond to the application of M&S rules in the cascading-tables
representation [12].

Each table represents an intermediate abstraction with relevant variables W ⊆ V . These tables recursively define
the mapping between states in ΘW to abstract states. Each abstract state is identified with a number, from 0 to |α|−1,
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where |α| is the number of abstract states in the abstraction.
Atomic abstraction tables (rule A) associate every possible value of the variable with an abstract state. In our

example, we consider two atomic abstractions describing the position of two packages: π1 and π2. They map each
value (L, R, and T ) to a different abstract state. For example, abstract state 1 of π1 corresponds to having package 1
in the truck.

In each iteration, the M&S algorithm merges two abstractions (rule M). The resulting abstraction has an abstract
state for each pair of states of the input abstractions. This is represented with a two-dimensional table, in which rows
and columns correspond to abstract states of the merged abstractions. In our example, table (M) shows the product
of atomic abstractions π1 and π2, which associates each pair of abstract states in π1 and π2, 〈sπ1

i , s
π2
j 〉, to a different

ID. For example, abstract state 1 of π1 ⊗ π2 represents states in which package 2 is in the truck and package 1 is at
L. The abstraction in Figure 1 can be merged again with a new atomic abstraction π3. The result will be a new table
with one column for each abstract state in π3 and one row for each abstract state in π1 ⊗ π2, for a total of 27 cells.

The shrinking operation (rule S) applies a function γ that maps the abstract states to a new set of abstract states,
producing a new abstraction α1. To apply γ, the value of the cells in the cascading tables are changed accordingly.
In our example, γbisim corresponds to bisimulation shrinking, which in this case considers that all packages are
interchangeable so γbisim(2) = γbisim(6) = 2 and abstract state sα1

2 corresponds to states in which (v1 = L ∧ v2 =
R) ∨ (v1 = R ∧ v2 = L).

An additional lookup table stores the precomputed optimal cost for each abstract state in the final M&S abstraction
α. During the search, the heuristic value of a particular state s is retrieved in two steps. The first step recursively
traverses the tables returning the abstract state ID associated with the values of s to retrieve the ID of α(s). The
second step retrieves the heuristic value associated to such ID in the lookup table. For example, consider the partial
state 〈L,R〉 in which package 1 is at L and package 2 is at R. The retrieval algorithm first checks the tables related
to π1 and π2, obtaining abstract states 0 and 2, respectively. Then, these values are used to perform a lookup in table
α1, retrieving the value 2. An additional lookup, not shown in our example, is needed to retrieve the heuristic value
of abstract state number 2.

3.5. Perimeter Abstraction Heuristics

Perimeter PDBs (PPDBs) are another improvement of PDBs based on perimeter search to obtain more informed
heuristics. Perimeter search is a form of bidirectional search independently devised by Manzini [50] and Dillenburg
and Nelson [51] that operates in two phases: the backward phase and the forward phase, as represented in Figure 2.
The backward phase generates a perimeter P of radius r that contains all states that can reach the goal with a cost of
exactly r. The perimeter is computed by a uniform-cost search that generates all states with that g-value or less. The
perfect heuristic value of each state in the perimeter is known, whereas states outside the perimeter have a cost to the
goal strictly greater than r. Then, the forward phase performs a forward search from the initial state to the perimeter
using any algorithm like A∗ or IDA∗ [52]. Since the goal of the forward search is any state in the perimeter P , the
heuristic evaluation estimates the cost to the closest state in the perimeter3 so that h(s) = mins′∈P h(s, s′).

I G

r
h

Figure 2: High-level diagram of perimeter search. First, the perimeter around the goal of radius r contains every state that can reach the goal with
cost r or less. Then, the forward search is performed guided with heuristics that estimate the cost to reach the closest state in the perimeter frontier.

The major drawback of perimeter search is that the heuristic evaluation may become too expensive when the
perimeter is large. In practice, some optimizations avoid to evaluate h(s, s′) for every state in the perimeter [50], but
it is often not enough to deal with large perimeters. In those cases, a model can be used to predict the optimal radius

3Previous definitions of PPDBs assumed unit-cost domains so that all nodes in the perimeter have the same goal distance. Our definition in
Section 4 supports general action costs.
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r beforehand in order to avoid large overheads with respect to unidirectional search without a perimeter [53]. There
are also other ways to use the perimeter while avoiding a large number of heuristic evaluations, such as taking the
estimate to the goal and correcting it by considering the error made in the perimeter nodes [54].

Abstraction heuristics are a candidate to overcome this problem, because they precompute the heuristic value of
every abstract state. Perimeter Pattern Databases (PPDBs) were first studied by Felner and Ofek in [55]. PPDBs store
for each abstract state the minimum cost to any abstract state in the perimeter. Then, a single PDB lookup suffices to
perform the heuristic evaluation independently of the size of the perimeter.

A perimeter PDB is constructed in two phases:

1. As in perimeter search, use a backward search to build a perimeter P of radius r around the goal states in the
original search space.

2. Perform a second backward search in the abstract state space seeded with abstract states corresponding to states
in the perimeter {α(p) : p ∈ P} with initial cost r. As noted by Felner and Ofek, seeding the abstract search
with cost r is equivalent to adding r to each heuristic value. This means that the heuristic value of a state is an
admissible estimate to the closest state in the perimeter plus the perimeter radius.

The PPDB is used then as a heuristic in a forward search. As the heuristic estimates the cost to the goal while
going through one of the states in the perimeter, it is only admissible for nodes outside the perimeter. Nodes inside
the perimeter have a path to the goal without going through any node in the perimeter. However, this is not a problem
because the search halts whenever a state in the perimeter is chosen for expansion. PPDBs have great potential because
states are easily evaluated during the search, avoiding the main drawback of perimeter search. Moreover, PPDBs
produce heuristics at least as informed as standard PDBs. However, after performing a theoretical and empirical
analysis, Felner and Ofek reported that PPDBs are not better than just taking the maximum between the PDB and the
perimeter heuristic (correcting values in the PDB under r + 1 to r + 1). Alternatively, Linares López [56] proposed
storing different PDBs for each state in the perimeter in order to enhance the heuristic whenever multiple patterns are
used.

More recently, Eyerich and Helmert applied perimeter PDBs in the context of automated planning [13]. They
show that perimeter search can enhance the performance of standard PDBs, contradicting the conclusions reached by
Felner and Ofek and suggesting that perimeter PDBs should be revisited. Indeed, the analysis by Felner and Ofek
only considered permutation domains with no spurious paths in the abstract state space, which is not a common
case in planning domains. Eyerich and Helmert identified several challenges to extrapolate perimeter PDBs from the
permutation puzzles commonly used to evaluate domain-dependent heuristic search solvers to planning, and addressed
them with a explicit-state search approach. These challenges are useful to illustrate the synergy of perimeter PDBs
and symbolic PDBs, since using symbolic search automatically addresses them:

• Perimeter search has been previously applied to domains with one goal state and a state space where all tran-
sitions are invertible. In planning, one has to deal with the difficulties of regression caused by having up to an
exponential number of goal states. However, symbolic search is an efficient method to perform regression that
often outperforms partial-state based regression [57].

• Since the PDB is computed for each individual planning instance, the time spent in generating the abstraction
heuristic has to be amortized. This applies to all kinds of abstraction heuristics, but here it is aggravated by the
time spent in matching states in the perimeter to abstract states to seed the open list of abstract searches. In
symbolic search, this is done through symbolic operations, as we will detail in Section 5.3.

• The perimeter radius must be automatically set by the planner, without instance-specific parameter tuning. As
Eyerich and Helmert, we rely on parameters that bound the time and memory resources invested in constructing
the PPDBs. In our case, we use the number of BDD nodes in the search frontier to limit the memory and to
estimate the time needed for the next step.

• In order to terminate the forward search as soon as a state in the perimeter is expanded, membership in the
perimeter must be efficiently tested. This can be challenging, especially for large perimeters. However, if the
perimeter is encoded as a BDD, membership operations only take linear time in the number of variables of the
task.
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4. Hiearchies of Perimeter Abstraction Heuristics

In this section, we generalize the definition of perimeter PDBs. Previous work on perimeter abstraction heuristics
has considered only two different phases. In the first phase, a perimeter is constructed by a search on the original state
space and in the second phase the search is completed in an abstract state space. Instead, we consider an arbitrary
number of searches in a hierarchy of abstract state spaces.

Definition 5 (Abstraction Hierarchy). An abstraction hierarchy is a directed acyclic graph in which each node cor-
responds to an abstraction. There is an arc from node αi to node αj if and only if αj is a coarsening abstraction of
αi.

We will mostly use hierarchies in which each node has only one child, i. e., lists of an arbitrary number of abstrac-
tions, α0, α1, . . . , αk such that each αi is an abstraction of Θαi−1 for all i > 0. Note that α0 is usually defined as the
identity abstraction, α0(s) = s, so that the first search is performed on the original state space Θα0 ≡ Θ. All other
abstractions can be defined either using M&S or PDBs.

Figure 3 illustrates the main idea of perimeter abstraction heuristics. For each abstraction αi, we perform a
backward uniform-cost search UCS i on its abstract state space Θαi . We characterize the current status of a uniform-
cost search UCS as a tuple 〈open, closed〉 where open contains those states generated but not expanded and closed
represents the states that have already been expanded. We assume that duplicate detection is enabled so that closed ∩
open = ∅. Both open and closed can be split into buckets openg and closedg that represent the open states generated
with cost g and expanded states with cost g or less, respectively. We define the radius of a search r(UCS ) as the
minimum g-value of any state in the open list, r(UCS ) = min(g|openg 6= ∅) or∞ if open is empty.

After constructing a perimeter around the goal, the search frontier is relaxed into an abstract state space α1.
Abstract searches are used to explore the state space outside the perimeter. However, the abstraction will typically
consider states in the perimeter equivalent to other states, so the information is not perfect anymore. This is reflected
in Figure 3 by the irregular shape of the perimeters. The algorithm does not only build a single perimeter; whenever
the abstract search in αi becomes intractable, it is relaxed into a coarser abstract state space αi+1. In the end, all the
abstract perimeters are used as heuristics, to estimate the cost from states in the forward search to the perimeter.

S?I

r(UCS 0)
r(UCS 1)

α2(s)

UCS 0 UCS 1 UCS 2

Figure 3: Example of a perimeter abstraction heuristic. Several abstract searches, each one in a coarser abstract state space, provide the cost
estimates to states in the previous perimeter.

Algorithm 2 shows the precomputation phases of a PA heuristic. The algorithm initializes the first search in Θα0

with the set of goal states. Then, each phase i consists of a backward uniform-cost search in the abstract state space
Θαi initialized with the perimeter frontier of search i− 1. A search may be stopped at any point and then the get-h
function generates an ADD that represents the corresponding heuristic, as specified in Definition 7. If there are more
state spaces to explore, we re-seed (line 9) open and closed with abstract states relative to the next abstraction as
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Algorithm 2: Perimeter Abstraction Heuristic
Input: Planning problem Π = 〈V,A, I,G〉.
Input: Abstraction Hierarchy α0, . . . , αk.
Output: List of heuristics hUCS0, hUCS1, . . . .

1 open0 ← α0(G)
2 closed ← ⊥
3 foreach αi ∈ {α0, . . . , αk} do /* for each precomputation phase */
4 〈open, closed〉 ← Uniform-Cost-Search (open, closed , αi)
5 hUCSi ← get-h(open, closed) /* gather heuristic (see Def. 7) */
6 if open = ∅ then /* if the search has sucessfully finished */
7 return hUCS0, . . . , hUCSi

8 if i < k then /* if there are more abstractions left */
9 〈open, closed〉 ← re-seed(open, closed , αi+1) /* Init next search (see Def. 6) */

10 return hUCS0, . . . , hUCSk

specified in Definition 6. The algorithm terminates returning the heuristic when all phases have been completed or if
at some point there are no states left in open .

4.1. Initialization of Perimeter Abstract Searches

Abstract searches are initialized with the open and closed lists of the preceding search —so that search UCS i =〈
open ′, closed ′

〉
continues from the perimeter generated by search UCS i−1 = 〈open, closed〉. To ensure that the

resulting heuristics are consistent and admissible, states should not be removed from open or added into closed (see
proof of Theorem 1 below). In other words, if we consider the sets of states associated with open , open’, closed and
closed ’ (by interpreting the abstract states as the set of states that are mapped into them), they must meet the following
constraints in the initialization of UCS i: openi−1 ⊆ openi and closed i ⊆ closed i−1. The open list is then seeded
with the abstract states of all the states in the perimeter, as in the case of common PPDBs. Basically, we iterate over
all states in open and insert the corresponding abstract state in open’ with the same g-value it had. For the closed list,
we follow a similar procedure, but inserting an abstract state in closed ’ only if all the corresponding states are present
in closed .

Definition 6 (Perimeter search initialization). Let UCS i =
〈
open ′, closed ′

〉
be a search on Θαi initialized with the

perimeter of another search UCS i−1 = 〈open, closed〉 on Θαi−1 . For every abstract state on αi, sαij , let Sαi−1

j

denote the set of all states mapped to sαij , i. e., Sαi−1

j = {s ∈ Θαi−1 | αi(s) = sαij }. We initialize search UCS i as:

open ′g = {sαij | ∃s∈Sαi−1
j

s ∈ openg}

closed ′g = {sαij | ∀s∈Sαi−1
j

s ∈ closedg}

Figure 4 shows an example of the initialization of abstract searches. Consider the part of the original state space
depicted in Figure 4a. There are seven states, including the goal state G, three states that form a path to the goal, A, B
and C, and another three states that are in another part of the state space D, E and F . From our figure, one can infer
the cost to the goal of A, B, C and G. But, since the dotted node may be substituted by any arbitrary directed graph,
nothing can be said about the cost to the goal from D, E and F : they are arbitrarily far from the goal state and may
even be dead-end states. The abstraction maps states C and D to the same abstract state (CD) and all other states are
mapped onto themselves.

A perimeter of radius 3 is constructed in the original state space, in which case states G, C and B are expanded —
assuming unitary costs. At that point, the open list contains {A} and the closed list contains {G,B,C}. This frontier
is used to initialize an abstract search in the abstract state space of Figure 4b. In that case, the open list of the abstract
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. . .

A B C G

F E D

(a) Original state space.

. . .

A B

CD G

F E

(b) Abstract state space.

Figure 4: Original and abstract state spaces in our example of initialization of abstract searches. The abstraction maps states C and D to the same
abstract state (CD) and all other states are mapped onto themselves.

search is initialized with {α(A)} = {A} and the closed list is initialized with {G,B} (note that the abstract state CD
is not inserted in closed since D has not been closed yet).

Previous definitions of PPDBs initialized the closed list to the empty list. While both approaches result in an
admissible and consistent heuristic, the initialization proposed in Definition 6 includes more states into the closed list,
which will be detected as duplicates. This may reduce the number of states expanded by the abstract search, hence
reducing the search effort and pruning some spurious paths that do not exist in the original state space. Therefore,
this initialization of the closed list helps to derive more informed heuristics while preserving admissibility. In our
example, there is a path from A to CD of cost 2, passing by B. If the closed list of the search in the abstract state
space is initialized to the empty list, the heuristic value of D will be 5 = 2 + 3, i.e., the distance from CD to A in
the abstract state space plus the distance from A to the goal in the original state space. However, if the closed list is
initialized with states expanded by the perimeter search, states B and G are detected as duplicates by the search in the
abstract state space. This is sound because they were already expanded by the search in the original state space. As B
is not expanded in the abstract search, the spurious path between A and D is pruned and the heuristic value of D, E,
F and other states will be greater.

4.2. Perimeter Abstraction Heuristic
Each uniform-cost search conducted by the algorithm produces an estimate hUCSi . If the search UCS i on Θαi

was initialized with the tuple 〈open, closed〉, the corresponding heuristic hUCSi(s) estimates the cost of reaching the
goal from a state s through the perimeter in open . Since the searches are not always completed, the heuristic estimates
follow the definition of partial abstraction heuristics [58]. Previous definitions of partial abstractions assumed uniform
costs, so that states expanded or generated by UCS with lower cost than r(UCS i) take the value with which they were
expanded/generated and all other states are assigned a value of r(UCS i) + 1. The non-uniform cost case is slightly
more complicated because not all the nodes in the open list have the same g-value. In particular, with certain cost
functions, it is possible to have states in open with cost c such that r(UCS i) < c < r(UCS i) + mina∈A c(a). For
example, if actions have a cost of 2 and 3, there may be states in the open list with cost 2 and 3 so r(UCS i) = 2 <
3 < r(UCS i) + 2 = 4. In such an scenario, r(UCS i) + mina∈A c(a) is not an admissible estimate and, at the same
time, r(UCS i) is not the most informed estimate that could be given for unseen states.

Definition 7 (Partial abstraction heuristic). Let UCS = 〈open, closed〉 be a backward uniform-cost search over an
abstract state space Θα, then the partial abstraction heuristic of UCS is hUCS (s) = min(gUCS (α(s)), r(UCS ) +
mina∈A c(a)), where:

gUCS (α(s)) =

{
min({g | α(s) ∈ closedg ∪ openg}) α(s) ∈ closed ∪ open

∞ otherwise

As UCS is a backward search, the g-value of abstract states in UCS corresponds to their goal distance. Then,
the g-values of abstract states built in this pre-processing step will be used to compute the heuristic to be used later
in the actual forward search. The heuristic value of a state is computed as the minimum value between the g-value of
its corresponding abstract state (applying abstraction α) and the minimum cost for any state not in the perimeter (the
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radius of the perimeter plus the minimum cost of any action). And, the g-value of the abstract state is infinite if it has
not been generated during the backward search, or the minimum cost form the goals to generate it (minimum g when
it was inserted in open or closed).

During the search, the perimeter abstraction heuristic, hPA, combines the estimate of each search, hUCSi .
4 A

common method to combine multiple heuristic estimates is to take the maximum of all of them. However, one must
be careful to preserve admissibility when combining the heuristic estimates coming from searches initialized with
different perimeters. Each hUCSi estimates the cost from each state s to the goal by passing through some state in
the perimeter with which UCS i was initialized. This is admissible for states outside such perimeter, but it may be
inadmissible for states that were expanded during the perimeter computation because they can reach the goal directly
without leaving the perimeter.

Therefore, to compute the heuristic value of an state s, we take the maximum of all estimates hUCS0
(s), . . . , hUCSi

until the search UCS i where αi(s) was first expanded. This is necessary to obtain an estimate as accurate as possible.
Each search UCS i is initialized with the perimeter of the previous one so the value of r(UCS i) increases monoton-
ically with i. However, the value of hUCSi does not increase monotonically with i, because during the initialization
of a new abstract search UCS i+1, new states may be introduced into the open list (those that are mapped by the
abstraction to the same abstract state as any node in the open list) with a g-value lower than r(UCS i) + mina∈A c(a).
Therefore, adding the minimum action cost to the current radius is not admissible for those states anymore, since they
are now considered equivalent to a state with lower cost to the goal. Consider again the example of Figure 4, where
the abstraction function maps states C and D to the same abstract state. If the initial perimeter search, UCS 0, has
only expanded G, then C is the only node in open and the heuristic values of hUCS0

are 0 for G, 1 for C, and 2 for
the all other states. However, as C and D are mapped to the same abstract state, hUCS1

(D) = 1 < hUCS0
(D).

Definition 8 (Perimeter abstraction heuristic). Let UCS 0, . . . ,UCSk be the perimeter abstraction phases performed
over an abstraction hierarchy α0, . . . , αk. Let s be a state, and UCS i be the first exploration in which αi(s) was
expanded, i. e., i = min

{
j | αj(s) ∈ closedUCSj

}
. Then, we define the perimeter abstraction heuristic as:

hPA(s) = max
i=[0,...,k]

hUCSi(s)

Theorem 1. Perimeter abstraction heuristics are admissible and consistent.

Proof. A heuristic h is consistent if and only if h(s) ≤ h(s′) + c(l) ∀(s, l, s′). Let UCS 0, . . . ,UCSk be the searches
that define the perimeter abstraction heuristic, hPA. We divide the proof in two cases, depending on whether s′ was
expanded by any abstract search UCS i, or not.

1. Let UCS i be the first search in which s′ was expanded and let C denote the cost with which s′ was expanded.
Then hUCSi(s

′) = C. As no previous search expanded s′, hPA(s′) = maxj=[0,...,i] hUCSj (s
′) ≥ C. Thus, it

suffices to show that hPA(s) ≤ C + c(l). Let j be the first index for which hPA(s) = hUCSj (s). We consider
two cases, depending on whether j < i, or i ≤ j ≤ k.

(a) If j < i, then r(UCS j) ≤ C because otherwise s′ would have been expanded by UCS j or an earlier
search. As hPA(s) = hUCSj (s) ≤ r(UCS j) + mina∈A c(a), we obtain that hPA(s) ≤ C + c(l).

(b) If i ≤ j ≤ k, as s′ was expanded by UCS i, necessarily s was inserted in openg+c(l) in UCS i. Then,
according to Definition 7, hUCSi(s) ≤ C + c(l), no matter if s was expanded by UCS i or not. Since
states are preserved in the open list until they are expanded by some UCSk, the same holds for any UCS j
with i ≤ j ≤ k.

2. In the second case, s′ was not expanded by any search. Note that hPA(s) ≤ r(UCSk) + mina∈A c(a) for all
states because for any given search hUCSi ≤ r(UCS i)+mina∈A c(a) and the values of r(UCS i) monotonically

4This was not necessary in previous definitions of PPDBs reviewed in Section 3.5 because they consider a single abstract state space and stop
the forward search when colliding with the perimeter. Thus, states in the inner part of the perimeter are never evaluated. Since we have several
perimeters, the evaluation of states in the inner part of a perimeter cannot be avoided.
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increase with larger values of i. Therefore, to prove the inequality hPA(s) ≤ hPA(s′) + c(l) it suffices to show
that hPA(s′) ≥ r(UCSk). There are two possibilities, depending on whether s′ has been generated by any
search or not. If it has been generated but not expanded, then it must remain in the open list of the last search,
UCSk.5 Since s′ was not expanded, r(UCSk) ≤ gUCSk(s) (recall that r(UCSk) is the minimum possible
g-value in its open list). Hence, hPA(s′) ≥ hUCSk(s′) ≥ r(UCSk). Finally, if s′ has not been generated,
hPA(s′) = r(UCSk) + mina∈A c(a) ≥ r(UCSk).

Admissibility is derived from consistency, given that the heuristic is goal-aware: ∀s? ∈ S?, hPA(s?) = 0.

5. Symbolic Abstraction Heuristics

Symbolic abstractions use symbolic search to precompute the heuristic values by traversing the abstract state
space, and taking advantage of the efficiency of these techniques for exhaustive state space exploration. This has been
previously done for symbolic PDBs [14, 43], but it can also be done for any other abstraction heuristics that can be
efficiently represented as BDDs.

Symbolic search is very useful in the context of our hierarchy of perimeter abstractions because of its ability to
perform partial searches on huge abstract state spaces that cannot be explicitly enumerated. In this section we focus
on how to use symbolic search on linear M&S abstractions, by representing them as BDDs, in order to be able to use
symbolic search to explore perimeter abstractions with SM&S hierarchies.

5.1. Symbolic Representation of Linear M&S

In order to use M&S abstractions in symbolic search, they must be represented as BDDs. The observation that
linear M&S representations are essentially equivalent to BDDs was first made by Blai Bonet at ICAPS 2008 (Malte
Helmert, personal communications). This connection was further studied for the purpose of using M&S heuristics in
symbolic A∗ search [59]. The main result is that, when using a linear merge strategy, there exists a polynomial time
transformation from the M&S representation to a BDD representation. Recently, it has been proved that this is not the
case when using non-linear merge strategies [60].

Here, we describe in detail the algorithm that transforms the cascading-tables representation with linear merge
strategies to ADDs or BDDs and provide precise bounds on the size of the resulting data structures. The cascading-
tables representation involves two mappings, the abstraction function α : S → Sα mapping states in S to abstract
states in Sα and the precomputed cost for the abstract states h∗α : Sα → R+

0 ∪ {∞}. Combining both mappings
results in the desired heuristic function, hα : S → R+

0 ∪ {∞}.
The key observation is that, when a linear merge strategy is used, the cascading-tables representation of an M&S

abstraction can be cast as an ADD. We first develop the intuition behind this correspondence and then introduce an
algorithm that computes the ADD representation of any given linear M&S abstraction in polynomial time and space
in the size of the cascading-tables.

Figure 5 illustrates the correspondence between the cascading-tables representation of a linear M&S heuristic and
the ADD representation with a simple example with five independent Boolean variables, υ1 to υ5 that must be made
true. There is one action ai for each variable that makes variable vi true. The initial state is not relevant for us, since
the heuristic estimates the cost to the goal from any state in the state space. We run linear M&S with bisimulation
shrinking to derive the perfect heuristic, which in this case consists of counting the number of variables that remain
false in the state.

Figure 5a depicts the cascading-tables representation of the M&S heuristic. As we are considering a linear merge
ordering, at each step we add a new variable vi. Each table corresponds to an abstraction αi that considers i variables.
Rows of the table directly correspond to different values of vi, 1 and 0 (note that for simplicity we are omitting the
tables related to atomic abstractions). Each column of a table corresponds to abstract states of previous abstractions.
For example, the value 1 in the table that represents α2 corresponds to the column sα2

1 of the table that represents the
next abstraction, α3.

5Note again the relevance of Definition 6, where open ′ preserves all the states in the open list and closed ′ prevents states from being closed if
they have not been expanded.

14



sα5
0 sα5

1 sα5
2 sα5

3 sα5
4 sα5

5

h 5 4 3 2 1 0

υ5 sα4
0 sα4

1 sα4
2 sα4

3 sα4
4

⊥ 0 1 2 3 4
> 1 2 3 4 5

α5

υ4 sα3
0 sα3

1 sα3
2 sα3

3

⊥ 0 1 2 3
> 1 2 3 4

α4

υ3 sα2
0 sα2

1 sα2
2

⊥ 0 1 2
> 1 2 3

α3

υ2 sα1
0 sα1

1

⊥ 0 1
> 1 2

α2

υ1

⊥ 0
> 1

α1

(a) Cascading tables M&S

5 4 3 2 1 0

υ5 sα4
0 sα4

1 sα4
2 sα4

3 sα4
4

υ4 sα3
0 sα3

1 sα3
2 sα3

3

υ3 sα2
0 sα2

1 sα2
2

υ2 sα1
0 sα1

1

υ1

(b) ADD M&S

Figure 5: Relation between the cascading-tables and ADD representations for M&S with a linear merge strategy. Each ADD layer corresponds to
one cascading table and each ADD node corresponds to a column of the table associated with its layer. The leaf nodes represent the heuristic value
of the corresponding abstract state.

The table that represents eachαi encodes equivalences between pairs
〈
s
αi−1

j , vi
〉
. For example, inα2, 〈sα1

1 , v2 = ⊥〉 ≡
〈sα1

0 , v2 = 1〉 ≡ sα2
1 , i.e., sα1

1 and sα1
0 are considered equivalent by α2. In our example, each state sαji corresponds to

having i variables true and the remaining (j − i) variables false. In the last layer, the heuristic values of each abstract
state sα5

i correspond to counting the number of variables that remain false, (5− i).
Figure 5b depicts the corresponding ADD representing the heuristic hα5 . The figure is organized to highlight the

similarity between both representations. Every level of the ADD corresponds to an intermediate abstraction αi. Each
abstract state of the intermediate abstraction is represented with an ADD node on the corresponding ADD level. To
highlight this correspondence, ADD nodes are labeled in the figure with the abstract state they correspond to. In the
last level, terminal ADD nodes correspond to the heuristic value of abstract states of the final M&S abstraction, sα5

i .
The tables in the cascading-tables representation are just an alternative to represent the ADD edges, i. e., the mapping
from ADD nodes in one layer to the next one. sα2

1 has two incoming edges: a 1-edge from sα1
0 and a 0-edge from

sα1
1 . These two edges correspond to the two cells with value 1 in the table representing α2, since 0-edges correspond

to vi = 0 and 1-edges to vi = 1.
To build the analogy between the M&S construction process and an ADD, we can describe the two operations in

M&S (merge and shrink) in terms of the modifications they imply in the ADD representation. As reflected in Figure 5,
merging a new variable to a M&S abstraction corresponds to adding a new layer to the ADD. The shrinking operation
that aggregates several abstract states into one, corresponds to the application of ADD reduction rules. Figure 6 shows
an example where two abstract states, AB and BB, are shrunk. After applying shrinking, both AB and BB become
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equivalent in the abstract state space, so that they will be assigned the same heuristic value. In the corresponding
ADD representation, this means that the nodes that represented AB and BB will become equivalent according to
the reduction rules, because they represent exactly the same function. In Figure 6b the assignments TA ∧ PB and
¬TA ∧ PB point both to the same node.

AA BA

AT BT

AB BB

moveA,B

moveB,A

moveA,B

moveB,A

moveA,B

moveB,A

load/unloadA

load/unloadB

(a) Shrinking in M&S.

TA

PB

PT

AA AT AB+BB BA BT

(b) Reduction rule in ADD.

Figure 6: Correspondence between shrinking in M&S and ADD reduction rules. A task with a package, a truck, and two locations, A and B. The
two abstract states in which the package is at B, AB and BB, are shrunk and get represented by the same ADD node, AB +BB.

The example of Figure 5b is very convenient to highlight the correspondence between columns/cells of each
cascading table and ADD nodes/edges, exploited by Theorem 2 to prove a bound on the number of ADD nodes
required for representing the abstraction.

Theorem 2. Let α1, . . . , αn be a list of M&S abstractions generated with a linear merge strategy v1, . . . , vn such
that αi+1 = γ ◦ (αi ⊗ πi+1). Then, the symbolic ADD representation of the function αn : S → Sαn under variable
ordering v1, . . . , vn has at most

∑n−1
i=0 |αi|(|Dvi+1

| − 1) nodes.

Proof. Our bound comes from the sum of the nodes of each layer l, which is bounded by |αl|(|Dvl+1
| − 1). Layer l

has at most one node for each abstract state in |αl|, plus intermediate nodes to connect with layer l+ 1, if the variable
vl+1 has more than two values.

To discern between all the values of a variable vl, we need to build a binary tree with at most |Dvl | − 1 nodes, so
in the worst case the number of nodes employed in layer l is |αl|(|Dvl+1

| − 1).

Given the one-to-one correspondence between M&S abstract states and ADD nodes, the algorithm to obtain the
ADD representation of an M&S heuristic with a linear merge strategy is straightforward. Algorithm 3 computes the
ADD from the cascading-tables representation of an M&S heuristic. The algorithm computes an ADD node for each
abstract state of all intermediate abstractions in a bottom-up approach (as decision diagrams are usually built). ADD
nodes are built with two functions: ADD-constant and ADD-value. ADD-constant generates a terminal node
associated with an integer constant. ADD-value receives a variable υl and a value in the domain of the variable
d ∈ Dυl and returns an ADD that represents a function f such that f(d) = 1 and f(d′) = 0 for all d′ ∈ Dυl , d

′ 6= d.
The algorithm maintains a matrix named ADD with one entry per abstract state in every intermediate abstraction.

Let ADDi,j denote the ADD node that corresponds to the abstract state sαij . Since several abstract states may be
represented with the same node, the ADD matrix stores only a reference to the nodes6.

First, the algorithm generates one terminal ADD node per abstract state in the last layer, with their heuristic value
(line 2). Again, the same node will be used for states with the same heuristic value (their entries in the ADD matrix
reference to the same ADD node).

Then, nodes in the previous layer can be constructed pointing to nodes in layers previously computed. A loop
iterates over all layers in a bottom-up fashion (line 3). To construct the next layer of the ADD, the algorithm iterates

6Note that we do not explicitly check the ADD reduction rules, since the CUDD BDD library [61] automatically applies them (e. g., all calls to
ADD-constant(∞) will always return a reference to the same node).
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Algorithm 3: M&S Heuristic to ADD
Input: A list of cascading tables T1, . . . , Tn and heuristic values of αn, h∗αn
Output: The ADD that represents h∗αn

1 for abstract state sαni ∈ αn do
2 ADDn,i ← ADD-constant(h∗αn(sαni ))

3 for layer l ∈ [n− 1 . . . 0] do
4 for abstract state si ∈ αl do
5 if Tl[si] = pruned then
6 ADDl,i ← ADD-constant(∞)
7 else
8 ADDl,i ←

∑
d∈υl

(
ADD-value(υl, d)× ADDl+1,Tl[i,d]

)
9 return ADD0,0

over all abstract states in the corresponding abstraction (line 4). For every abstract state in the current layer, the
cascading table is used to know which nodes must be pointed to from the newly generated node. Nodes corresponding
to states pruned by M&S are directly assigned a constant heuristic value of∞. Otherwise, the node representing the
state corresponds to the function

∑
d∈υl ADD-value(υl, d)×ADDl+1,Tl[i,d]. This function just returns a node that

points to the node indicated by the cascading table (Tl[i, d]) for every value d of the variable vl.
In this expression, sum (+) and multiplication (×) operations over ADDs that represent 0-1 functions are equiva-

lent to disjunction (∨) and conjunction (∧) over BDDs, respectively. Thus, the multiplication ADD-value(υl, d)×
ADDl+1,Tl[i,d] sets the node that represents the abstract state indicated by the cascading table Tl[i, d] as the value
assigned to value d. The sum can be interpreted as a disjunction over all values of the variable. The simpler example
is when υl is a binary variable, since the result of ADD-node is a node whose 1-edge points to ADDl+1,Tl[i,1] and
whose 0-edge points to ADDl+1,Tl[i,0]. If υl has more than two possible variables, intermediate auxiliary nodes are
needed. When all layers have been constructed, the algorithm ends returning the reference to the root node of the
ADD, ADD0,0.

Algorithm 3 can be adapted to compute the ADD representation of the M&S abstraction function (that maps states
in S to abstract states in Sαn ) by assigning to terminal nodes the id of each abstract state instead of their heuristic value.

Corollary 3. Let α1, . . . , αn be a list of M&S abstractions generated with a linear merge strategy v1, . . . , vn such
that αi+1 = γ ◦ (αi ⊗ πi+1). Let B be the bound on the number of ADD nodes established by Theorem 2, B =∑n−1
i=0 |αi|(|Dvi+1

| − 1). Then Algorithm 3 computes the ADD representation of the M&S heuristic, hαn , in time
O (B log(B)).

Proof. Algorithm 3 computes the ADD representation of the M&S heuristic by creating the nodes iteratively, so
that it suffices to sum the time needed to generate each node. Every ADD node is constructed with a call to
ADD-constant (which is performed in constant time) or with the standard ADD sum and product operations in
the expression

∑
d∈υl

(
ADD-value(υl, d)× ADDl+1,Tl[i,d]

)
. Since the ADDs describing values d of a variable,

ADD-value(υl, d), are all disjoint, these operations can be performed in time proportional to the number of created
nodes. Thus, a constant number of operations is needed for each node, plus a lookup in the table of nodes to ensure the
ADD reduction rules. Therefore, at most B nodes have to be constructed and each node takes O (log(B)) time.

5.2. Symbolic Merge-and-Shrink Hierarchies

The objective of using symbolic search in M&S is to derive more accurate heuristics by searching larger abstract
state spaces that do not need to be explicitly represented. However, these larger state spaces cannot be directly
obtained with the M&S algorithm, because the size of M&S abstract state spaces must remain small enough to
explicitly represent them. Instead, we define SM&S state spaces which are derived from M&S abstractions without
requiring their explicit representation. SM&S abstractions result of merging several intermediate M&S abstractions.
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In particular, we focus on linear merge strategies, where at any point during the M&S procedure there is a single
non-atomic M&S abstraction plus the atomic-abstractions of the remaining variables.

Definition 9 (SM&S abstraction). Let Π be a planning task and let α be an abstraction with relevant variables
Vα ⊆ V . Let ΠV \Vα be the projection of Π over the non-relevant variables of α, V \Vα. The SM&S abstraction αSM&S

associated to α is defined as the synchronized product of α and ΠV \Vα : αSM&S = α⊗ΠV \Vα .

Intuitively, M&S abstractions partially consider a subset of variables (the relevant variables) and completely ignore
the rest. The SM&S abstraction derived from an M&S abstraction considers the same information about the relevant
variables, but instead of ignoring all the other variables, they are fully considered (no abstraction is made over those
variables). In other words, the SM&S abstraction is a refinement of the M&S abstraction. For example, consider a
typical logistics task with several packages and trucks. An M&S abstraction α that considers only two packages may
reduce the abstraction size by considering some combinations to be equivalent. For example, (p1 = G ∧ p2 = T ) ≡
(p1 = T ∧p2 = G) or (p1 = A ≡ p1 = B). However, α completely ignores all the information regarding the location
of the trucks or the other packages. αSM&S, on the other hand, fully considers the location of all the trucks, yet it is still
an abstraction of the original task since it also applies the same equivalences than α for packages p1 and p2.

Definition 9 can be applied for any intermediate abstraction in the M&S algorithm. Next, we consider the abstrac-
tion hierarchy that results from computing the SM&S abstraction of every intermediate M&S abstraction.

Definition 10 (SM&S abstraction hierarchy). Let α0, . . . , αn be all the intermediate abstractions generated by the
M&S procedure, where α0 is the empty abstraction without any variable and αn is the final result of M&S. We define
the corresponding SM&S hierarchy as the list of SM&S abstractions: αSM&S

0 , . . . , αSM&S
n .

Figure 7 shows an example of how the SM&S hierarchy is obtained from an M&S procedure. The left part shows
the intermediate abstractions generated during the M&S algorithm. The M&S algorithm is initialized with the atomic
abstraction of each variable, πi. In our example, there are five variables and, consequently, there are five atomic
abstractions, π1, . . . , π5. The M&S algorithm iteratively merges two abstractions by computing their synchronized
product and, if necessary, applies shrinking. In our example, a linear merge strategy is used, so that variables are
iteratively merged into the main abstraction. It starts merging variables π1 and π2 into α1 and iteratively includes
more variables into each intermediate abstraction αi. The induced SM&S abstractions always consider all variables,
as a result of merging all variables into each αi without applying any additional shrinking. Whereas the αi’s usually
become finer with increasing i, the αSM&S

i ’s become coarser with increasing i.
The SM&S hierarchy defines n state spaces, resulting in a trade-off between the size of the abstract state space

and heuristic accuracy. αSM&S
0 corresponds to the original non-abstracted state space, which has exponential size and

is intractable to represent, but produces the perfect heuristic. On the other hand, αSM&S
n corresponds to the final M&S

abstract state space, αSM&S
n ≡ αn, whose state space can be explicitly represented (assuming a suitable value of the

maximum number of M&S abstract states) possibly with a great loss of information. This is reflected in the example
of Figure 7 since αSM&S

0 is the merge of all the variables and αSM&S
4 is α4. All the rest of SM&S abstractions in the

hierarchy, αSM&S
i , 0 < i ≤ n, enable the desired trade-off between αSM&S

0 and αSM&S
n . Each αSM&S

i is strictly more relaxed
than the previous αSM&S

i−1 , so that the size of the abstract state spaces decreases at the expense of producing less informed
heuristics hα

SM&S
i−1 (s) ≥ hαSM&S

i (s).
Note that the size of SM&S abstract state spaces may be of exponential size, so that they cannot be explicitly

represented. This is not a problem, since we will directly traverse those state spaces using symbolic search. In order
to perform symbolic search over the abstract state spaces, we need to represent sets of abstract states and to perform the
successor generation efficiently. Below, we describe the encoding that we use and analyze its theoretical properties.

5.2.1. SM&S Abstract State Representation
In this section we study the symbolic representation of SM&S abstractions, i. e., how to represent sets of abstract

states by means of BDDs. In the original state space, sets of states are represented as functions f : S → {1, 0}, in
terms of binary variables x = x1, . . . , xn. In the same way, sets of abstract states in αSM&S

i = αi ⊗ Πυi+1,...,υn are
represented as characteristic functions f : SαSM&S

i → {1, 0}. An important decision is what variables (and variable
ordering) should be used to represent sets of abstract states in SαSM&S

i . We decided to use the same set of variables
that is used to represent the original state space. An alternative could be to design a new set of auxiliary variables y,
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Figure 7: Hierarchy of Symbolic M&S state spaces. Atomic abstractions (πi) are merged in a linear ordering to derive different M&S heuristics
(αi). Dotted lines show the combination of several abstractions that result in each αSM&S

i .

optimized to represent abstract states, replacing variables v1, . . . , vi by another set of variables y1, . . . , yk specifically
designed to represent the abstraction. While this alternative could help to perform the abstract search more efficiently,
encoding abstract states with the same variables lets us use the same representation for searches in any state space.
Thus, using the same set of variables for all the abstract states makes the conversion between original states and
abstract states easier. Moreover, the same BDD can be interpreted as a set of abstract states or a set of concrete states;
i. e., the set of all states mapped to some abstract state in the set.

Figure 8 shows an example of the symbolic M&S relaxation of a search and how a BDD can be interpreted both
as a set of states and a set of abstract states. Given a set of states in the original state space, depicted in Figure 8a, and
an intermediate M&S abstraction α2, depicted in Figure 8b, we derive the corresponding set of states αSM&S

2 (S). S is
a set of four states, namely 00000, 01100, 10110 and 11010. α2 is an M&S abstraction over variables υ1 and υ2 with
two abstract states e0 and e1. In general, our M&S abstractions will have a larger (but bounded) number of abstract
states. The ADD depicted in Figure 8b represents the mapping from partial states 〈v1, v2〉 to one of the abstract states,
e0 or e1. Each abstract state corresponds to an equivalence relation over variables υ1 and υ2. e0 makes starting with
00 been equivalent to start with 11, so that if a set of abstract states contains state 00abc, it automatically contains
11abc as well. Whenever any state starting with 00 is reached in the abstract search, the corresponding state starting
with 11 will be automatically reached and vice versa. e1 makes 10 and 01 equivalent in a similar way.

Figure 8c shows the BDD that represents the set of abstract states αSM&S
2 (S), containing four abstract states (000x0,

011x0, 110x0, and 101x0) or eight concrete states (after substituting x by 0 or 1), depending on the interpretation.
An important point is that BDD nodes pointed to by the paths 00 and 11 are equivalent. A similar reasoning can be
made for every abstract state ei making the top part of any BDD describing abstract states at most as large as the ADD
representation of the M&S abstraction.

The example shown in Figure 8 is an ideal case, where not only the layers corresponding to α2 are reduced,
but also other layers get simplified. Opposite examples can be defined where the number of BDD nodes required
to represent αSM&S

i (S) is exponentially larger than the number of nodes to describe S. However, the correspondence
between the ADD that describes the M&S abstraction α2 and the upper levels of any BDD describing a set of abstract
states lets us prove some bounds on the size of BDDs describing any set of abstract states.

Proposition 4. Let αk be an M&S abstraction over relevant variables v1, . . . , vk with M abstract states. Let Sα
SM&S
k

be a set of abstract states in ΘαSM&S
k . Then, the layer k + 1 of the BDD representation of Sα

SM&S
k , under variable

ordering starting by υ1, υ2, . . . , υk, has at most M BDD nodes.

Proof. Each node in layer k+ 1 corresponds to one or more abstract states in αk. Suppose there is a node n′ that does
not correspond to any abstract state. Let d1, . . . dk be an assignment to variables v1, . . . , vk that leads from the root of
the BDD to n′. By definition, all assignments are related to a unique abstract state, so we reach a contradiction.

Let sα
SM&S
k be the abstract state corresponding to the partial state d1, . . . dk. By definition of the abstract state

space, d1, . . . dk is indistinguishable of all the other assignments mapped to sα
SM&S
k , i.e., they all have the same goal
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Figure 8: Symbolic M&S relaxation that takes an input BDD, S, and an ADD that represents a M&S heuristic and computes the BDD that
represents the abstract states in S. The top part of αSM&S

2 (S) BDD coincides with α2 ADD.

distance in the abstract state space. Therefore, node n′ represents not only d1, . . . dk but also all the other assignments
that are mapped to sα

SM&S
k by αSM&S

k . Thus, the number of nodes in layer k is bounded by the number of abstract states,
which is itself bounded by M .

Proposition 4 bounds the size of a single layer of the BDD describing a set of abstract states in ΘαSM&S
k . However,

this result can easily be extended to all the upper layers in the BDD. As we are assuming a linear merge strategy, all
the M&S abstractions are built as the merge of an M&S abstraction and the atomic abstraction of another variable.
Therefore, the bound of Proposition 4 is valid for all the upper levels of the BDD.

Theorem 5. Let M1, . . . ,Mk be the number of abstract states of k intermediate abstractions α1, . . . , αk of an M&S
algorithm with a linear merge strategy, such that αi = γi ◦ (αi−1 ⊗ πi). Let Sα

SM&S
k be a set of abstract states in

ΘαSM&S
k . Then, the BDD representation of Sα

SM&S
k , under variable ordering starting by υ1, υ2, . . . , υk+1, is represented

with at most (
∑
i∈[1,...,k]Mi) +Mk2n−k+1 BDD nodes.

Proof. The BDD that represents Sα
SM&S
k may be divided in its top and bottom parts. The top part includes layers 1 to k

and the bottom part the remaining (n− k) layers. From Proposition 4, we can bound the size of each top layer to Mi

nodes, so that the top part of the BDD uses, at most,
∑
i∈[1,...,k]Mi nodes. The bottom layers correspond to functions

over the remaining (n− k) variables. Each of these functions is described as a BDD with (n− k) levels. In the worst
case, they do not share any node, and thus each one has 2n−k+1 nodes. Since there are Mk different functions, the
size of the bottom part of SB is bounded by Mk2n−k+1.

5.2.2. SM&S Transition Representation
Once we have defined the symbolic representation of sets of abstract states, in order to perform a symbolic search,

we need a reliable way to perform successor generation. Planning actions are represented by means of one or more
transition relations (TRs). As a brief recap, each TR is a function f : S × S′ → {1, 0} that relates predecessor to
successor states, i. e., f(s, s′) is true if and only if there is a transition from s to s′. Predecessor states are represented
with the standard set of variables x, and an auxiliary set of variables x′ represents the successor states. The variable
ordering is also very important for the performance of image computation. Usually, variables in x and x′ are inter-
leaved in the following manner: x1, x

′
1, x2, x

′
2, . . . xn, x

′
n. This variable ordering exploits the fact that actions usually

affect a few variables so that most variables preserve their previous value.
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In SM&S abstract state spaces, however, the transitions are different than in the original state space. Moreover,
in a given αSM&S

i , variables υ1, . . . , υi are highly related and the TR representation can be very complex. Therefore,
contrary to our state representation, it is not possible to preserve the same variable ordering as for the TRs of the
original state space.

We avoid the problem of representing SM&S TRs by using the TRs of the original state space. This is possible
since the set of abstract states may be interpreted as a set of non-abstracted states. Of course, the result of the image
operation is a set of states of the original state space. Fortunately, we can apply the abstraction function to obtain the set
of abstract states associated with them. The image and pre-image operations are applied as image(Sα

SM&S
i ,TαSM&S

i ) =

αSM&S
i (image(Sα

SM&S
i ,T )). The details of this operation are described in the next section.

Thus, we do not need to compute a new set of TRs for every abstract state space we traverse. However, using the
original TRs also has some drawbacks. In particular, the intermediate BDDs may induce a large overhead. Even in
the case where the sets of abstract states are guaranteed to be efficiently representable, the intermediate set of original
states does not have any guarantee with respect to its size.

5.3. Frontier Shrinking
One key aspect of perimeter abstraction heuristics is that, instead of restarting abstract searches from scratch,

they restart the search from the current frontier by relaxing the open and closed lists. Thus, in order to initialize the
abstract search, they have to perform the mapping from states in the original state space to abstract states, according
to Definition 6. In this section, we consider how to initialize abstract searches efficiently when using a symbolic
representation of the sets of states involved in the searches. We call this operation “shrinking the frontier” because we
expect the frontier of the abstract state space to be more compact according to Theorem 5.

According to Definition 6, there are two different types of frontier shrinking operations. Existential shrinking is
used to shrink the open list and universal shrinking is the operation applied to the closed list. Both take as input a set
of states SB and an abstraction function α and compute the set of abstract states that will be used to initialize the open
and closed list, S∃αB and S∀αB , respectively. Next, we describe how to implement both shrinking operations when the
sets of states are described with BDDs and our abstraction is a PDB or a SM&S abstraction.

5.3.1. Frontier Shrinking in PDBs
PDB abstractions are characterized by a set of variables Vα, so that the value of the remaining variables is com-

pletely ignored. Implementing the existential and universal shrinking operations in this setting, reduces to applying
the standard existential/universal quantification over variables that are not in Vα, as formulated in Equations 1 and 2.

S∃αB = ∃V \VαSB (1)

S∀αB = ∀V \VαSB (2)

5.3.2. Frontier Shrinking in SM&S
In SM&S abstractions, like in PDBs, we can distinguish between relaxed and non-relaxed variables. However, in-

stead of completely ignoring the relaxed variables, SM&S uses an M&S abstraction over the relaxed variables to keep
some information about them. Therefore, we describe the SM&S abstraction in terms of the set of relaxed variables
Vα (the relevant variables of the M&S abstraction) and the set of equivalences induced by the M&S abstraction, ∼α.
Recall that each abstract state sα is a set of states such that every pair of states s1, s2 ∈ sα are equivalent, s1 ∼α s2.
Equations 3 and 4 show how to compute the existential and universal shrinking of a set of states SB given a BDD
representation of SB and each sα:

S∃αB =
∨

sα∈Sα
((∃Vα (SB ∧ sα)) ∧ sα) (3)

S∀αB =
∨

sα∈Sα
((∀Vα ((SB ∧ sα) ∨ ¬sα)) ∧ sα) (4)

As in the case of PDBs, both operations use the existential/universal BDD quantification of the abstracted vari-
ables. However, in this case, we must iterate over all the abstract states in Sα to keep their information. For each
abstract state, sα, we compute its existential shrinking in three consecutive steps:
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1. SB ∧ sα is the subset of SB which corresponds to any state in sα. However, in our final result all partial states
mapped to sα must be indistinguishable.

2. Existential quantification of Vα gets all the assignments to variables V \ Vα that have been reached for any
s ∈ sα. That way, we keep the values of other variables while ignoring the relaxed variables, just like in the
existential shrinking of PDB abstractions.

3. Finally, we compute the conjunction with sα to reset the value of Vα to only states in sα.

As an example, take Figure 8 on page 20. Abstract state e0 represents the partial states 00 and 11. Our first step,
gets all the states in SB that fit that description: 00000 and 11010. Then, the existential quantification forgets the
value of the relaxed variables, obtaining the set of states xx000 and xx010. Finally, those assignments are valid for
e0, so we end with four states after our relaxation: 00000, 00010, 11000 and 11010.

The case of universal shrinking is similar, though in this case the second step uses universal quantification to get
only those assignments to non-relaxed variables that are true for all partial assignments mapped to sα. Moreover, a
disjunction with ¬sα is necessary to ignore the values reached with other abstract states in the universal quantification.

6. The SPA Heuristic

In the previous sections, we have presented an abstraction hierarchy based on M&S abstractions and a new model
of perimeter abstraction heuristics that can exploit it. In this section, we mix those ingredients up and propose the
Symbolic Perimeter Abstraction heuristic, SPA. The main purpose of this section is to describe the design and imple-
mentation decisions that remain unsettled and are needed in order to have a practical implementation of the theoretical
results of the previous sections.

6.1. The SPA Algorithm

SPA performs symbolic regression and uses M&S or PDB abstractions to progressively relax the search whenever
it becomes unfeasible. Figure 9 depicts a high level view of the interaction between symbolic search and abstractions,
highlighting the differences between M&S and PDBs.

Each diagram is divided into four parts: the upper part depicts the M&S abstractions that are used to relax the
search; the middle part depicts the BDDs involved in the search; the x-axis represents the search progress with
different layers labeled with their g-value; and below the axis we show the resulting heuristics of each search.

SPA starts computing a symbolic perimeter, Exp(α0). This perimeter corresponds to a regression search in the
original state space, so that no abstraction is used to relax the search yet. The first BDD with g = 0 contains the goal
states and by successive pre-image operations SPA performs a standard symbolic regression search. As this search
is intractable for general planning domains, the search will surpass in most instances the predetermined memory or
time bounds given for the precomputation of the heuristic. Then, the search is truncated (at g = 2 in Figure 9).
The minimum cost to the goal of the expanded state sets is stored, transforming the list of BDDs representing the
search to an ADD representing the heuristic, hExp(α0). Up to this point, we have just generated a symbolic perimeter
with symbolic regression search, and no abstractions have been used yet. Then, an abstraction is derived by using
either M&S or PDBS. SPA initializes Exp(α1) by relaxing the open and closed lists of the previous search, using
the existential and universal shrinking operations described in Section 5.3. The diagrams show the main differences
between SPM&S and SPPDB, as described below.

In Figure 9a, M&S merges variables, applying shrinking if needed to fit the maximum number of abstract states
(with a limit of six abstract states, α1 must have at most three abstract states before merging the next variable). The
top levels of the BDDs in the open or closed list of the new relaxed search, Exp(α1), are at most as large as the
ADD that represents the M&S abstraction, α1, depicted in the upper part of the diagram. This is due to the fact that
all partial states related to the same abstract state are considered equivalent, so that when one is reached, all of them
are, as explained in Section 5.2.1. For example, in Figure 9a, abstract state e1 represents partial states 00 and 10.
During the exploration, if state 10010. . . is reached, then state 00010. . . is also reached and vice versa. Hence, BDD
nodes pointed to by 00 and 10 are equivalent, making the top part of any BDD in the exploration equal to the ADD
representation of α1. Also, M&S abstractions are cumulative, so the top levels of α2 coincide with those of α1.
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(a) SPM&S with a limit of six abstract states for M&S. In abstract searches, the top part of each BDD corresponds to the ADD that
represents the M&S used to relax the search.
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(b) SPPDB with pattern selection following variable ordering υ2, υ0, υ1, υ3, υ4, . . . .

Figure 9: SPA example with M&S and PDB abstractions. Unit action costs are assumed. Ellipses represent sets of states in the symbolic regression
searches.

In Figure 9b, υ2 is removed from the pattern. As PDBs completely ignore variables outside the pattern, BDDs
in the search of SPPDB will only contain nodes related to variables in the pattern, so BDDs in Exp(α1) do not have
any node related to υ2. However, SPM&S is forced to relax variables from the top of the PDBs one by one, whereas
SPPDB may choose any variable to relax.

With the relaxation induced by the abstraction the search continues but, after a number of steps, it may become
unfeasible again (according to the specified time/memory bounds). SPA continues then interleaving symbolic explo-
rations and M&S/PDB iterations until the exploration is completed or the time/memory bounds are reached again.
When finished, it returns the list of ADDs representing the heuristic values computed so far. Once the heuristic is
computed as a list of ADDs, it can be used in the search as stated in Definition 8 in order to solve the planning
instance.

Algorithm 4 shows the SPM&S algorithm, i. e., the version of SPA that uses M&S abstractions to relax the search
frontier. It receives as input a planning task Π and some parameters to bound the memory and time resources. The
output is a heuristic H represented as a list of ADDs. Each ADD is the result of a backward symbolic exploration
over an M&S abstraction α. If SPM&S exceeds the time limit TSPM&S a last ADD is included (line 16). This last
ADD is the standard M&S heuristic, computed as usual with an explicit traversal of the abstract state space. SPM&S
starts initializing the symbolic backward search to (open = S?, closed = ∅, d = 0) and α is empty. Symbolic search
progresses following the relaxation imposed by α (line 7).

Several parameters bound the memory and time used by the algorithm. Memory is controlled by the maximum
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Algorithm 4: Symbolic Perimeter Merge-and-Shrink
Input: Planning problem: Π = 〈V,A, I,G〉
Input: Memory bounds: N , NF
Input: Time bounds: TSM&S , TSym , TExp , TI
Output: List of ADDs: H

1 H ← ∅
2 abs ← {πυ | υ ∈ V }
3 α← ∅
4 (open, closed)← (S?, ∅)
5 while open 6= ∅ and ts < TSM&S do
6 if |frontier(open)| ≤ NF and ts < TSym then
7 BackwardUniformCostSearch(α, open, closed , NF , TExp , TI)
8 H ← H ∪ ADD(closed , open) /* Insert heuristic ADD in H */

9 Select( πυ ∈ abs) /* Select next atomic abstraction */
10 abs ← abs \ πυ /* Remove atomic abstraction from abs */
11 α← Shrink(α, N

size(πυ) ) /* Get shrinking equivalence */
12 open ← {(g, open∃αg ) for all openg ∈ open} /* Shrink search frontier */
13 closed ← {(g, closed∃αg ) for all closedg ∈ closed} /* Shrink closed list */
14 α← α⊗ πυ /* Merge next variable */

15 if open 6= ∅ then
16 H ← H ∪ Explicit-Search(α)

17 return H

number of M&S abstract states, N , and the maximum number of nodes, NF , to represent the search frontier. Four
different parameters bound the time allotted to the algorithm. TM&S aborts the heuristic computation to guarantee
termination. TSym prevents SPA from performing more symbolic explorations to focus on completing the M&S
abstraction. TExp fixes a maximum time for each individual exploration to avoid consuming all the time in one single
exploration. Finally, TI limits the maximum time employed in one pre-image . If TI is exceeded, not only the image
but the whole exploration is halted. In order to avoid starting another image as hard as the halted one, the maximum
number of nodes in the frontier search is reduced to NF = |Se|

2 . All these parameters are set independently of the
domain and only depend upon the memory and time resources available to the planner.

The BackwardUniformCostSearch procedure performs a symbolic backward uniform-cost search over
αSM&S, stopping when open is empty, the search frontier is larger than NF , an image takes longer than TI , or the
time limit of TExp seconds has been exceeded. The heuristic derived from this search is stored in H as an ADD (line
8). When the search is truncated because one of the bounds was reached, the current abstraction is substituted, merg-
ing a new variable and shrinking if needed. After shrinking the abstraction, we also shrink the search frontier, open
and closed , in order to continue the search. Note that, after shrinking the search frontier with the new abstraction,
the search only continues if the relaxed frontier has an acceptable size. SPM&S keeps including variables into the
abstraction until the search is small enough, i. e., the relaxed frontier is smaller than the parameter NF . The use of
perimeter search prevents SPA from starting a new exploration per merged variable, which might lead to redundant
work in case that most searches were truncated at the same frontier cost.

SPPDB follows the same pseudocode, except that variables are completely abstracted away in line 11 and they
can be selected in any order in line 14.

6.2. Theoretical Properties

We conclude with a recapitulation of the theoretical results that apply to the hSPA heuristic.

Corollary 6. The hSPA heuristic is admissible and consistent.
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Proof sketch. It follows from Theorem 1, since hSPA is a particular instance of perimeter abstraction heuristic.

One of the advantages of M&S and PDBs is that it is possible to control its time and memory usage by appropri-
ately setting the maximum number of abstract states, M . Assuming that M is polynomially bounded, computing the
abstraction has polynomial complexity [35]. SPA does not ensure that the full symbolic exploration over an abstrac-
tion has a more concise BDD representation than another over the original task. Even in the case of PDBs, relaxing
the search frontier with existential shrinking could actually enlarge it. Fortunately, we can bound the number of BDD
nodes needed to represent any set of states in the exploration. This is straightforward for the case of PDBs, since the
size of the BDDs is bounded, if only a constant number of variables is selected.

Corollary 7. Let α be an M&S abstraction with relevant variables Vα, generated with a maximum number of abstract
statesM . Let SB be a BDD describing a set of states on Θα⊗ΠV \Vα using a variable order whose first/top variables
correspond to Vα. Then, the size of SB is bounded by:

|SB | ≤M
(
|Vα|+ 2|V \Vα|+1

)
Proof. It follows from Theorem 5, just assigning the bound M to the number of abstract states in every intermediate
M&S abstraction.

Corollary 7 ensures that, as variables are merged into the abstraction, the complexity of its full symbolic explo-
ration decreases. The bound on the top part of the BDD grows linearly with M , while the bound on its bottom part is
exponentially reduced. Thus, the full symbolic exploration of the abstraction will be eventually tractable. In the limit,
the exploration is performed over a linear sized state space that can be explicitly explored, just as the original M&S
algorithm does. Theorem 7 requires relevant variables for the abstraction to be placed in the top levels of exploration
BDDs. For this to hold in every symbolic exploration, the symbolic search must use the same variable ordering as the
M&S merge strategy. Since changing the variable ordering of a BDD may cause an exponential blow-up, we use the
same variable ordering in order to guarantee an efficient computation of SPM&S.

7. Experiments

In this section, we evaluate the performance of SPA heuristics, and compare them against the two baseline meth-
ods: abstraction heuristics and a symbolic perimeter, as well as to other state-of-the-art heuristics for cost-optimal
planning. We also evaluate the influence of different parameters of our heuristic. In particular, we analyze multiple
types of abstraction strategies to relax the perimeter, including PDB and SM&S abstraction hierarchies. We compare
the performance of A∗ search with SPA against SymBA∗, the winner of the last IPC, and show that they obtain similar
coverage to the state of the art. This is remarkable, especially given that our analysis does not include other possible
orthogonal enhancements to search algorithms using SPA (e.g. partial-order pruning [7] or the combination with other
heuristics), which are not directly applicable in SymBA∗. In the following we mostly focus on the convenience of
using symbolic perimeter abstractions, discussing those cases where they are advantegous and providing explanations
if other techniques improve over them in some domains.

SPA has been integrated in the FAST DOWNWARD planning system [62]. All configurations use the h2 reach-
ability analysis [3] in order to compute state invariants and remove actions from the planning task [63]. The state
invariants are used to prune the abstract searches, like in constrained PDBs [64, 65]. All the symbolic searches, for
the construction of the perimeter and the exploration of the abstract state spaces, use the enhancements for image
computation [66].

In our experiments we measure the coverage, i. e., number of instances solved, on the optimal-track STRIPS
planning instances from the International Planning Competitions from IPC’98 until IPC’11. Since some domains
have been used in multiple IPCs and not all domains have the same number of instances, besides the total coverage
we report a final score that gives the same weight to every domain. This score function normalizes the coverage of
every planner by the number of instances in that domain, considering all versions of the same domain in different
competitions as a single entry, giving a total of 36 different domains.

All experiments were conducted on a cluster of Intel E5-2660 machines running at 2.20 GHz, with time (memory)
cut-offs of 30 minutes (4 GB).
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7.1. Parameterization of Symbolic Perimeter Abstractions
The SPA algorithm takes as input different parameters that can be classified into three categories:

Memory and time bounds. SPA heuristics, as other abstraction heuristics like PDBs or M&S, rely on a heavy precom-
putation phase in order to efficiently compute the heuristic value for each state in the search. We defined parameters
that limit the time and memory to invest in the preprocessing phase in order to guarantee that it successfully termi-
nates. Larger bounds will likely result in more informed heuristics at the expense of devoting more preprocessing
time. Of course, the optimal value of these parameters directly depends on the total resources allotted to the planner.
SPA parameters were manually set to fit the International Planning Competition (IPC) setting: the maximum number
of nodes to represent the state set to expand is NF = 10,000,000. A maximum time is set to each individual image
(TI = 30s), exploration (TExp = 300s) and symbolic search (TSym = 900s). Finally, the heuristic preprocessing is
interrupted after TSPA = 1200s seconds to ensure that the search is always started.

Variable ordering. All the symbolic searches use a static variable ordering. We consider two different variable order-
ings: GAMER and FAST DOWNWARD orderings. The variable ordering used by GAMER is optimized for symbolic
search and the one used in FAST DOWNWARD is suitable for the merge strategy of M&S. However, we always use the
same ordering for the symbolic search and merging variables in M&S since otherwise there is no guarantee about the
BDD sizes.

Abstraction hierarchy. SPA can be used in combination with different abstraction strategies that select which abstract
state spaces will be traversed in order to compute the heuristic estimates. In our experiments we used two different
types of abstraction hierarchies: the SM&S hierarchies we presented in Section 5.2 and PDB hierarchies.

We define PDB hierarchies by starting with the pattern that contains all the variables (equivalent to the original
task) and abstracting away one variable at a time. Thus, the PDB hierarchies are defined in terms of a variable ordering.
In order to select variable orderings for the construction of the PDB hierarchies, we use the preexisting merge linear
strategies for M&S:

• Level (lev): Follows the BDD variable ordering, so that it results in the same abstraction layers than SM&S.

• Reverse level (rev): Reversed version of level, following the BDD variable ordering in reverse order.

• Cggoal-lev (cgl): Always selects a variable related in the causal graph [67, 68, 69, 70] to an already selected
variable. If there is none, it selects a goal variable. Ties are broken according to the level criterion.

• Cggoal-rnd (cgr): As CGGoalLevel but breaking ties randomly.

• Goalcg-lev (gcl): First it selects all goal variables and then variables related to them in the causal graph, breaking
ties according to the level criterion.

• Random (rnd): selects a random variable ordering. Useful as a baseline approach.

SM&S abstraction hierarchies are defined with the merge and shrink strategies. The merge strategy is always set
to exactly the same linear ordering as the one used for the BDDs. Only this ordering guarantees that the resulting
BDDs will eventually be tractable after abstracting away enough variables, as explained in Section 5.2.1. Regarding
shrink strategies, we use the ones that have been previously defined in the literature [12, 35]: bisimulation (b), greedy
bisimulation (g) and f-preserving shrinking (fh ). All the shrinking strategies reduce the abstract state space enough to
ensure that no M&S abstraction has more than 10,000 abstract states.

Table 1 shows the total coverage of all the combinations of configurations of three different parameters: the ab-
straction selection strategy, the variable ordering employed by the BDDs (GAMER or FAST DOWNWARD ordering)
and whether the perimeter is used to initialize the abstract searches (P) or not (¬P). The virtual best solver config-
urations consider that the best configuration is selected for every instance, i. e., an instance is considered solved if
it is solved by any of the configurations using PDBs, SM&S, or both. These are not real planners and they cannot
be interpreted as configurations of our technique. Their purpose is to give an idea of how different are the sets of
instances solved by each configuration, as well as the maximum potential of SPA when the best abstraction hierarchy
for each instance is known.
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GAMER ORDERING FD ORDERING
P ¬P P ¬P

SP 16.83 (800) 0.00 (0) 15.89 (756) 0.00 (0)

SPPDB

rev 17.55 (825) 17.29 (812) 16.43 (784) 16.21 (769)
lev 17.72 (826) 17.50 (818) 16.72 (783) 16.62 (779)
cgl 17.57 (823) 17.33 (813) 16.41 (775) 16.18 (765)
cgr 17.39 (813) 17.31 (810) 16.31 (772) 16.40 (770)
gcl 17.82 (828) 17.74 (828) 16.90 (785) 16.96 (785)
rnd 17.28 (814) 17.08 (812) 16.36 (775) 16.22 (768)

SPM&S
b 17.25 (806) 17.36 (810) 16.55 (774) 16.71 (773)
g 17.38 (809) 17.39 (812) 16.29 (769) 16.17 (766)
fh 16.52 (762) 16.54 (764) 15.35 (710) 15.35 (709)

Virtual
best

SPPDB 18.42 (852) 18.09 (841) 17.31 (808) 17.29 (802)
SPM&S 17.60 (818) 17.69 (822) 16.68 (779) 16.88 (780)

SPA 18.57 (857) 18.31 (847) 17.61 (816) 17.46 (806)

Table 1: Coverage score and total coverage of SPA with different abstraction hierarchies. The symbolic perimeter, SP, which does not make use
of any abstraction, is compared against PDB and SM&S hierarchies. We report the results of the virtual best solver using PDBs, SM&S, and both.
All the versions are ran with perimeter abstractions (P) and with standard abstraction heuristics (¬P). The best configurations for each type of
abstraction hierarchy are highlighted in bold.

What is the impact of the abstraction hierarchy?. The first observation is that most abstraction strategies help to
improve the symbolic perimeter, SP. The only strategy that does not produce better results than a simple perimeter
is the SM&S abstractions with fh shrinking. Of course, the bad performance is not due to having a less informed
heuristic, but because the M&S heuristic exceeded the available memory in some domains.

Overall, the best strategy is PDBs with gcl, with a total coverage of 828. Other PDB strategies such as lev or rev
have a similar performance and the difference is not deemed as statistically significant. Interestingly, the performance
of PDBs with a random selection of variables is a very competitive approach, leading to better results than some M&S
approaches or other PDB strategies. This shows the lack of good abstraction strategies for our setting, where finding
them is not straightforward.

The results of the virtual best configurations confirm that there is a lot of margin for improvement in the abstraction
selection strategies. When selecting the best hierarchy for every instance, SPA solves up to 857 instances, 29 more
than the best configuration with a single hierarchy and 16 more than the configuration using multiple abstraction
hierarchies reported in Table 3. With current merge and shrink strategies, SM&S strategies are helpful only in a few
instances, solving 5-8 instances that PDB configurations cannot solve.

How useful is to use the perimeter to initialize the abstract searches?. We ran an ablation analysis, running all the
configurations of SPA but starting abstract searches from the abstract goal instead of doing it from the perimeter
(¬P). Note, however, that even though ¬P ignores the perimeter for the initialization of abstract searches, it uses
the perimeter for other purposes such as selecting one abstraction from the hierarchy (the one in which the perimeter
is reduced enough) and to return the maximum between the heuristics derived from all the searches (including the
perimeter and one or more abstract searches).

In general, using the perimeter is beneficial, though it may depend on the abstraction strategy. Interestingly, using
the perimeter to initialize abstract searches is especially useful in combination with strategies that do not distinguish
goal from non-goal variables such as lev or rev. In those cases, the perimeter derives information from the goal
variables, so that they can be abstracted away without a significant information loss. Similarly, if all the goal variables
are included in the abstraction (gcl), using the perimeter is not that important.

In combination with SM&S hierarchies, the results with and without perimeter are similar, so SPA is not taking
advantage of the perimeter initialization in those cases. The shrink strategies in the literature are specifically focused
on preserving the cost of states close to the goal, which may not be the best when using a perimeter that already
provides information for such region of the state space.
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What is the impact of variable ordering?. The variable ordering is used in the BDD representation, as well as for
the abstraction strategies underlying the PDB selection and merge strategy. As expected, M&S results are better
with the FAST DOWNWARD ordering while symbolic search (e.g., SP) benefits from the GAMER ordering. In total,
SPA performs better with the GAMER ordering, though it may vary depending on the domain. Apart from that, the
conclusions obtained with GAMER ordering seem to be independent of the variable ordering chosen for the BDDs.

7.2. Removing Spurious States

The results shown in the previous section contradict previously published results, which reported SPA being better
with SM&S hierarchies than when using only PDBs [18]. One important difference in the experimental setting is that
in this article we use constrained abstractions [64], encoding state-invariant constraints into the transition relations in
order to avoid the generation of invalid states in the symbolic searches [65]. torralba2015phd

The use of mutexes greatly improves the performance of symbolic regression search. This is not different in SPA,
where symbolic regression is used both in the original and the abstract state spaces.

GAMER ORDERING FD ORDERING
M∅ M M∅ M

SP 14.44 (715) 16.83 (800) 14.34 (689) 15.89 (756)
SPPDBs 14.84 (730) 17.45 (822) 14.82 (708) 16.37 (783)

SPM&S-b 15.23 (735) 17.25 (806) 15.42 (717) 16.55 (774)
SPM&S-g 15.14 (732) 17.38 (809) 15.12 (719) 16.29 (769)

Table 2: Coverage score and total coverage of different configurations of SPA without state-invariant pruning (M∅) and using it (M). The best
configurations and those deviating only 1% are highlighted in bold.

Table 2 compares the performance of our approaches when disabling the removal of spurious states during the
search. When spurious states are not removed from the search (M∅), the performance of all our symbolic perimeter
approaches decreases significantly. However, the benefits of removing spurious states are greater in the case of SP
and SPPDB than for any SPM&S version. Interestingly, M&S abstractions obtain better results than PDBs when
no state invariants are used. This can be partially explained by the ability of M&S heuristics to prune spurious
states, whose impact is heavily reduced when those states are being removed anyway thanks to the state invariants.
Therefore, even though SPPDB with state-invariant pruning outperforms SPM&S with the current M&S strategies,
further enhancements for M&S like irrelevance pruning [71] or shrink strategies tailored for dead-end detection [72]
or exploiting symmetries [73] are promising approaches to revert this trend.

7.3. Coverage of A∗ Search with Symbolic Perimeter Abstraction Heuristics

In this section we compare the coverage of different configurations of SPA against the two combined approaches:
symbolic perimeter (SP) and abstraction heuristics, including M&S, the symbolic PDBs of GAMER (our re-implementation
using the same code as SPA, with the image computation and state-invariant pruning enhancements of cGAMER [57]),
and two additive PDB methods (iPDB and gaPDB). Additionally, we report the coverage of LM-CUT for comparison.
Finally, we include the winner of the last IPC, SymBA∗, which also makes use of perimeter abstraction heuristics, but
in a bidirectional symbolic search.

Table 3 shows the result of six different configurations of SPA, using PDB or SM&S abstractions to relax the
perimeter. The SPA algorithm, as presented in Section 6, uses a single abstraction hierarchy (either cgr, SM&S-b,
or SM&S-g in Table 3) to relax the perimeter. Since our abstraction hierarchy strategies do not perform any search
on the space of abstract state spaces, they are not competitive with GAMER’s abstraction selection, which uses an
optimization procedure trying multiple PDBs before selecting the best one. Hence, we include two configurations that
construct multiple abstraction heuristics (SP-multi), using multiple PDB hierarchies plus SM&S-b. We also include a
version of GAMER’s procedure that uses the perimeter to initialize all abstract searches.

The results of SPA show that it is a strong heuristic. The construction of a symbolic perimeter (SP) suffices to
generate a heuristic competitive with strong heuristics commonly used as baseline in cost-optimal planning, such as
iPDB, gaPDB, M&S, and LM-CUT. This is especially true when considering the coverage score that gives MICONIC
the same weight as other domains. Using abstraction strategies on top of the symbolic perimeter further improves
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SP SPA Abstractions LM-CUT SymBA∗

SPPDB SPM&S SP-multi SPPDB SPDB M&S add-PDB
cgl b g b + PDB PDB GAMER GAMER b g iPDB gaPDB

AIRPORT (50) 25 27 25 25 26 25 26 26 23 23 28 24 29 27
BARMAN (20) 8 8 8 8 9 9 9 8 4 4 4 4 4 11

BLOCKSWORLD (35) 30 32 30 30 31 33 31 31 25 28 28 22 28 30
DEPOT (22) 7 8 7 7 7 7 7 7 7 6 11 7 7 7

DRIVERLOG (20) 12 13 13 13 14 13 12 14 13 13 13 13 13 14
ELEVATORS08 (30) 23 23 23 23 24 24 23 22 14 15 21 20 22 24
ELEVATORS11 (20) 18 18 18 18 19 19 17 17 12 13 17 17 18 19
FLOORTILE11 (20) 14 14 14 14 14 14 15 14 8 8 3 2 14 14

FREECELL (80) 22 31 21 21 34 37 28 40 19 19 21 20 15 23
GRID (5) 2 3 3 3 3 3 4 4 2 2 3 2 2 3

GRIPPER (20) 20 20 20 20 20 20 20 13 8 8 8 8 7 20
LOGISTICS 00 (28) 16 17 16 18 19 19 16 20 16 16 21 20 20 20
LOGISTICS 98 (35) 4 5 5 5 5 5 6 6 5 4 4 5 6 5

MICONIC (150) 107 107 107 107 108 108 107 106 60 52 58 60 141 107
MPRIME (35) 22 22 22 22 23 23 22 22 22 23 24 23 23 25

MYSTERY (30) 15 15 15 15 15 15 15 16 17 17 17 17 17 15
NOMYSTERY11 (20) 13 16 14 14 17 18 16 14 16 14 19 20 14 14
OPENSTACKS08 (30) 30 30 30 30 30 30 30 30 21 21 22 22 21 30
OPENSTACKS11 (20) 20 20 20 20 20 20 20 20 16 16 17 17 16 20
OPENSTACKS06 (30) 11 10 10 11 10 10 11 9 7 7 7 7 7 20

PARCPRINTER08 (30) 23 23 23 23 23 23 23 23 20 20 13 16 22 21
PARCPRINTER11 (20) 18 18 18 18 18 18 18 18 15 15 9 12 17 16

PARKING11 (20) 1 4 1 1 4 4 2 1 1 1 7 1 2 1
PATHWAYS-NONEG (30) 4 4 4 4 4 4 5 4 4 4 4 4 5 5
PEG-SOLITAIRE08 (30) 29 29 29 29 30 30 29 29 27 27 27 28 28 29
PEG-SOLITAIRE11 (20) 19 19 19 19 20 20 19 19 17 17 17 18 18 19

PIPESWORLD-NT (50) 15 15 14 15 14 14 24 20 16 15 20 19 17 15
PIPESWORLD-T (50) 12 16 13 13 12 15 18 17 14 17 17 13 12 16

PSR-SMALL (50) 50 50 50 50 50 50 50 50 50 50 50 50 49 50
ROVERS (40) 12 13 13 13 13 12 13 12 8 6 8 7 7 13

SATELLITE (36) 9 9 9 9 9 9 9 9 6 6 6 6 7 9
SCANALYZER08 (30) 12 12 12 12 12 12 12 12 12 12 13 12 15 12
SCANALYZER11 (20) 9 9 9 9 9 9 9 9 9 9 10 9 12 9

SOKOBAN08 (30) 28 29 28 28 28 28 30 30 29 29 30 24 30 28
SOKOBAN11 (20) 20 20 20 20 20 20 20 20 20 20 20 20 20 20
TIDYBOT11 (20) 14 12 15 16 15 11 17 14 12 13 14 13 17 17

TPP (30) 8 8 8 8 8 8 8 8 6 6 6 6 7 9
TRANSPORT08 (30) 12 12 12 12 13 12 12 14 11 11 11 11 11 13
TRANSPORT11 (20) 7 8 8 8 9 9 8 11 6 6 7 7 6 9

TRUCKS (30) 10 10 10 10 11 13 12 15 8 8 9 8 10 12
VISITALL (20) 11 12 12 10 12 12 12 16 10 16 16 12 10 12

WOODWORKING08 (30) 28 25 28 27 25 25 26 28 14 14 9 10 22 25
WOODWORKING11 (20) 20 20 20 20 19 19 19 20 9 9 4 5 15 19

ZENOTRAVEL (20) 10 12 10 11 12 12 11 11 10 10 12 12 13 11
TOTAL COVERAGE (1396) 800 828 806 809 838 841 841 849 649 650 685 653 796 838

SCORE COVERAGE (36) 16.83 17.82 17.25 17.38 18.17 18.14 18.35 18.16 14.11 14.37 15.82 14.47 16.31 18.44

Table 3: Coverage of symbolic perimeter abstractions (SPA) using PDB hierarchies (SPPDB), SM&S hierarchies (SPM&S) with bisimulation
(b) and greedy bisimulation (g), multiple abstractions (SP-multi), and GAMER’s PDB selection. Results compared against a symbolic perimeter
(SP), and other non-perimeter abstraction heuristics like M&S, the symbolic PDBs of GAMER and additive PDBs (iPDB and gaPDB). Results of
the state-of-the-art LM-CUT heuristic and SymBA∗, which uses symbolic bidirectional A∗ search, are included for comparison. Score coverage
normalizes total coverage dividing by the number of instances in each domain.

the results of SPA. Nevertheless, the heuristics are shown to be complementary since there are some domains were
LM-CUT clearly performs better, such as AIRPORT, MICONIC or SCANALYZER.

The dominance of SPM&S over SP and M&S is quite clear. Even though there are a few cases where the pre-
processing phase of SPM&S does not terminate causing it to be outperformed by the symbolic perimeter alone, this
is compensated by combining the strengths of both algorithms in many other instances. Moreover, in some cases
SPM&S obtains better results than any of the two techniques (as in GRID or ROVERS, for example). On the other
hand, even though there are some domains where SPM&S beats SPPDB (e.g., TIDYBOT), the use of M&S abstractions
does not pay off in general over using simpler abstractions such as PDBs.

Another interesting result is the comparison with the winner of the optimal-track of the last IPC, SymBA∗. While
SymBA∗ has higher coverage score, SPPDBs have similar score and even higher total coverage. This is remarkable,
especially when taking into account that the performance of A∗ with SPA heuristics could easily be boosted by using
other complementary heuristics or search-enhancements, such as partial-order pruning [7], symmetries [6, 25], or
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Figure 10: Causal graph of the VISITALL domain. Goal variables represented with a double line.

dominance pruning methods [8, 26].
The most surprising result is that GAMER’s procedure to generate symbolic PDBs produces remarkably strong

heuristics, having the largest coverage among all the configurations, including SPA and SymBA∗. This is partially
due to a big edge in FREECELL so in the normalized score it has similar performance to SP-multi. These results
confirm that finding a good pattern is important, so the versions trying multiple patterns perform better. In order to
know whether the perimeter may be helpful in combination with the pattern selection of GAMER, we ran an additional
version that generates a perimeter and uses it to initialize the abstract searches during GAMER’s procedure.

The use of a perimeter is beneficial in most settings (see Section 7.1). This is not surprising since using a perimeter
to initialize any abstract search can only make the corresponding abstraction heuristic more informed. Also, the search
is initialized with a subset of the states that are reachable in the abstract state space as well, so the size of the abstract
state space that is explored can only decrease. However, there are several domains where it is harmful for GAMER’s
PDB selection. A close inspection to those cases shows that, in symbolic search, the use of a perimeter makes the
search exponentially harder in certain situations.

Consider the VISITALL domain, where a robot must traverse an entire grid. We have a variable, P , that defines the
current position of the robot in the grid and a variable for each cell, Vi,j , which represents whether the cell (i, j) has
been visited or not. The only action, move, as the name suggest moves the robot to an adjacent location, setting the
corresponding visited variable to true. The causal graph is depicted in Figure 10. The relevant property in this case is
that, when abstracting the non-goal variables (P ), all goal variables are completely independent. This is precisely the
first pattern that is attempted by Gamer’s abstraction strategy. This pattern produces a heuristic that counts the number
of non-visited cells, which is a very informed estimate and coincides with the perfect heuristic for the initial state of
most instances. A symbolic search on this abstract state space takes polynomial time in the size of the task [74, 75].
When using the perimeter, however, the variables are not independent anymore since we can only have visited a given
location in the perimeter if we have visited one of its adjacent locations. Therefore, if we use the perimeter to initialize
the abstract search, we get a more informed heuristic but the abstract search takes exponential time and memory to be
completed.

The same causal graph structure appears in many other domains as well. In particular, those domains where there
are a substantial (> 20%) number of goal variables which are independent after relaxing the rest. These domains
include many of the cases where the perimeter is detrimental like LOGISTICS (≈ 60%), TRUCKS (≈ 40%), and
TRANSPORT (≈ 30− 65%). In PARCPRINTER (≈ 25− 50%) and WOODWORKING (≈ 30− 50%) goal variables are
not completely independent but they can be separated into several independent clusters. There are also other domains
with this structure in which the perimeter is beneficial like OPENSTACKS (≈ 50%), ELEVATORS (≈ 30 − 50%),
BLOCKSWORLD (≈ 30 − 50%), MICONIC (≈ 30 − 50%), ROVERS (≈ 15 − 25%), or GRIPPER (≈ 90%). In these
cases, either the search with all variables is efficient as well (GRIPPER and MICONIC), or the goal pattern does not
produce a sufficiently well-informed heuristic (e.g., in ELEVATORS all actions achieving the goals have zero cost, so
the only-goals pattern produces a heuristic that always returns zero).

In the other domains, using the perimeter is not harmful, except in DRIVERLOG, GRID, FREECELL, or MYS-
TERY where either the search of the only-goals variables is still easy even if they are not completely independent
(DRIVERLOG) or the use of the perimeter changes Gamer’s pattern selection, showing that there is still room for
improvement in studying pattern selection algorithms for symbolic PDBs.

Therefore, it is not by chance that the symbolic PDBs of GAMER beat our perimeter abstractions with the same
abstraction strategy in some of these domains. Even though this may be read as a negative result against the use of a
perimeter, two things must be noted. First, it is straightforward to check the causal graph of a planning task to quickly
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identify whether the perimeter should be used. In domains that do not exhibit the structure mentioned above, using the
perimeter is recommended since it usually increases the performance. Second, when there is so much independence,
additivity could be exploited. In fact, in most of these domains, the additive PDB configuration of iPDB is very strong
as well. Finally, note that the SM&S abstractions with a suitable shrink strategy (e.g., an abstraction like the one in
Figure 5 of Section 5.1) may simplify the perimeter making the symbolic search on the abstract state space tractable
again.

7.4. Informativeness of SPA Heuristics
The coverage comparisons of Section 7.3 show that SPA is a state-of-the-art heuristic, outperforming other heuris-

tics such as M&S or additive PDBs and being competitive with LM-CUT. However, there are two main factors that
influence the performance of heuristics: informativeness and computational effort. In this subsection we analyze how
well informed the SPA heuristics are with respect to the state of the art. From the heuristics in the literature, we chose
iPDB because it also uses PDBs but in an additive setting, and LM-CUT because it is known to be an expensive but
very well-informed heuristic [4]. As representative of the SPA method, we chose the configuration using SM&S-b
and multiple PDBs that got the best coverage score among the versions using our abstraction hierarchies.

In order to compare the informativeness of the heuristics, we report two different metrics: expanded nodes and
initial h-value. The initial h-value is a direct comparison of the value of each heuristic for particular states, while the
number of expansions measures the ability of the heuristic to reduce the overall search effort. Figures 11 and 12 show
the comparisons in both metrics against different competitors in all commonly solved instances. When comparing the
heuristic values, we omit PARCPRINTER because the large heuristic values of that domain hinder the visualization.
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Figure 11: Number of expanded nodes by SPA (x-axis) against other heuristics (y-axis). Unsolved instances are assigned a number of 100 million
expansions. Points above the main diagonal are instances solved with fewer node expansions by SPA.

The comparison of SPA against SP and SPPDB reveals that the main strength of the heuristic is due to the perime-
ter search. Using abstraction heuristics to extend the information of the perimeter derives strictly more informed
heuristics. Therefore, both SPPDB and SPA obtain more accurate heuristics than SP and, in some cases, significantly
reduce the number of expanded nodes by several orders of magnitude. However, in most cases, SPA and SPPDB
obtain the same heuristic value than SP, so the symbolic perimeter is already a strong heuristic.

Perhaps more surprisingly, the comparison with iPDB and LM-CUT shows that SPA is a well-informed heuristic
compared to the current state of the art in cost-optimal planning. It does not only derive the perfect heuristic for many
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Figure 12: Initial state heuristic value of SPA (x-axis) against other heuristics (y-axis) in commonly solved instances of all domains except
PARCPRINTER. Points below the main diagonal are instances in which SPA is more informed.
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Figure 13: Comparison of expanded nodes and initial h-value with (x-axis) and without (y-axis) perimeter in GAMER’s symbolic PDBs. Class
1 represents all domains with more than 20% of causally-independent goals except ELEVATORS. Class 2 represents all other domains except
FREECELL. ELEVATORS (class 1) and FREECELL (class 2) are separated for being exceptions to our general rule.

instances (for most of those solved with less than 1,000 expansions), but also derives a heuristic competitive with
LM-CUT in the harder tasks. Differences in heuristic value of the initial state show that SPA is more precise in many
tasks, being a well-informed heuristic across the entire state space and not only close to the goal.

The comparison against Gamer’s symbolic PDBs reveals that both methods are complementary, having strengths
in many different tasks. In order to analyze the impact of the perimeter in Gamer’s pattern selection we compare the
number of expansions and initial h-value on the two classes of domains described in Section 7.3. In general, using the
perimeter shows good results except in the domains already identified and FREECELL. This confirms our hypothesis
that the main cause for the perimeter to be harmful is when domains have causally independent goals.

Figure 14 complements the data above with a comparison of the solving time of the four planners. As expected, the
data is completely biased by the precomputation phase of abstraction heuristics. Since SP-multi and GAMER’s SPDBs
have a limit of 1200 seconds for the precomputation of the heuristics, a huge amount of instances are solved around
that time. Hence, configurations with strictly lower precomputation time such as SP generally beat configurations
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spending more time. On the other hand, the precomputation time pays off in coverage, as reflected by the results of
Table 3.

SPA is generally faster than GAMER SPDBs. One reason is that many instances are solved directly during the
construction of the perimeter. More importantly, GAMER is expending the 1200 seconds of precomputation time in
more instances, which means that SPA could improve its results with better pattern selection strategies that explore
more abstract state spaces.

The comparison with iPDB and LM-CUT show that they have different strengths and weaknesses. SPA solves
many instances quickly when constructing the perimeter that are not always easy for explicit-search planners. But,
again, LM-CUT and iPDB beat SPA in many cases where it spends 1200 seconds to precompute the heuristic.
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Figure 14: Time in seconds of SPA (x-axis) against other heuristics (y-axis). Unsolved instances are assigned a time of 3000s. Points above the
main diagonal are instances solved faster by SPA.

8. Discussion

Symbolic Perimeter Abstractions (SPA) are a novel kind of admissible heuristics for cost-optimal planning that
extends previous definitions of perimeter abstraction heuristics in order to consider multiple perimeters in different
abstract state spaces, instead of only one. Applying perimeter abstractions in planning poses some challenges, such
as how to perform efficient regression search or how to obtain the set of abstract states that correspond to all states
in the perimeter to initialize the abstract search. SPA addresses these challenges by using symbolic search in order to
traverse the abstract state spaces.

In summary, SPA uses abstractions to relax a symbolic backward search, keeping only partial information about
some variables of the task. An abstraction hierarchy determines a set of abstract state spaces to search, ranging from
the original non-abstracted state space to one small enough to be explored by explicit-state search. Every abstraction
reduces the size of the abstract state space, so that there is a trade-off between the abstract search complexity and
the heuristic informativeness. Searching all these abstractions is clearly redundant, since heuristics of less relaxed
abstractions are strictly more informed than more relaxed ones. Predicting which abstraction has the best benefit/effort
relation is a hard task, which SPA addresses by using perimeter abstraction heuristics. The search is performed in the
less relaxed state spaces while it is feasible and coarser state spaces are used to continue the search afterwards.
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SPA can be used both with hierarchies of PDB and M&S abstractions. M&S represents abstract state spaces
explicitly, which limits the size of M&S abstractions. In order to obtain hierarchies with arbitrarily large M&S
abstractions, we define SM&S abstractions as larger M&S abstractions based on the smaller explicitly represented
M&S abstractions. SM&S abstractions can be searched with symbolic search, in an attempt to combine the strengths
of symbolic PDBs and the flexibility of M&S abstractions. We prove that, for any abstraction derived using M&S
with a linear merge strategy, it is possible to represent any set of abstract states as a decision diagram of polynomial
size in the number of abstract states used to derive such abstraction. Not only this bounds the size of BDDs in the
symbolic search of M&S abstractions, but it may also have other uses such as extracting polynomial certificates of
unsolvability in the form of BDDs [76].

Symbolic abstraction heuristics have been used mainly by symbolic search planners we advocate their use in
explicit-state search planners. Experimental results show that the symbolic perimeter heuristic is competitive with
other state-of-the-art heuristics such as LM-CUT even without any abstraction strategy. SPA successfully uses ab-
stractions to relax the perimeter in order to derive more informed heuristics, improving the performance even further.
Despite the greater generality of M&S abstractions, the simplicity of PDBs allows for more efficient symbolic opera-
tions and thus better heuristics. Our algorithm is not necessarily limited to PDB or M&S abstractions, and could also
potentially be used in combination with Cartesian abstractions [77, 78], or abstractions induced by BDD minimization
methods that have been successfully used for model-checking [79].

Finding good abstraction hierarchies for the task at hand is still an open problem. We partially address this prob-
lem by using multiple hierarchies. SPA with multiple abstraction hierarchies is competitive with (and complementary
to) symbolic PDB approaches that perform a search on the space of possible patterns, like the one used by the sym-
bolic search planner GAMER. We also analyzed the potential of using the perimeter to initialize abstract searches
in GAMER’s pattern selection algorithm, substantially improving the results in many domains, but being detrimental
in those domains where additivity is indirectly exploited by the symbolic search. Analyzing the use of additive en-
sembles of perimeter PDBs is a promising line of research for future work. Finally, another interesting avenue for
future research is the study of symbolic perimeter abstractions outside optimal planning, e.g. in the context of proving
unsolvability [80].
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