
On the Optimal Efficiency of A∗ with Dominance Pruning

Álvaro Torralba
Department of Computer Science, Aalborg University, Denmark

alto@cs.aau.dk

Abstract

A well known result is that, given a consistent heuristic and
no other source of information, A∗ does expand a minimal
number of nodes up to tie-breaking. We extend this analysis
for A∗ with dominance pruning, which exploits a dominance
relation to eliminate some nodes during the search. We show
that the expansion order of A∗ is not necessarily optimally
efficient when considering dominance pruning with arbitrary
dominance relations, but it remains optimally efficient under
certain restrictions for the heuristic and dominance relation.

Introduction
Heuristic best-first search algorithms are a fundamental tool
for problem solving whenever the problem can be mod-
eled as finding paths in graphs. Heuristic functions guide
the search towards the goal by estimating the distance from
any given state to the goal. Whenever an optimal solution
of minimum cost is required, A∗ search is often the algo-
rithm of choice (Hart, Nilsson, and Raphael 1968). This is
well supported by the well known result that, given a con-
sistent heuristic h and no other source of information, A∗

does expand a minimal number of nodes up to tie-breaking
among all algorithms that guarantee finding the optimal so-
lution (Dechter and Pearl 1985).

Dominance pruning is a technique to eliminate nodes dur-
ing the search if they can be proven to be dominated by an-
other state (Hall et al. 2013; Torralba and Hoffmann 2015).
This exploits an additional source of information in the form
of a dominance relation �, which compares two states to
determine whether one can be proven to be as close to the
goal as the other. This type of dominance appears naturally
on problems that have to deal with resources, (i.e., remov-
ing states that have strictly less resources than another), and
can also be applied on other kinds of problems (e.g., in grid-
worlds being at a central square can sometimes be proven
better than being at a corner if the set of reachable squares
in one step is strictly larger). This can be exploited by any
search algorithm to reduce the number of nodes explored
while retaining any solution optimality guarantees. This has
been mainly used in the context of cost-optimal planning, as
an enhancement for the A∗ algorithm.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we address the question of whether the ex-
pansion order of A∗ is good to minimize the number of ex-
pansions when dominance pruning is used. Prioritizing the
expansion of states with lower f -value is not necessarily an
obvious choice anymore, since states that are more promis-
ing according to the heuristic function are not necessarily
better according to the dominance relation. Furthermore,
previous results proving the optimal efficiency of A∗ are no
longer valid due to having a new source of information.

Indeed, we show that there are cases where A∗ with dom-
inance pruning is not optimally efficient, and that differ-
ent expansion orderings, or even expanding some states that
could be pruned may lead to a globally higher number of
expansions in some cases. However, this can be attributed to
“inconsistencies” in the information provided by the heuris-
tic function and the dominance relation. We extend the no-
tion of consistent heuristics to consistent heuristic and dom-
inance relation pairs, and prove that A∗ with dominance
pruning is indeed optimally efficient, meaning that there is a
tie-breaking for A∗ that expands the lowest number of nodes
among all admissible algorithms with dominance pruning.

We also analyze which tie-breaking strategies remain op-
timally efficient up to the last f -layer, i.e., when we ignore
the expansions of nodes with an f -value equal to the solution
cost. This is relevant because when consistent heuristics are
used, the choice of tie-breaking rule in A∗ is only relevant
for the last layer, since all nodes with an f -value lower than
the optimal solution cost must be expanded regardless of
the expansion order. Therefore, most implementations of A∗

choose tie-breaking strategies in favor of nodes with lower
h-value, which are expected to find a solution faster in the
last f -layer. We show that with dominance pruning this is no
longer the case, as tie-breaking strategies in favor of nodes
with lower g-value are preferable up to the last layer.

Background
A transition system (TS) is a tuple Θ = 〈S,L, T, sI , SG〉
where S is a finite set of states, L is a finite set of labels
each associated with a label cost c(l) ∈ R+

0 , T ⊆ S×L×S
is a set of transitions, sI ∈ S is the start state, and SG ⊆ S

is the set of goal states. We write s l−→ t as a shorthand for
(s, l, t) ∈ T . A plan for a state s is a path from s to any
sG ∈ SG. We use h∗(s) to denote the cost of a cheapest

plan for s, and g∗(s) to denote the cost of a cheapest path
from sI to s. A plan for s is optimal iff its cost equals h∗(s).
The sum f∗(s) = g∗(s) + h∗(s) is the cost of an optimal
plan from sI passing through s. We denote F ∗ to the optimal
solution cost for sI , F ∗ = f∗(sI) = h∗(sI). To deal with
tasks with 0-cost actions, we define a modified cost function
cε so that all 0-cost actions are assigned a cost of ε, where ε
is a tiny constant such that the sum of arbitrarily many ε is
lower than any other action cost. We define gε, h∗ε , fε, etc as
the functions above under this new cost function.

A heuristic h : S 7→ R+
0 ∪{∞} is a function that estimates

goal distance. It is admissible if it never overestimates the
real cost, i.e., h(s) ≤ h∗(s) for all s ∈ S, and consistent if
for any s l−→ t it holds that h(s) ≤ h(t) + c(l).

Best-first search algorithms maintain an open and a closed
list with all nodes that have been seen so far. A search node
ns characterizes a path from the initial state to the final state
of the path, s, where the g-value g(ns) is the cost of the
path. We write ns

l−→ nt as a shorthand for s l−→ t and
g(nt) = g(ns) + c(l). The open list is initialized with the
initial state that has a g-value of 0. At each step, a node is
selected from the open list for expansion. When a node is
expanded, it is removed from the open list and all the suc-
cessors are generated and inserted into the open list. The
closed list keeps all nodes that have been expanded to avoid
duplicates so that a node is not expanded if another node
with the same state and a lower or equal g-value has already
been expanded. A∗ always selects for expansion a node with
minimum f -value where f(ns) = g(ns) + h(s). Since the
behavior of A∗ is not uniquely defined, we say that it is a
family of algorithms, one per possible tie-breaking rule.

Optimal Efficiency of A∗

The seminal work by Dechter and Pearl (1985) analyzes the
optimal efficiency of A∗ in great depth, considering several
degrees of optimal efficiency. They consider the heuristic as
part of the input to the algorithm, so a problem instance is a
tuple 〈Θ, h〉. An instance is consistent if it has a consistent
heuristic h. An algorithm is admissible if it is guaranteed to
return an optimal plan for Θ, whenever h is admissible.

To prove optimal efficiency of an algorithm, some as-
sumptions about the considered algorithms are needed. As
we are interested in admissible algorithms, we assume all
families of algorithms considered in this paper to be admis-
sible. In their paper, Dechter and Pearl define a family of al-
gorithms that use only a few primitive functions, such as ex-
pansion and heuristic functions. Eckerle et al. (2017) refine
this by making explicit the assumption that all these func-
tions are deterministic, and black box, defining the family of
Deterministic, Expansion-based, Black Box (DXBB) algo-
rithms. We also assume that the transition relation can only
be accessed in a forward manner, as a function that given a
state returns its successors. If backward search is possible,
A∗ does not guarantee optimal efficiency (Chen et al. 2017).
Definition 1 (UDXBB Algorithm). A algorithm is Uni-
directional, Deterministic, Expansion-based, Black Box
(UDXBB) if it is deterministic and it has access to the state
space Θ via exactly the following functions:

• Start: returns the initial state sI .
• Is-goal: given a state s returns true iff s is a goal state.
• Expand: given a state s returns a set of successor states
expand(s) = {t | s l−→ t}.

• Cost: given a state and a successor state returns the cost
of reaching it (cost(s, t) = minc(l) s

l−→ t).

Dechter and Pearl define a hierarchy with several degrees
of optimality, based on comparing the sets of nodes ex-
panded by different families of algorithms over a set of in-
stances. Let N(A, I) be the set of expanded nodes by al-
gorithm A on instance I . A family of algorithms A is X-
optimally efficient over another B relative to an instance set
I if:
• Type 0: ∀I ∈ I,∀B ∈ B,∀A ∈ A, N(A, I) ⊆ N(B, I).
• Type 1: ∀I ∈ I,∀B ∈ B,∃A ∈ A, N(A, I) ⊆ N(B, I).
• Type 2: ∀I ∈ I,∀B ∈ B,∀A ∈ A, N(B, I) 6⊂ N(A, I).
• Type 3: ∀B ∈ B,∀A ∈ A, (∃I1 ∈ I, N(A, I1) 6⊆
N(B, I1)) =⇒ (∃I2 ∈ I, N(B, I2) 6⊆ N(A, I2))

Among other results, Dechter and Pearl proved that, on
consistent instances A∗ is 1-optimal, meaning that for any
admissible UDXBB algorithmX , there exists a tie-breaking
for A∗ that expands a subset of the nodes expanded by
X . They also show that no family of algorithms can be 0-
optimal, meaning that there is no way to set the tie-breaking
strategy to guarantee a minimal number of node expansions.

Dominance Pruning
Dominance pruning is a technique that makes use of a dom-
inance relation as an additional source of information. A re-
lation � ⊆ S × S is a dominance relation if, whenever
s � t, then h∗ε (t) ≤ h∗ε (s). We say that a node nt prunes
another ns if ns 6= nt, g(nt) ≤ g(ns) and s � t.

We define A∗ with dominance pruning (A∗pr) as the
vanilla A∗ algorithm with a simple modification. Anytime
that a node ns is selected for expansion, skip it if there ex-
ists another node nt in open or closed such that nt prunes ns.
Nodes pruned this way are removed from the open list but
they are neither expanded nor inserted into the closed list.1
Therefore, pruned nodes are “forgotten” and no node can be
pruned due to being dominated by a previously pruned node.
This is necessary to correctly handle the case where there are
only two nodes that prune each other, since in that case any
of the two nodes could be pruned, but at least one of them
must be expanded to find a solution.

In this work, we assume that the dominance relation is
provided as an instance-dependent function. In practice, it
can also be automatically obtained from a model of the prob-
lem, even though in this work we assume that the model
is not available to the search algorithm. A common way
to define a dominance relation is based on identifying re-
sources (Hall et al. 2013), i.e. variables for which there ex-
ists a total order for their values such that larger values en-

1Nodes can also be pruned upon generation to avoid the over-
head of computing h and open list insertion. But this does not affect
the number of expanded states, which is what interests us.

able more actions. Furthermore, there are other more ad-
vance methods that find pre-orders on arbitrary abstract state
spaces (Torralba and Hoffmann 2015). In both cases, the
dominance relations that have been used in the literature are:

• Pre-order relations: they are reflexive (s � s for all s) and
transitive (s � t ∧ t � u =⇒ s � u).

• Cost-simulation relations: whenever s � t, for all s l−→ s′,
either s′ � t or ∃t l′−→ t′ s.t. c(l′) ≤ c(l) and s′ � t′.
Even though one can define dominance relations that do

not satisfy these properties, they are naturally obtained in
most cases. In particular, the property of cost-simulation is
related to the way automatic methods prove that the obtained
relation is a dominance relation without having access to h∗.

Definition of Optimal Efficiency
Following Dechter and Pearl, we are interested in the opti-
mal efficiency of algorithms in regards of node expansions
on concrete families of instances. In this section, we gen-
eralize their framework by considering the additional infor-
mation of a dominance relation. This requires defining what
consistent instances are in this case, as well as defining the
different notions of optimal efficiency, and the families of
algorithms that we will consider.

Consistent Instances
A problem instance is a tuple 〈Θ, h,�〉, where Θ is a tran-
sition system, h is an admissible heuristic for Θ, and � is
a dominance relation for Θ. We say that an instance is con-
sistent if both the heuristic and dominance relation are con-
sistent on their own, and they are consistent with each other,
meaning that they fulfill the following properties.

Definition 2. An instance I = 〈Θ, h,�〉 is consistent if:

(i) h is consistent.
(ii) � is a transitive cost-simulation.

(iii) � is consistent with h: s � t =⇒ h(t) ≤ h(s).

Condition (ii) ensures that the information provided by �
is consistent in two different ways. First, � must be tran-
sitive, because if we do know that s � t and t � u, then
h∗(u) ≤ h∗(t) ≤ h∗(s) so s � u can be deduced. Second,
for a dominance relation to be consistent, we require it to
be a cost-simulation relation so that whenever nt prunes ns,
then if ns or any of its successors would prune nu, then nt
or some of its successors prune nu as well.

Condition (iii) requires � and h to not contradict each
other on their comparison for any two states s and t. Note
that this does not render � uninformative, since comparing
states based on their heuristic value is no substitute for dom-
inance analysis. In particular, even if � always agrees with
h, its role is to identify cases where the relative heuristic
evaluation of both states is provably correct.

A question is how often these conditions happen in prac-
tice. The first two conditions are indeed quite common: most
heuristics that come from an optimal solution to a relaxation
of the problem are indeed consistent; and typical approaches
to compute dominance relations in planning are guaranteed

to return transitive cost-simulation relations (Torralba and
Hoffmann 2015; Torralba 2017).

An analysis of whether heuristics are consistent with re-
spect to a dominance relation � is beyond the scope of this
paper since that would require to consider concrete heuristic
functions and dominance relations. In practice, it is reason-
able to expect that most consistent heuristics will fulfill this
property. For example, consider resource-based dominance
relations that identify that states having more resources (fuel
or money for example) are preferred. These are dominance
relations because more resources can only enable more tran-
sitions in the state space; so heuristics that result from sys-
tematic (symmetric) relaxations of the problem will typi-
cally associate a lower heuristic value to states with more
resources, everything else being equal. Indeed, for several
families of heuristic functions in domain-independent plan-
ning, they have been shown to be consistent with symmetry
equivalence relations (Shleyfman et al. 2015; Sievers et al.
2015), which are a special case of dominance relation. We
conjecture that this holds as well for dominance relations
based on comparing the values of sub-sets of variables, for
heuristics that take into account the same subsets (e.g. we
conjecture hmax and h+ are consistent with dominance re-
lations over single variables, and pattern databases are con-
sistent with dominance relations over subsets of the pattern).

Types of Optimality
We extend the optimality criteria considered by Dechter and
Pearl in several ways.

Definition 3 (#-optimally efficient). Let N(A, I) be the
set of expanded nodes by algorithm A on instance I . A
family of algorithms A is #-optimally efficient over an-
other B relative to an instance set I if for any algorithm
B ∈ B and instance I ∈ I, there exists A ∈ A such that
|N(A, I)| ≤ |N(B, I)|.

This definition of #-optimality is a relaxed variant of the
1-optimality definition by Dechter and Pearl, which requires
the number of expansions by A to be lower or equal than
that of B, instead of requiring it to be a subset (N(A, I) ⊆
N(B, I)). Our criteria is slightly weaker since it only re-
quires having an overall minimum number of expansions,
which implicitly assumes that all expansions are equally
time consuming. We say that 1-optimality is strict if A is
1-optimally efficient over B, but B is not over A. We say
that #-optimality is strict if A is #-optimally efficient over
B, but B is not over A.

We also consider when A∗ is optimal up to the last layer,
i.e., where only nodes with an f -value lower than the op-
timal solution cost are taken into account. That is, we re-
place N(X, I) by N ′(X, I) where N ′(X, I) = {n ∈
N(X, I) | f(n) < F ∗}. This is related to the notion of
non-pathological instances introduced by Dechter and Pearl,
which are those instances where A∗ does not expand any
node n with f(n) = F ∗. However, paradoxically, non-
pathological instances are very unlikely to occur in practice.
For that reason, on the context of A∗ algorithms, we prefer
to directly consider optimality up to the last layer, simply ig-
noring the effort that A∗ will make in the last f -layer, which

UDXBB UDXBBpr

A∗ A∗
pr A∗

g<,pr

A∗
h<,pr

1-opt, strict

#-opt, strict

1-opt
(Dechter and Pearl 1985)

#-opt

1-opt (last layer)

1-opt (last layer)
strict

Figure 1: Summary of optimal efficiency relationships. All
results assume consistent instances.

most of the times strongly depends on the tie-breaking.

Families of Algorithms
We introduce a new family of algorithms that extends
UDXBB with dominance pruning.
Definition 4 (UDXBBpr). UDXBBpr is a family of al-
gorithms that extends UDXBB with the ability to perform
dominance pruning, i.e., to discard any node ns if another
node nt has been generated such that nt prunes ns.

Note that UDXBBpr algorithms cannot access the domi-
nance relation directly or indirectly, i.e., they are not allowed
to perform inference based on the fact that h∗(t) ≤ h∗(s)
whenever s � t. Our analysis focuses on dominance prun-
ing, excluding other further uses of dominance relations.
Proposition 1. UDXBBpr is strictly 1-optimal over
UDXBB on all instances.

Proof. 1-optimality follows trivially from the fact that
UDXBB is contained in UDXBBpr, since UDXBBpr al-
gorithms could choose not to prune any node if they desire
so. To show this to be strict, it suffices to show an instance
where there are nodes ns, nt with f(nt) ≤ f(ns) ≤ F ∗

such that nt prunes ns. It is very easy to construct such ex-
ample, e.g. see the instances in Figures 2, and 3.

Optimal Efficiency of A∗
pr

Thorough the paper, we assume consistent instances, i.e.,
that the heuristic function and dominance relation are con-
sistent. Figure 1 summarizes our results. Our theoretical
analysis concludes that, in terms of node expansions using
dominance pruning is strictly better than not using domi-
nance. Our main result is that, on consistent instances, the
expansion order of A∗pr is #-optimally efficient, meaning
that there exist some tie-breaking of A∗pr that expands a min-
imum number of expansions. We begin by showing some
counter-examples on instances that do not satisfy our consis-
tency criteria to highlight why consistency is required. Then
we discuss how to characterize the states that must be ex-
panded to find a solution and prove it to be optimal; prove
our main result; and discuss what tie-breaking strategies are
more appropriate for A∗ with dominance pruning.

Counter-examples due to Inconsistencies
The two things that characterize A∗pr algorithms from the
set of UDXBBpr algorithms, and that may cause A∗pr to be
suboptimally efficient in inconsistent instances are:

I

A

B

C

B’

C’ . . .

G

1

1

1

1

1

99

1

100

100

(a)
�: B � A, C′ � B′

A∗: 〈I, A,C,C′, . . . , G〉
opt: 〈I, A,B,C,G〉

I

A B

C . . .

G
h=3

h=3 h=2

h=1

h=0

1 1 100

2
1

100

(b)
�: C � B

A∗: 〈I, C, . . . , A,B,G〉
opt: 〈I, A,B,G〉

Figure 2: Counterexamples that show cases where A∗pr is
not optimally efficient, when pruning according to the dom-
inance relation below each figure. The “. . . ” region repre-
sents an arbitrarily large region of the state space that will
be expanded by A∗pr , but could be avoided with a different
pruning or expansion order strategies. In (a) h = 0 for all
states, in (b) each node is labeled with its h value.

1. A node is pruned whenever possible, and sometimes
not pruning a node may lead to less overall expansions.

2. The expansion order of A∗ may not be optimally effi-
cient anymore when considering dominance pruning.
Figure 2 shows examples where A∗pr does expand more

nodes than necessary for these two reasons. The example
in Figure 2a illustrates a state space and dominance rela-
tion� for which pruning a node whenever possible is not an
optimal strategy, independently of the expansion order (for
simplicity we set h = 0 for all states). After expanding the
initial state I , one can prune node B because it is dominated
by A. However, if B is pruned, B′ won’t be generated un-
der any expansion order so C ′ and all its arbitrarily many
successors will be expanded.

Our second example, illustrated in Figure 2b, shows a
case where it is good to prune nodes whenever possible but
the expansion order of A∗ leads to a sub-optimal number of
expansions. The optimal expansion order is 〈I, A,B,G〉. C
does not need to be expanded even though f(C) < F ∗ be-
cause C will be pruned (C � B and g(B) ≤ g(C)). How-
ever, A∗pr will expand C after expanding the initial state I ,
since f(C) < f(A) and B has not been generated yet.

All these scenarios can be attributed to “inconsistencies”
within the dominance relation � or between � and the
heuristic function h. In Figure 2b the dominance relation and
heuristic do not agree on the comparison between B and C.
The dominance relation proves that B is at least as close to
the goal as C, but the heuristic function estimates that C is
closer to the goal. In the case of Figure 2a, the dominance re-
lation is inconsistent because the information thatA is closer
to the goal than B is lost after one expansion and neither A
nor any of its successors could be used to prune B′ or C ′.

Solution Sets
We first identify which states need to be expanded to prove
optimality by any search that does not have access to any
additional information, other than a heuristic function h and
the ability to prune nodes. Traditionally, this is done by iden-
tifying must-expand states that must be expanded for every
algorithm to prove optimality, or must-expand pairs as done

in the bidirectional search setting (Eckerle et al. 2017). How-
ever, in our case there are many choices that can be made for
dominance pruning, so now the difference between must-
expand nodes and the nodes that belong to any concrete so-
lution is not restricted to the last f -layer.

We define instead solution sets, which take into consid-
eration all nodes that must be expanded by any UDXBBpr

algorithm to find a solution, including the last f -layer. Let
S be a set of nodes. We use [S] to denote the set extended
with its immediate successors, i.e., [S] = S ∪ {ns′ | ns →
ns′ , ns ∈ S}. The intuition is that, if S is the set of nodes
that have been expanded at some point during the execution
of a UDXBB algorithm, then [S] is the set of nodes that have
been generated. In other words, if S represents the contents
of the closed list, then [S]\S contains the set of nodes in the
open list and all pruned nodes.

Definition 5 (UDXBBpr Solution Set). A set of nodes S is
a UDXBBpr solution set for an instance I if:

(a) ∀ns ∈ S \ {nsI},∃nt ∈ S, nt
l−→ ns.

(b) ∃ns ∈ [S], s ∈ SG and g(ns) = F ∗,
(c) ∀ns ∈ [S] \ S, f(ns) ≥ F ∗ or ∃nt ∈ S, nt prunes ns.

Condition (a) requires that every expanded node in S was
generated by expanding one of its parents. Condition (b) re-
quires that an optimal solution was found. Condition (c) en-
sures that the solution found is proven to be optimal, be-
cause all nodes in the open list after expanding S have a
large enough f -value or are pruned by dominance.

Theorem 1. Let I be any admissible instance. Then, ex-
panding a solution set is a necessary and sufficient condi-
tion for admissible UDXBBpr algorithms, i.e., for any A in
UDXBBpr, N(A, I) is a solution set.

Proof Sketch. Sufficient: If (a), (b), and (c) hold, then an op-
timal solution has been found due to (a) and (b). The solution
is provably optimal due to (c) since all nodes remaining in
the open list have an f -value greater or equal to the incum-
bent solution. Necessary: If (a) does not hold, then a node
has been expanded without being generated, which is im-
possible in UDXBB algorithms. If (b) does not hold, then
no optimal solution has been found. If (c) does not hold,
then there exists some ns in the open list that may lead to
a solution with cost lower than F ∗, so the solution was not
proven to be optimal.

We remark that the proof above relies on UDXBBpr algo-
rithms not being allowed to use dominance relations for any-
thing except dominance pruning. That is, (c) is only a neces-
sary condition if we assume that there are no other pruning
rules by which an algorithm could prove that ns is not part
of an optimal solution. Otherwise, the criteria (c) of a so-
lution set could be weakened, increasing the set of possible
solution sets.

A∗
pr is Optimally Efficient on Consistent Instances

Before proving our main result of this section, we analyze
some properties that hold for consistent instances. An im-
portant one is that, whenever h and � are consistent with

each other, nodes with larger f -value cannot prune nodes
with lower f -value.

Lemma 1. Let I be a consistent instance. Let ns, nt be any
two nodes such that nt prunes ns. Then, f(nt) ≤ f(ns).

Proof. Since nt prunes ns, it holds that g(nt) ≤ g(ns) and
s � t. By consistency, h(t) ≤ h(s), so f(nt) ≤ f(ns).

Next, we show that pruning is transitive.

Lemma 2. Let � be a transitive relation. If nu prunes nt
and nt prunes ns, then nu prunes ns.

Proof. By the assumption it follows that g(nu) ≤ g(nt) ≤
g(ns), and s � t � u. Therefore, g(nu) ≤ g(ns) and, by
transitivity of �, s � u. So nu prunes ns.

Next, we show that all states in the smallest solution set
must be expanded only with its optimal g-value.

Lemma 3. Let I be a consistent instance. Then, there exists
a solution set S for I of minimum size such that for all ns ∈
S, g(ns) = g∗(s).

Proof. Assume the contrary. Then, some ns has been ex-
panded with a sub-optimal value, g∗(s) < g(ns). Therefore,
a predecessor along the optimal path from sI to s has not
been expanded. Let nt be the first such predecessor. By con-
sistency of h, we know that f -values monotonically increase
along a path, so f(nt) ≤ f∗(ns) < f(ns). As nt 6∈ S, by
condition (c) of a solution set, nt was pruned, i.e., ∃nu ∈ S
s.t. nu prunes nt. As � is a cost-simulation, then nu has
some successor that would prune ns, so there must be a node
in S that prunes ns. Therefore, S \ {ns} is also a solution
set, contradicting the fact that S is of minimum size.

We next show that pruning a node whenever possible is
an optimally efficient strategy because there exists a solu-
tion set S of minimum size that does not contain any node
that can be pruned by another node in [S], unless both nodes
prune each other. To show this, we consider Algorithm 1.

Algorithm 1: Replace
Input: S0,ns ∈ S0, nt ∈ [S0] where S0 is a solution

set and nt prunes ns
Output: Solution set Si that does not contain ns

1 S1 := (S0 ∪ {nt}) \ {ns};
2 i = 1;

3 while ∃nsi ∈ Si, 6 ∃nui ∈ Si, nui
l−→ nsi do

4 Choose such an nsi with minimum g-value ;
5 Choose nti in [Si] such that nti prunes nsi ;
6 Si+1 := Si ∪ {nti} \ {nsi} ;
7 i = i+ 1 ;
8 return Si ;

Lemma 4. Let S0 be a solution set for a consistent instance.
Let ns ∈ S0, nt ∈ [S0] such that nt prunes ns. Then, Algo-
rithm 1 returns a solution set Sk such that: |Sk| ≤ |S0|;
ns 6∈ Sk; nt ∈ Sk; and If nt ∈ S0 then |Sk| < |S0|.

Proof Sketch. The size of the solution set cannot increase
during the execution of Algorithm 1, i.e., |Si+1| ≤ |Si| be-
cause a node is removed at each iteration and at most one
node is added. If nt ∈ S0 then |S1| = |S0| − 1, since
ns was removed and no node was added, so in that case
|Sk| ≤ |S1| < |S0|. Properties (b) and (c) of a solution
set are preserved by all intermediate Si because nsi is re-
placed by nti such that nti prunes nsi , so by Lemma 1 and
2, nti can do anything nsi could. Property (a) holds when
the algorithm terminates, since it is the stopping condition
for the loop. The algorithm always terminates because all
nodes nsi removed in the loop are descendants of ns which
were present in S0, and there are only finitely many.

Finally, it remains to be proven that there always exists
some nti in [Si] in line 4 such that nti prunes nsi . As nsi is
a descendant of ns that has no parent in Si. Since all nodes
in S0 have a parent, and all nti added along the way too,
then the parent of nsi was some nsj removed in a previ-
ous iteration j < i, being replaced by ntj . Since � is a
cost-simulation relation, ntj must have a successor nti that
prunes nsi .

Lemma 5. Let S be a solution set of minimum size for a
consistent instance. Then there does not exist a pair of nodes
ns, nt in S such that nt prunes ns.

Proof. Assume that nt prunes ns. By Lemma 4, using the
procedure above we can construct another solution set S ′
s.t. |S ′| < |S|, contradicting that S has minimum size.

Lemma 6. Let I be a consistent instance. Then, there exists
a solution set S of minimum size for I such that there does
not exist any ns ∈ S and nt ∈ [S] such that nt prunes ns
and ns does not prune nt.

Proof Sketch. Assume the opposite, let S be a solution set
such that there exist ns ∈ S and nt ∈ [S] where nt prunes
ns and ns does not prune nt. By Lemma 5 nt 6∈ S. By
condition (c) of a solution set, we know that either f(nt) ≥
F ∗ or there exists nu ∈ S such that nu prunes nt.

Case 1: There exists nu ∈ S such that nu prunes nt. By
transitivity, nu prunes ns, so one can construct a minimal
solution set with Lemma 4 of smaller size, contradicting that
S is a solution set of minimal size.

Case 2: f(nt) ≥ F ∗. Then, by Lemma 1, f(ns) ≥
f(nt) ≥ F ∗. If f(nt) > F ∗, we can remove ns and all its
descendants from S0 to obtain a smaller solution set, con-
tradicting the fact that it is a solution set of minimal size.
Therefore, f(ns) = f(nt) = F ∗. Note that a solution set of
minimum size only contains a node with f(ns) = F ∗ when
ns is on the solution path returned by the algorithm. This
path can be replaced by another of the same length and cost
that goes through nt by repeatedly calling Algorithm 1.

Now we are ready to prove our main result.
Theorem 2. A∗pr is #-optimal on consistent instances over
UDXBBpr.

Proof. We show that there exists a solution set S of mini-
mum size for which there exists a tie-breaking strategy under
which A∗pr with h and � expands exactly S. By Lemma 6,

we choose S so that there does not exist any ns ∈ S and
nt ∈ [S] s.t. nt prunes ns and ns does not prune nt. Assume
a tie-breaking that prefers expanding nodes in S over any
other node, and prefers pruning nodes not in S. Formally,
our tie-breaking strategy selects for expansion any node not
in S such that it can be pruned. If no such node exists, it se-
lects a node (with minimal f value) from S that cannot be
pruned. We prove that this tie-breaking always succeeds by
contradiction. Otherwise, assume that the tie-breaking fails.
Then, the open list does not contain any node with minimal
f value that is outside S and can be pruned or that it is in S
and cannot be pruned. Then, the node selected for expansion
either: (A) it is in S but can be pruned due to some node in
open or closed; (B) it is not in S and cannot be pruned.

Case (A). There exists nt that prunes some ns ∈ S . By
Lemma 5, we know that nt 6∈ S . As nt is in the open
list after having expanded a subset of S, nt ∈ [S] and, by
our choice of solution set with Lemma 6, ns prunes nt. By
Lemma 1, f(nt) ≤ f(ns), so with our tie-breaking strategy
A∗ would have selected nt instead, reaching a contradiction.

Case (B). Let ns be a node that is expanded by A∗pr but it
is not in S. If f(ns) = F ∗, then a node along the optimal
solution contained in S should have been chosen instead. If
f(ns) < F ∗, by condition (c) of a solution set, there exists
nt ∈ S such that nt prunes ns. Again, if nt is in open or
closed, ns will be pruned reaching a contradiction. Other-
wise, there must be an ancestor along the path from sI to nt
in open with its optimal g-value. Such an nu ∈ S, must have
f(nu) ≤ f(nt) ≤ f(ns), so according to our tie-breaking
nu would have been chosen for expansion instead of ns (nu
cannot be pruned by the same argument as in case (A)).

Corollary 1. A∗pr is strictly #-optimal over A∗ on consistent
instances.

Proof. This follows directly from the fact that A∗pr is
#-optimal over UDXBBpr and UDXBBpr is strictly 1-
optimal over the family of UDXBB algorithms, which con-
tains all algorithms in the family of A∗ algorithms.

Optimal Tie-Breaking Strategies
For A∗ with consistent heuristics the tie-breaking strategy
is only relevant in the last f -layer. Ideally, once the min-
imum f -value in the open list is equal to F ∗, only nodes
on a path to the goal will be selected for expansion. Practi-
cal implementations often prefer expanding nodes with low-
est h-value, aiming to reduce the effort in the last layer. In
domain-independent planning, where a factored model of
the state space is available to offer additional information
to the algorithm, some other strategies have been suggested,
like using (possibly inadmissible) heuristic functions that
estimate plan length instead of plan cost (Asai and Fuku-
naga 2017; Corrêa, Pereira, and Ritt 2018). They showed
that tie-breaking can be quite significant for the overall per-
formance, specially in domains with 0-cost actions.

A∗pr , however, is more sensitive to the choice of tie-
breaking strategy, since it may matter along previous layers.
This brings up the question of what is a good tie-breaking

I

A1

B1

A2

B2

A3

B3

G
h=2

h=2

h=1

h=1

h=1

h=0

h=0

h=01

1

1

1

1

1

1

1

�: B2 � A2, B3 � A3
A∗

h<,pr
: 〈I, B1, B2, B3, A1, A2, A3, G〉

A∗
g<,pr

: 〈I, B1, A1, A2, A3, G〉

Figure 3: Counter-example for the 1-optimal efficiency of
A∗h<,pr up to the last layer on consistent instances.

strategy for A∗pr . We define A∗g<,pr as A∗pr breaking ties in
favor of states with minimum g-value.

Theorem 3. A∗g<,pr is 1-optimal efficient up to the last layer
over A∗pr on consistent instances.

Proof Sketch. Let S be a solution set for A∗pr , and let S ′
be the subset of nodes in solution set up to the last layer,
S ′ = {ns ∈ S | f(ns) < F ∗}. We show that there is
an expansion order compatible with A∗g<,pr that expands all
nodes in S ′ before expanding any other node. For this, the
same proof from Theorem 2 applies up to case (B). For case
(B), we know that f(ns) < F ∗ and, by the same argument
as in the proof of Theorem 2, some nu ∈ S must remain in
the open list with f(nu) ≤ f(nt) ≤ f(ns). At this point the
tie-breaking matters since whenever f(nu) = f(ns), the tie-
breaking policy should allow selecting nu over ns. Since nu
is an ancestor of nt, g(nu) ≤ g(nt), and since nt prunes ns,
g(nu) ≤ g(nt) ≤ g(ns). Then, expanding nu instead of ns
is still valid according to the g< tie-breaking strategy.

However, the same is not true for every tie-breaking strat-
egy for A∗. For example, let A∗h<,pr be the family of A∗pr
algorithms with a tie-breaking strategy that always prefers a
state with minimum h-value. As argued above this is the tie-
breaking preferred by most implementations of A∗ without
dominance pruning, but it cannot guarantee anymore that the
number of expansions up to the last layer will be minimal.

Theorem 4. A∗h<,pr is not optimally efficient up to the last
layer on consistent instances.

Proof Sketch. Figure 3 shows a counter-example of a con-
sistent instance where all tie-breaking strategies compatible
with A∗h<,pr expand a node that A∗g<,pr would not expand.
After expanding I and B1, the open list contains two nodes:
B2 and A1, both with an f -value of 3. At this point, A2

has not been generated yet so B2 cannot be pruned. How-
ever, A∗h<,pr will expand B2 and B3 (and in general the
entire plateau of states with f = 3 underneath B2), be-
fore expanding A1. Note that this happens for nodes with
f = 3 < 4 = F ∗, i.e. nodes before the last f -layer.

Corollary 2. A∗g<,pr is strictly 1-optimally efficient up to the
last layer over A∗h<,pr on consistent instances.

Proof Sketch. 1-optimality follows directly from Theo-
rem 3, since A∗h<,pr is contained in A∗pr . The fact that opti-
mality is strict follows from Theorem 4.

Thus, there are two conflicting objectives. Up to the last
layer, it is provably beneficial to break ties in favor of lower
g-value. On the last layer, empirical analysis show that it is
better to break ties in favor of lower h-value. Which one is
preferable depends on the particular domain, dominance re-
lation and heuristic. Our preliminary experiments show that
in common planning domains, it is often beneficial to break
ties in favor of lower h-value even with dominance pruning.

Conclusions
We analyzed the optimal efficiency of A∗ with dominance
pruning, A∗pr . Assuming a consistent heuristic is not suf-
ficient, because there may be inconsistencies in the dom-
inance relation as well, which may cause A∗pr to perform
unnecessary expansions. We defined a new criterion of con-
sistency for heuristic and dominance relation pairs, which
ensures that A∗pr will be optimally efficient in terms of the
number of expanded nodes. We also show that tie-breaking
in favor of nodes with lower g value is provably preferable to
minimize the number of expansions up to the last layer. This
contrasts with common strategies, which favor nodes with
lowest h-value to minimize expansions in the last layer.

As in the optimal efficiency result for A∗, our analy-
sis is based only on the number of state expansions and
it ignores the actual runtime. There are of course other al-
gorithms which may outperform A∗ according to differ-
ent performance measures. For example, the IDA∗ algo-
rithm (Korf 1985) and other extensions like Budgeted Tree
Search (Helmert et al. 2019; Sturtevant and Helmert 2020)
outperform A∗ in terms of memory usage. EPEA∗ (Gold-
enberg et al. 2014) aims to minimize the number of nodes
generated, which is arguably more relevant to runtime than
expanded nodes, but it requires additional domain-specific
knowledge. Finally, other algorithms may outperform A∗

in terms of runtime, e.g., when the benefits of reducing
the number of node expansions does not compensate the
overhead of computing the heuristic or performing pruning,
which may require a quadratic cost in the number of gen-
erated states in the worst case. Nevertheless, for concrete
problems and/or dominance relations it may be possible to
perform the pruning more efficiently (e.g., dividing states in
classes so that each state needs to be compared only against
a small subset of alternatives), and one could extend ratio-
nal algorithms that reason about when it is worth to compute
the heuristic (Barley, Franco, and Riddle 2014; Karpas et al.
2018) to consider dominance as well.

Finally, in this work we extended the basic framework
with the ability of dominance pruning using a dominance
relation, but it could also be extended in other ways. For
example, if backward search is possible, there are a variety
of bidirectional heuristic search algorithms that can outper-
form A∗ in terms of node expansions (Eckerle et al. 2017;
Chen et al. 2017). One could consider several extensions of
this paradigm regarding different forms of dominance, e.g.,
introducing variants that make use of more general forms
of dominance (Torralba 2017), or alternative methods to ex-
ploit this information. This may open new avenues of re-
search on how to use dominance relations beyond domi-
nance pruning in order to make the most of them.

Acknowledgments
Álvaro Torralba was employed by Saarland University and
the CISPA Helmholtz Center for Information Security dur-
ing part of the development of this paper. I would like to
thank Nathan Sturtevant for his insights on DXBB algo-
rithms. Thanks to the anonymous reviewers at SoCS’20, HS-
DIP’20, and AAAI’21 as well as to the Basel reading group
for their comments that helped me to improve the paper.

References
Asai, M.; and Fukunaga, A. 2017. Tie-Breaking Strategies
for Cost-Optimal Best First Search. Journal of Artificial In-
telligence Research 58: 67–121.

Barley, M. W.; Franco, S.; and Riddle, P. J. 2014. Overcom-
ing the Utility Problem in Heuristic Generation: Why Time
Matters. In Chien, S.; Do, M.; Fern, A.; and Ruml, W., eds.,
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS’14). AAAI Press.

Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R.
2017. Front-to-End Bidirectional Heuristic Search with
Near-Optimal Node Expansions. In Sierra, C., ed., Proceed-
ings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI’17), 489–495. AAAI Press/IJCAI.

Corrêa, A. B.; Pereira, A. G.; and Ritt, M. 2018. Analyzing
Tie-Breaking Strategies for the A* Algorithm. In Lang, J.,
ed., Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI’18), 4715–4721. ijcai.org.

Dechter, R.; and Pearl, J. 1985. Generalized Best-First
Search Strategies and the Optimality of A*. Journal of the
Association for Computing Machinery 32(3): 505–536.

Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017. Sufficient Conditions for Node Expansion
in Bidirectional Heuristic Search. In Proceedings of the
27th International Conference on Automated Planning and
Scheduling (ICAPS’17), 79–87. AAAI Press.

Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturte-
vant, N. R.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced
Partial Expansion A*. Journal of Artificial Intelligence Re-
search 50: 141–187.

Hall, D.; Cohen, A.; Burkett, D.; and Klein, D. 2013. Faster
Optimal Planning with Partial-Order Pruning. In Borrajo,
D.; Fratini, S.; Kambhampati, S.; and Oddi, A., eds., Pro-
ceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13). Rome, Italy: AAAI
Press.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2): 100–107.

Helmert, M.; Lattimore, T.; Lelis, L. H. S.; Orseau, L.;
and Sturtevant, N. R. 2019. Iterative Budgeted Exponential
Search. In Kraus, S., ed., Proceedings of the 28th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’19),
1249–1257. ijcai.org.

Karpas, E.; Betzalel, O.; Shimony, S. E.; Tolpin, D.; and Fel-
ner, A. 2018. Rational deployment of multiple heuristics in
optimal state-space search. Artificial Intelligence 256: 181–
210.
Korf, R. E. 1985. Depth-First Iterative-Deepening: An Op-
timal Admissible Tree Search. Artificial Intelligence 27(1):
97–109.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and Symmetries in Classi-
cal Planning. In Bonet, B.; and Koenig, S., eds., Proceed-
ings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), 3371–3377. AAAI Press.
Sievers, S.; Wehrle, M.; Helmert, M.; Shleyfman, A.; and
Katz, M. 2015. Factored Symmetries for Merge-and-Shrink
Abstractions. In Bonet, B.; and Koenig, S., eds., Proceed-
ings of the 29th AAAI Conference on Artificial Intelligence
(AAAI’15), 3378–3385. AAAI Press.
Sturtevant, N.; and Helmert, M. 2020. A Guide to Bud-
geted Tree Search. In Harabor, D.; and Vallati, M., eds.,
Proceedings of the Thirteenth International Symposium on
Combinatorial Search, SOCS’20, 75–81. AAAI Press. URL
https://www.aaai.org/Library/SOCS/socs20contents.php.

Torralba, Á. 2017. From Qualitative to Quantitative Dom-
inance Pruning for Optimal Planning. In Sierra, C., ed.,
Proceedings of the 26th International Joint Conference
on Artificial Intelligence (IJCAI’17), 4426–4432. AAAI
Press/IJCAI.
Torralba, Á.; and Hoffmann, J. 2015. Simulation-Based Ad-
missible Dominance Pruning. In Yang, Q., ed., Proceedings
of the 24th International Joint Conference on Artificial In-
telligence (IJCAI’15), 1689–1695. AAAI Press/IJCAI.

