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Abstract

Novelty pruning is a planning technique that focuses on ex-
ploring states that are novel, i.e., those containing facts that
have not been seen before. This seemingly simple idea has
had a huge impact on the state of the art in planning though
its effectiveness is not entirely understood yet.
We relate novelty to dominance pruning, which compares
states to previously seen states to eliminate those that are
provably worse in terms of goal distance. Novelty can be in-
terpreted as an unsafe approximation of dominance, where
states containing novel facts are relevant because they enable
new paths to the goal and, therefore, they are less likely to
be dominated by others. This provides a framework to un-
derstand the success of novelty, resulting in new variants that
combine both techniques.

Introduction
Novelty pruning is a technique that fosters the exploration
of novel states (Lipovetzky and Geffner 2012). Novelty is
measured as the size of the smallest tuple of facts that was
not contained in any previously seen state, so the most novel
states are those in which a fact is true for the first time.
This seemingly simple idea has had a huge impact on the
landscape of satisficing planning algorithms, leading to var-
ious combinations of novelty and heuristic search (Lipovet-
zky and Geffner 2017a; 2017b; Katz et al. 2017; Fickert
2018). Also, since novelty does not directly depend on the
actions, it can be used even if a full action model is not avail-
able (Lipovetzky, Ramı́rez, and Geffner 2015; Shleyfman,
Tuisov, and Domshlak 2016; Francès et al. 2017).

However, the effectiveness of novelty is not entirely un-
derstood. The success of novelty is commonly explained as a
matter of balancing exploration and exploitation, where fol-
lowing the heuristic corresponds to exploitation and expand-
ing novel states corresponds to exploration. But there are
also common situations where exploring novel facts is not
necessarily a good strategy. Consider a task where a truck
must deliver several packages spending at most 100 units of
fuel. In that case, driving back and forth between any two lo-
cations will lead to novel states because they have less fuel
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available, even though this is clearly not progressing towards
the goal. Intuitively, it would be better to focus on states that
change the position of the truck and/or packages, but this re-
quires analyzing the action model to distinguish which facts
are most relevant to achieve the goal.

To shed light on the effectiveness of novelty-based meth-
ods, we consider their relation to dominance pruning meth-
ods. Dominance pruning techniques eliminate states that are
provably “worse” than other previously seen states (Torralba
and Hoffmann 2015; Torralba 2017; 2018). In the example
above, states where the truck and packages are in the same
position with lower fuel are dominated and can be pruned.

We define a family of unsafe dominance pruning methods
that generalizes previous methods for both dominance and
novelty pruning. We explore different members of this fam-
ily, including variants that consider different sets of projec-
tions, as well as label-dominance (LD) novelty. LD novelty
combines both approaches, only considering a fact novel if
no better fact, in terms of the outgoing plans that it enables,
has been seen before. The results of the evaluation of our
new variants on IPC benchmarks confirm that using different
projections leads to an improvement in many domains. LD
novelty can also lead to more effective pruning without be-
ing less safe than standard novelty pruning, though novelty
heuristic methods do not benefit from a direct integration.

Characterizing novelty as an unsafe dominance pruning
method leads to a new interpretation about why exploring
novel states is preferable. What really matters is whether the
state has a path to the goal that was not possible from any
state seen before. We argue that this view is consistent with
previous approaches such as novelty heuristics, but putting
the emphasis on directly comparing the set of plans, rather
than facts, can lead to a better understanding of when novelty
works and how to improve it. We suggest a new method to
prioritize the expansion of non-novel states that aims to es-
timate the probability of not being dominated, consistently
improving current state-of-the-art novelty techniques.

Background
We consider classical planning in the finite-domain repre-
sentation (FDR) (Bäckström and Nebel 1995). A classical
planning task is a 4-tuple 〈V,A, sI ,G〉, where V is a set of



state variables, each with a finite domain D, A are the ac-
tions, each defined as a set of preconditions pre and effects
eff (partial variable assignments), sI is the initial state, a
complete variable assignment, and G is the goal, a partial
variable assignment. A variable/value pair var = val, with
var ∈ V and val ∈ Dvar, is called a fact. We denote the set of
all facts by F , and the set of all states (complete variable as-
signments) by S. An action a is applicable in a state s if all
its preconditions are satisfied in s. The result of applying a
in s is the state sJaK, which is the same state as s, except for
all variables v on which eff a is defined, sJaK(v) := eff a(v).
A solution to a planning task is a sequence of actions π (a
plan) leading from I to a state that satisfies the goal, and it is
called optimal if it has minimal length (|π|) among all plans.
We denote h∗(s) to the length of an optimal plan from s.

Consider a task with variables V = {t, p, f} that describe
the position of a truck with Dt = {TA, TB}, the position
of a package with Dp = {PA, PB , PT }, and the amount of
available fuel with Df = {F10, . . . , F0} respectively. I =
〈TA, PA, F10〉 and G = {PB}. There are actions that allow
to load/unload the package at the location of the truck, or
drive between A and B consuming an unit of fuel.

A transition system (TS) is a tuple Θ = 〈S, L, T, sI ,SG〉
where S is a set of states, L is a finite set of labels, T ⊆
S × L × S is a set of transitions, sI ∈ S is the start state,
and SG ⊆ S is the set of goal states. A planning task induces
a state space, which is a TS where: S is the set of all states;
sI = sI ; s ∈ SG iff G ⊆ s; L = A, and s a−→ sJaK ∈ T if a
is applicable in s. We will use s ∈ Θ to refer to states in Θ

and s a−→ t to refer to their transitions.

Novelty Pruning

Given a set of states seen so far T , the novelty of a state s is
the size of the smallest tuple of facts in s that is not contained
in any s′ ∈ T . This concept has been exploited in different
forms, the simplest one being novelty pruning, where any
state that does not qualify as novel with respect to previously
generated states is pruned. We denote the novelty pruning
method that prunes all states with novelty greater than k by
Nk (k-novelty pruning). This kind of pruning is used in it-
erated width search (IW) (Lipovetzky and Geffner 2012),
where a single iteration IW(k) is a breadth-first search with
Nk, thus expanding at most |F|k states. This relates to the
theoretical notion of width, which guarantees IW(w) will
find a solution on tasks with width w or less.

Recently, new novelty measures have been introduced that
combine novelty with heuristic functions (Katz et al. 2017;
Lipovetzky and Geffner 2017a), considering only states with
greater or equal heuristic value for the computation of nov-
elty. We briefly summarize some of the definitions by Katz
et al. here, as we will introduce new variants of them. In the
following definitions, we assume that there is a given set of
states seen so far T and a heuristic h : S 7→ N0. The nov-
elty score of a fact f is defined as N(f) = infs∈T ,f∈s h(s)
and the novelty score of a fact f in a state s is N(f, s) =
N(f) − h(s) if f ∈ s. The binary novelty heuristic hBN

separates novel states from non-novel ones:

hBN(s) =

{
0 if ∃f ∈ s,N(f, s) > 0

1 otherwise

A similar novelty heuristic, which we denote by h=BN, has
been introduced by Lipovetzky and Geffner (2017a). Under
h=BN, a state is novel if it contains a fact that that was not con-
tained in any previously seen state with the same heuristic
value, whereas hBN adds the restriction that the new heuris-
tic value must be smaller than the ones seen before.

These binary novelty heuristics only separate novel states
from non-novel ones, but it can be useful to have a more fine-
grained separation. The quantified novelty heuristic hQN also
differentiates novel states from each other: hQN(s) = |V| −∑

f∈sN
+(f, s) where N+(f, s) is 1 if N(f, s) > 0, and

0 otherwise. The quantified both heuristic hQB additionally
differentiates non-novel states from each other:

hQB(s) =

hQN(s) if hQN(s) < |V|
|V|+ ∑

f∈s
N−(f, s) otherwise

where N−(f, s) is 1 if N(f, s) < 0, and 0 otherwise.

Dominance Pruning
Dominance methods also compare a state s to a set T of al-
ready seen states to prune s if a better state t has been seen.
Different notions of dominance differ on how they compare
states, which is formalized in terms of a relation. A dom-
inance relation is a relation �⊆ S × S if s � t implies
h∗(t) ≤ h∗(s). Any such relation can be used to safely
prune a state s if ∃t ∈ T s.t. g(t) ≤ g(s) and s � t.

A relation � is goal-respecting if whenever s � t, t ∈
SG ∨ s 6∈ SG . A relation � is a simulation relation (Milner
1971) if, whenever s � t, for all s l−→ s′, there exists t l−→ t′

s.t. s′ � t′. A cost-simulation allows the transition from t to
use a different label, i.e., whenever s � t, for every s l−→ s′,

there exists t l′−→ t′ s.t. s′ � t′. Any goal-respecting cost-
simulation is a dominance relation that leads to safe pruning.

Computing a relation directly on Θ is not feasible be-
cause there are exponentially many states. Instead, a com-
positional approach is followed where the task is described
as a set of TSs {Θ1, . . . ,Θn} such that Θ = Θ1⊗· · ·⊗Θn.
The simplest choice, that we follow throughout this paper,
is to use the atomic projections onto the variables of the
planning task, so that we have a Θi for each variable in
V (Helmert et al. 2014). We denote the projection of s on
Θi by si, which corresponds to the fact s(vi). A set of rela-
tions {�1, . . . ,�n} is then computed on {Θ1, . . . ,Θn}. A
relation for the complete state space Θ can be obtained as �
s.t. s � t iff si �i ti for each Θi. In other words, the indi-
vidual relations �i compare facts associated with the same
variable, and a state dominates another if it is at least as good
according to all projections/variables. We say that a relation
on facts �i is compositionally safe if, whenever si �i ti,
replacing the fact si by ti in any state will not increase goal
distance. In our running example, replacing lower amounts
of fuel by larger amounts of fuel will never increase goal



distance. Similarly, replacing the location of a package by
setting it to its goal location is never detrimental.

Label-dominance (LD) simulation uses a fixpoint poly-
time algorithm to compute a set of coarser relations �LD=
{�LD

1 , . . . ,�LD
n } such that their combination is guaranteed

to be a cost-simulation for the entire state space Θ, so they
are compositionally safe (Torralba and Hoffmann 2015).

Combining Novelty and Dominance
Dominance and novelty pruning techniques are related as
both compare newly generated states to the set of already
seen states T . Let P = {Θ1, ...,Θn} be the set of atomic
projections and {�1, . . . ,�n} a compositionally safe dom-
inance relation on P . Then, a new state s can be pruned if:

• Safe dominance: ∃t ∈ T : ∀Θi ∈ P : si �i ti

• Novelty N1: ∀Θi ∈ P : ∃t ∈ T : si = ti

The fundamental difference between novelty and safe
dominance pruning is that, by swapping the quantifiers, the
former allows using different states t1, . . . , tk for each vari-
able/projection. To understand this difference, we analyze
the relation between facts and the plans enabled by them.
Each state s in a transition system has a corresponding set
of plans ~A(s). These are all possible paths starting from s
and ending at some goal state, possibly containing cycles
and self-loop transitions. Since we have defined a TS Θi for
each variable vi, we can also associate each fact of the plan-
ning task si ∈ Θi with a set of (abstract) plans ~A(si). The
state space of the planning task Θ is equal to the product⊗

i∈[1,n] Θi, so the set of valid plans for a state s ∈ Θ is
the intersection of the set of valid plans of each of its facts,
~A(s) =

⋂
i∈[1,n]

~A(si).
If each relation �i is a simulation relation for Θi and

si �i ti, then all paths for si are paths for ti, ~A(s) ⊆ ~A(t).
It is clear then why this is compositionally safe: by the prop-
erties of intersection, replacing si by ti can only grow the
set of plans for a state. However, simulation relations are too
strict. An LD-simulation obtains coarser relations that lead
to more pruning by allowing ti to use a different plan (e.g., a
shorter one) such that if the plan from si is valid in all other
projections, the plan from ti must be valid too.

Note that requiring that a single state t dominates s is un-
necessarily strict, because each plan from s could be proven
to be dominated by paths starting at different t ∈ T . We say
that a set of states T dominates s if for each ~as ∈ ~A(s), there
exist t ∈ T and ~at ∈ ~A(t) such that |~at| ≤ | ~as|. However, in
the compositional approach, the same state t must be used
to prove that s is dominated for all projections. When nov-
elty pruning uses different states ti to dominate s for each
projection Θi, pruning is not safe anymore because s may
have a plan that is present on tii but is spurious — ti may not
have such a path on a different projection. We model this
through the parameterQ that represents the sets of variables
that must be dominated by the same state.

The other difference between novelty and dominance
pruning is that the latter is defined over an arbitrary set of
relationsR and projections P .

Dominance
∃t ∈ T : h∗(t) ≤ h∗(s)

Cost Simulation
∀ ~as ∈ ~A(s) : ∃t ∈ T : ∃~at ∈ ~A(t) :

|~at| ≤ | ~as|

LD Simulation
∃t ∈ T ∀Θi : si �i ti

Duplicate Pruning
∃t ∈ T ∀Θi : si =i ti

LD Novelty
∀Θi ∃t ∈ T : si �i ti

Novelty
∀Θi ∃t ∈ T : si =i ti

Safe Approximation

Safe ApproximationUnsafe Approximation

Special Case Special Case

k = 1, . . . , n

k = 1, . . . , n

Figure 1: The connection between different notions of dom-
inance and novelty summed up in an illustration. The for-
mulas below each concept describe when a new state s is
pruned, given a set of already seen states T .

Definition 1 (Unsafe Dominance) Let P = {Θ1, ...,Θk}
be a set of projections. Let R = {�1, ...,�k} be a set
of relations on P and let Q ⊆ 22

P

be a set of subsets
of P . A newly generated state s is pruned under unsafe-
compositional dominance if:

∀Q ∈ Q : ∃t ∈ T : ∀Θi ∈ Q : si �i ti

In this paper we fix P to be the set of atomic projections.
This definition generalizes previous definitions of domi-
nance and novelty pruning, which correspond to appropriate
choices of the remaining two parameters: Q, andR.

Figure 1 shows a high-level diagram of how different in-
stantiations relate to each other. As subset selector we con-
sider QK which returns all subsets of size K. All of them
approximate the notion of a cost-simulation by computing a
compositional relation. Then, safe dominance pruning corre-
sponds to usingR =�LD andQ = Qk, whereas the novelty
pruning method Ni corresponds to R =�= and Q = Qi.
Combining these ideas results in a new method, which we
call LD-Novelty (NLD

i ), whereR =�LD and Q = Qi.

A New View On Novelty
The unsafe dominance pruning framework provides a new
interpretation on why novelty pruning works. Novelty ap-
proximates the ideal notion of dominance where a state is
pruned if there is another state that is closer to the goal. To
do so, it follows an approach similar to a cost simulation
where the set of plans possible from s is compared to the
set of plans possible from all other states. By comparing the
sets of plans under different projections of the planning task,
novelty identifies states having paths that no other previous
state had. According to this view, novel states are preferred
because they are less likely to be dominated by others, and
the success of novelty approaches is then linked to the cor-
relation between novel and dominated states.

We identify three sources of error (E1)–(E3) that may
cause a state to be incorrectly classified as novel or non-
novel. On the one hand, a state s may be misclassified as
novel due to some fact si (or fact tuple) that has not been



seen yet, but it is dominated because there exists t ∈ T such
that h∗(t) ≤ h∗(s). This may be because (E1) the set of
paths that are possible from si is dominated by the set of
paths that are possible from ti, i.e., for all ~as ∈ si there ex-
ists ~at ∈ ti such that ~at is as good as ~as. Another reason
(E2) is that si has a plan better than any of ti, but the path is
spurious on s.

On the other hand, s may be misclassified as non-novel
despite being the closest state to the goal. In that case, in all
projections, there exists some ti for which the optimal plan
for s is valid. However, (E3) the path from tmay be spurious
so s is not dominated and wrongly classified as non-novel.

The two parameters R and Q offer a trade-off between
these sources of error. Coarser relations (R) directly aim
to ameliorate (E1), and could be useful whenever too many
states are being considered novel. This leads to more prun-
ing, possibly increasing the error (E3) as one would expect
from arbitrary relations. Compositionally safe relations (e.g.
�LD ) are particularly suitable for this purpose and should
not be greatly affected by this since, everything else being
equal, if the path from t is spurious, the path from s is also
spurious. As pruning is unsafe the “everything else being
equal” does not hold, but in that case one could expect s
being novel due to a different variable.

Considering more or larger projections (Q) can help to
ameliorate (E3) by increasing the number of states that are
considered novel. Indeed, by choosing Q = Qn pruning
becomes safe and no state is incorrectly classified as non-
novel. However, this is very likely to increase (E1) signifi-
cantly reducing the number of non-novel states.

Next, we consider how this view fits with different
novelty-based algorithms and how our new variants of nov-
elty pruning can be applied in that context.

Iterated Width
As a means to explain the success of novelty, previous work
introduced the notion of width of a planning task. The width
of a planning task w is the minimum k such that there exists
a list of k-tuples of facts t1, . . . , tm such that t1 ⊆ sI , G ⊆
tm, and for any i ∈ [1,m− 1], every optimal plan for ti can
be extended by one action into an optimal plan for ti+1.

The IW(k) algorithm that combines breadth-first search
with k-novelty pruning is guaranteed to find a solution on
any planning task with width k. In other words, the width
of a planning task is a sufficient condition to guarantee that
novelty pruning Nk is safe for breadth-first search, i.e., pre-
serves at least one solution, though not necessarily optimal.

We define a new variant of iterated width, IW�(k) where
Nk is replaced by NLD

k . This variant has more aggres-
sive pruning, where some facts are not considered novel
even if they have never been seen, because other (better)
facts have been seen before. In our example, all facts in-
volving the remaining amount of fuel will be ignored by
IW�(1) because the initial state has a fact with the maxi-
mum amount of fuel. While this is intuitively helpful, it can
potentially eliminate useful states too. For example, if T =
{〈TA, F6, PT 〉, 〈TB , F2, PA〉} have already been seen, then
the potentially useful state s = 〈TB , F5, PT 〉 will be pruned.

However, standard novelty would also prune 〈TB , F6, PT 〉,
which is strictly better than s.

Using compositionally safe relations guarantees the prun-
ing to be safe whenever k = n. However, the following
counterexample shows that NLD

w is not safe anymore for
tasks of width w.

Theorem 1 There exist planning tasks with width 1 where
IW�(1) does not find a solution.

Proof. Consider the following planning task with two vari-
ables v1 and v2 with domains Dv1 = {A,B,C,D,G} and
Dv2 = {X,Y, Z}. The initial state is 〈v1 = A, v2 = X〉 and
the goal is v1 = G. All actions have two preconditions, and
they result in the following state space:

AX
BY

CY CX

DX
GX

The task has width 1 because of the path A → B → D →
G, so the goal can be reached by a path where there is a novel
fact at each step. Moreover, a relation such that B � C is
compositionally safe because replacing B by C in any state
does not increase goal distance. However, IW�(1) does not
find a solution because after expanding AX , CY and BY
are generated but BY is pruned because of CY , and CX is
pruned because it is not novel. �

The reason is that, whenever a tuple of facts ti dominates
another si, then by the properties of compositional domi-
nance, if si has a path to the goal, so does ti. However, by
the definition of width, the path from si is guaranteed to not
be pruned by novelty pruning, whereas the same does not
necessarily hold for the path from ti. However, this does not
imply that LD-novelty pruningNLD

i is less safe thanNi. In-
deed, opposite examples that are only solved when using a
dominance relation also exist. This may happen if the domi-
nance relation prunes some states that do not lead to the goal.
As those states are pruned, others in a path to the goal may
become novel. Our hypothesis, supported by the empirical
data of the experimental results section, is that if NLD

i uses
compositionally safe relations, this pruning will not be less
safe than Ni in practice.

Binary Novelty Heuristics
To obtain state of the art performance, novelty is combined
with heuristics to guide the search towards the goal. Here,
we analyze the novelty heuristics introduced in the back-
ground under our interpretation of novelty as an approximate
method to determine whether the state has a path to the goal
that was not present in any previous state.

The binary novelty heuristics hBN and h=BN consider a state
novel if it has a novel fact. The main difference with respect
to N1 is that they take a heuristic function into account for
the novelty. This perfectly fits our view on novelty. A fact
should be considered novel if it enables a new path that was
not possible on any state in T . The heuristic refines our be-
lief on which paths are possible from s to the goal. Since it
estimates the minimum length of a plan from s, it restricts
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Figure 2: Θh for a heuristic with maximum value of 4.

the set of valid plans to the subset of plans that have length
greater than or equal to h(s), excluding all shorter plans. If
the heuristic value is lower than any other state with the same
fact seen so far, the set of plans that are possible according
to that projection is not dominated by any previous state.

To include the information of the heuristic in our frame-
work, one can extend the partition P = {Θ1, . . . ,Θn} with
an additional transition system Θh that represents the infor-
mation about the length of a plan, like the one in Figure 2.
Then, by choosing Q = {{Θi,Θh} for i ∈ [1, n]}, we ob-
tain both methods depending on our choice for R: h=BN cor-
responds to using the identity relation, and hBN corresponds
toR = {�=

1 , . . . ,�=
n ,�LD

h }.
Using LD novelty in this context R = {�LD

1 , . . . ,�LD
n

,�LD
h } means that anytime that a fact is seen in a state with

a given heuristic value h, all dominated facts (e.g. having
less fuel) are considered to be seen with h too.

Quantitative Novelty Heuristics

A limitation of the previous approaches is that they only di-
vide states into novel and non-novel without further separa-
tion. The quantified novelty heuristics hQN and hQB provide
a numeric value that prioritizes some novel and non-novel
states over others. Ideally, this priority corresponds to the
confidence of the novelty assessment, estimating the proba-
bility that the state has a better plan than other seen states.

The quantification is different for novel and non-novel
states. For novel states, they simply count the number of
novel facts. The intuition is that if more facts are novel, there
are more novel paths so it is less likely that all of them are
dominated by other paths or spurious.

For a non-novel state s, hQB counts the number of facts
where N(f, s) < 0, i.e., how many facts have been seen be-
fore in some other state t ∈ T with h(t) < h(s). However,
this is not entirely consistent with our interpretation since it
does not directly aim to measure the probability that the as-
sessment in s being non-novel is accurate. A state s is incor-
rectly classified as non-novel whenever h∗(s) < h∗(t) for
all t ∈ T . This means that there is a plan ~s for s, such that
no other t ∈ T has a better path. However, since the state
was classified as non-novel this means that for all projec-
tions Q ∈ Q there is some t ∈ T whose projection onto Q
has a plan ~at at least as good as any plan ~sQ for s in Q. The
classification is incorrect due to (E3) whenever all possible
such paths from all such t are spurious. In principle, this is
not directly related to whether h(s) = h(t) or h(s) > h(t).

We propose an alternate measure for quantifying the non-
novel states. In general, the likelihood of all plans being spu-
rious is inversely proportional to the number of states t that
have at least one such path. Therefore, our new priority func-
tion for non-novel states replaces N− by:

N−� (f, s) = 1− 1

|{t ∈ T | s[i] �i t[i] ∧ h(t) ≤ h(s)}|

This can be efficiently computed by keeping a counter for
each fact-heuristic value pair (si, h) on the number of states
seen with that heuristic value and the same or a better fact.

Experiments
We implemented the described techniques in Fast Down-
ward (Helmert 2006). We run experiments on a cluster of
machines with Intel Xeon E5-2660 CPUs with a clock rate
of 2.2GHz using the Lab framework (Seipp et al. 2017). The
time and memory limits are set to 30 minutes and 4GB. We
consider all STRIPS domains from the satisficing tracks of
all International Planning Competitions (IPC) up to 2018.

Effective Width Analysis
We first evaluate our hypothesis that using compositionally
safe relations can increase the amount of pruning, while re-
maining as safe. To do so, we measure the effective width,
i.e., how many instances are solved in practice by IW(k)
compared to IW�(k) for different relations �.

Relation we = 1 we = 2 we > 2

�= 40.42% 46.25% 13.32%
�LD 40.35% 45.82% 13.83%

�LD2 38.80% 38.99% 22.21%
�LD1 36.81% 21.32% 41.87%
�LD0 23.82% 0.00% 76.18%
�LDinv 21.80% 27.86% 50.34%

Table 1: Percentage of tasks with effective width of 1, 2, or
greater per domain on average on tasks with a single goal.
Safe relations (�= and �LD ) are compared against unsafe
approximations of �LD .

Table 1 shows the effective width of instances with a sin-
gle goal, as reported in the evaluation by Lipovetzky and
Geffner (2012). For each IPC instance, we generate at most
100 instances by selecting single goals at random if the task
has more than 100 goals. The identity relation (�=) is the
baseline and corresponds to standard novelty pruning. LD-
simulation (�LD ) is a compositionally safe relation. The re-
sults are consistent with our hypothesis, as there is no signif-
icant change in the effective width of the instances between
these two configurations. Fig. 3 compares the number of ex-
pansions of IW(2) and IW�(2) to show that indeed, pruning
is more aggressive when using �LD . This is especially the
case for instances with a single goal fact, since the domi-
nance relations can be much coarser in that case as many
variables become irrelevant. It is remarkable that the num-
ber of instances solved is practically equal, even though the
number of expansions is reduced by up to three orders of
magnitude. The picture is similar for IW(1).
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Figure 3: Expansions made by IW(2) and IW�(2) on IPC instances (left) and single goal instances (right).

To analyze whether the same result would be obtained
by relations that are not compositionally safe, we intro-
duce relations without this property. For this, we use the
same fixpoint algorithm used to compute LD-simulation re-
lations (Torralba and Hoffmann 2015) but stopping it ear-
lier, before the fixpoint is reached. This algorithm initial-
izes the set of relations with a coarser relation �LD0 where
a fact ti dominates another si if the goal-distance of ti in
the projection Θi is not greater than that of si. Therefore,
all facts belonging to a variable with no goal defined are
considered equivalent according to this relation. Afterwards,
this relation is iteratively refined, by removing all pairs
(si, ti) that do not fulfill the properties of LD-simulation
under an overapproximated label dominance, resulting in
relations �LD1,�LD2, . . . until it converges on �LD . All
these variants result in more aggressive pruning than �LD ,
and they are not guaranteed to be compositionally safe. We
also compare against the inverse relation, �LDinv , defined
as s �LDinv t ⇔ t �LD s. �LDinv considers non-novel
any fact if some fact that is worse according to �LD has
been seen before, resulting in extremely unsafe pruning. In-
deed, the results of Table 1 show how IW(1) and IW(2) with
non-compositionally safe relations solve much fewer tasks,
significantly increasing the effective width. Note that, with
unsafe relations the iterated-width search is no longer com-
plete so the effective width could be infinity in many tasks.

Novelty Heuristics
We focus our evaluation on the quantified both heuristic with
underlying delete relaxation (hFF) heuristics (Hoffmann and
Nebel 2001). Following the evaluation in Katz et al.’s work
(2017), the heuristic is used in greedy best-first search with
lazy evaluation, without other search enhancements like pre-
ferred operators. Ties between states with the same hQB val-
ues are broken by the underlying heuristics. We analyze, one
by one, the impact of changing the relations (R), sets of pro-
jections (Q), and priority of non-novel states (N−).

Atomic Q1 Projections Qpre

N− N−� N− N−�

�LD

�=

1499

1564

1526

1598

6

14

6 18

6 16

5

15

1528

1618

1493

1593

3

20

16 8

11 8

2

22

Table 2: Analysis of �= vs. �LD , and N− vs. N−� for
two choices of Q. The large numbers show the total cover-
age of each configuration. The small numbers on each edge
show the number of domains in which one configuration has
higher coverage than the other, e.g. the configuration with
atomic projections, N−, and �= beats the same configura-
tion but using �LD in 14 domains and loses in 6.

Relations (R) Table 2 shows a comparison of the cov-
erage obtained by different variants of the quantified both
heuristics when using �= and �LD as relations (Q1 and
Qpre are defined below). The comparison shows that the
baseline�= consistently obtains better coverage, though us-
ing dominance relations does help in a few domains. This
does not accurately represent the impact of �LD on search
effort, since results are biased by the cost of computing the
dominance relation, which may be prohibitive on instances
with a very large number of actions and/or variables. Fig. 4a
directly compares the expansions made by both configura-
tions. The impact of using a dominance relation can be very
positive whenever this helps to explore a better set of novel
states, avoiding the expansion of any novel state. But there
are also cases where reducing the number of novel states
hurts performance. In some cases the results are affected by
the effect of tie-breaking, but there are domains where using
�LD consistently reduces the number of expansions (Driver-
Log, Gripper, Maintenance, Rovers, Satellite, TidyBot, and
Woodworking), and others where it is consistently worse
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Figure 4: Expansions of lazy greedy best-first search with hQB (hFF) when changing (a) Q, (b) R, and (c) the priority for non-
novel states. Colors provide information about the number of novel/non-novel states explored on solved tasks: Figs (a) and (c)
show whether all expansions were novel and Fig (b) shows the percentage of novel states explored by the baseline.

(Parking, TPP, and NoMystery). A reason for this is that
the dominance-based novelty is more greedy about achiev-
ing sub-goals because they dominate other facts, which is a
good strategy for some domains but not for others.

Quantification of Non-Novel States The new priority
function for non-novel states (N−� ) outperforms the base-
line if atomic projections are used (see Table 2). Fig. 4b
shows a detailed picture of the number of expansions in that
case. Clearly, when the baseline expands a big percentage
of non-novel states, there is more margin of improvement.
In those cases, N−� can reduce the number of expansions
significantly, in many cases over one order of magnitude. If
larger projections are used (Qpre , see below), however, N−�
is not as beneficial. The reason is that using larger projec-
tions greatly increases the number of novel states, so that the
priority for non-novel states has a lower impact and the over-
head of computing N−� over N− reduces the performance.

Projections (Q) We consider several methods to gener-
ate projections for the planning task. Q1 and Q2 consider
all projections of size 1 and 2 respectively. Other variants
try to select variables that are related to each other, either
in the causal graph (cg) (Helmert 2004), or because there
is an action whose precondition depends on both variables
(pre). Qcg

1,2 and Qpre
1,2 use all atomic projections plus all

projections that contain exactly two related variables. Qpre

and Qcg use a single projection per variable, but including
as many directly related variables as possible up to a limit
of 1000 abstract states. Table 3 shows a comparison of all
these configurations (using �=) and Fig. 4c directly com-
pares the best configuration, Qpre , against the baseline Q1,
which corresponds to the standard hQB introduced in pre-
vious work. Overall, considering projections is beneficial,
mainly because by greatly increasing the number of novel
states, it often avoids exploring any non-novel state. The
best performance is obtained by configurations that do not
choose too many projections and do not impose a strict limit

Q1 Q2 Qcg
1,2 Qpre

1,2 Qcg Qpre Total

Q1 – 14 8 9 8 9 1564
Q2 17 – 6 6 8 6 1551
Qcg

1,2 20 15 – 7 10 10 1609
Qpre

1,2 17 16 8 – 9 7 1618
Qcg 20 20 15 13 – 6 1630
Qpre 17 17 13 15 8 – 1634

Table 3: Pairwise comparison of different projections. The
value in row r and column c incicates the number of domains
in which the configuration in row r has higher coverage than
the one in column c. The last column shows total coverage.

BFWS MERW. Q1 N−� Qpre Total

BFWS – 10 17 13 16 1628
MERW. 14 – 17 12 12 1637
Q1 13 13 – 6 8 1608
N−� 14 14 14 – 9 1626
Qpre 15 15 15 12 – 1658

Table 4: Pairwise comparison to state-of-the-art planners.

of 2 on the number of variables in a single projection. The
impact of different mechanisms to choose related variables
(cg or pre) is not too large, but in general it seems that pre
is slightly better. Choosing variables that appear together in
the precondition of actions may be helpful since it influences
whether the paths in the projection are spurious or not.

Comparison to State of the Art We compare our best
configurations against the state-of-the-art novelty-based
planners Dual-BFWS (Lipovetzky and Geffner 2017a;
Francès et al. 2018), which uses h=BN with multiple base
heuristics based on delete relaxation and landmarks (Por-
teous, Sebastia, and Hoffmann 2001), and MERWIN (Katz



et al. 2018), which combines hQB with the red-black par-
tial delete relaxation heuristic (Domshlak, Hoffmann, and
Katz 2015). In this comparison, we combine both hFF and
the landmark-count heuristic (Porteous, Sebastia, and Hoff-
mann 2001; Richter, Helmert, and Westphal 2008) in our
configurations (using the novelty heuristic based on both
as the main evaluator, then breaking ties by hFF and hLM

in that order), which yielded the best results in our exper-
iments. Table 4 shows a domain-wise comparison with the
aforementioned planners. Our configurations are (1)Q1, our
baseline using atomic projections and identity relations, (2)
N−� , the same as (1) but separating non-novel states by N−� ,
and (3) Qpre , the same as (1) but using Qpre projections.
Our configurations are very competitive, with Qpre beating
both Dual-BFWS and MERWIN in terms of overall cover-
age. Overall, all shown configurations are very complemen-
tary (in particular Qpre and Dual-BFWS), even though they
are all based on the same technique (i.e. novelty pruning).

Conclusion
Novelty and dominance pruning are closely related meth-
ods that compare newly generated states against all previ-
ously known states. While novelty methods are tradition-
ally defined in terms of novel facts, we re-define them as an
approximate dominance pruning method that compares the
outgoing action paths in a set of projections. This enables
several extensions, such as combining notions of dominance
and novelty pruning to avoid considering facts novel that do
not enable better paths to the goal.
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