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Abstract

The cost-optimal track of the international planning
competition in 2014 has seen an unexpected outcome.
Different to the precursing competition in 2011, where
explicit-state heuristic search planning scored best, ad-
vances in the state-set exploration with BDDs showed a
significant lead. In this paper we review the outcome of
the competition, briefly looking into the internals of the
competing systems.

Introduction
The deterministic part of the International Planning Compe-
tition (IPC) runs every 2-3 years. In 20141, it included a tem-
poral, a sequential, and an agile track, optimizing different
criteria for plans (action cost, CPU time and total-time). The
PDDL input specification language has not been changed,
but more emphasis was given to conditional effects.

Probably most exiting was the cost-optimal sequential
planning track, enforcing plans of minimal sum of ac-
tion costs (see Fig. 1). The top five performing planners
were SYMBA*-2 (151 of 280 problems solved), SYMBA*-
1 (143), CGAMER (120), SPM&S (114), RIDA* (113),
DYNAMIC-GAMER (99). All but one of these systems ex-
ploit (reduced ordered) binary decision diagrams (BDDs) for
state-space traversal and heuristic guidance (Edelkamp and
Kissmann 2009).

While in 20082 the BDD-based planner GAMER won
the sequential optimal track, in 2011 explicit-state heuristic
search planners, especially portfolio planners took the lead3.
Among the leading heuristics in the portfolios were LM-cut
and Merge&Shrink. Many competitors in 2014, thus, were
focused on the combination of multiple planners or heuris-
tics. There were also new methods like flow heuristics, au-
tomated pruning via symmetries and partial-order reduction
or incremental computation of LM-cut (Chrpa, Vallati, and
McCluskey 2014). But this time, BDDs stroke back.
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1http://helios.hud.ac.uk/scommv/IPC-14
2http://ipc.informatik.uni-freiburg.de
3http://www.plg.inf.uc3m.es/ipc2011-deterministic

BDD Basics
What is a BDD? A BDD is a directed acyclic graph data

structure for a Boolean function (Wegener 2000). Nodes
are labeled with variables, edges and sinks are labeled
with 1 and 0. Redundant nodes are eliminated and the
variable ordering is the same on every path.

What do BDDs represent? BDDs are characteristic func-
tions of planning state sets (Edelkamp 2014). Each path
from root to the 1-sink acts as the binary representation of
one state in the set. Initial and goal conditions can also be
represented as such state sets.

How does planning with BDDs work? Planning actions
are cast as a set representation of their pre- and post-
conditions (transition relation). In the image symbolic
exploration checks the pre- and applies the postcondi-
tion (Edelkamp, Kissmann, and Torralba 2012a).

What is the advantage of BDDs? Firstly, BDDs can have
an advantage in space. Some polynomial-sized BDDs rep-
resent exponentially many states (Edelkamp and Kiss-
mann 2008). Secondly, forward and backward exploration
are the same, except that the initial and goal condition as
well as the pre- and postcondition are exchanged. Thirdly,
the compact representation of many states in a smaller
structure, often results in faster runtimes.

Can BDDs execute heuristic search? Algorithms like
BDDA* (Edelkamp and Reffel 1999) use BDDs for
the search space and for the heuristic. Symbolic PDB
heuristics (Edelkamp 2002) refer to backward unguided
exploration in abstract state spaces. Other heuristics
like Merge&Shrink also enjoy a BDD representa-
tion (Edelkamp, Kissmann, and Torralba 2012b).

Essentials of the Top IPC Performers
In the BDD-based planners of the 2014 competition, prob-
lems in (pre-) processing apparent in some of the 2011 do-
mains have been resolved and the support of conditional
effects has been added. New partitioned ways of comput-
ing the successor set were applied (Torralba, Edelkamp, and
Kissmann 2013). Mutex (h2) constraints were used to sim-
plify the problem and rule out illegal states (Torralba and
Alcázar 2013). On top of these advances, the best perform-
ers have the following ingredients.
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Figure 1: IPC-2014 Results, Sequential Optimal Track.

• GAMER variants used symbolic bidirectional blind
search: DYNAMIC-GAMER uses dynamic variable re-
ordering during the search (Kissmann and Hoffmann
2013) and CGAMER extends GAMER with state-invariant
constraints and improved successor generation methods.

• SYMBA* is a combination of forward and backward
symbolic heuristic searches. It uses perimeter abstraction
heuristics (Dillenburg and Nelson 1994). for the search
frontiers to meet and to finally prove optimality.

• SPM&S applies A∗ search with symbolic perimeter ab-
straction heuristics. It performs symbolic regression to
construct a perimeter around the goal, which is used to
initialize a symbolic version of PDBs and Merge&Shrink
heuristics (Torralba, Linares López, and Borrajo 2013).
• RIDA* is a non-symbolic planner that combines differ-

ent heuristics, selecting a subset of useful heuristics for
each given problem (Barley, Franco, and Riddle 2014).
Among other heuristics, such as LM-cut, it uses genetic
algorithms to generate a large set of PDBs. A gene rep-
resentation of variable selection patterns is populated and
evolution selects the fittest. Note that the original work on
the automated selection of PDB heuristics with genetic
algorithms already used BDDs (Edelkamp 2007).

Lessons Learnt
The outcome of a planning competition is clearly subject
to the benchmark domains chosen. We do not expect a uni-
versal best solver across all domains, but the comeback of
BDDs in AI planning in 2014 is remarkable. With the rise of
more efficient SAT solvers and the success story of heuristic
search planners, BDDs were no longer seen as first choice
in state-space planning. The results of IPC 2014, however,
show that this interpretation could be revised.

BDDs are especially good in the construction of PDBs
and related estimates. They support breadth-first and (dis-
crete) cost-first search in both directions (Kissmann and
Edelkamp 2011). The top IPC 2014 planners highlight
the importance of regression and bidirectional search.
SYMBA*, CGAMER and DYNAMIC-GAMER additionally
applies symbolic bidirectional search and SPM&S uses
standard A* search, but symbolic regression to generate a
perimeter around the goal as well as abstraction heuristics.

Apart from symbolic search planners, in IPC 2014 most
planners have been focused on different methods for com-
bining heuristics, either portfolio design approaches or
utility-estimation based methods. An important factor for
the success of such methods is the diversity of the esti-
mate values. As the experiments in RIDA* show, automated
methods for the combination of PDB heuristic estimates that
exploit this characteristic are superior to the state-of-the-art.
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