
cGamer: Constrained Gamer
Álvaro Torralba and Vidal Alcázar
{alvaro.torralba, vidal.alcazar}@uc3m.es

Universidad Carlos III de Madrid, Madrid, Spain

Peter Kissmann
kissmann@cs.uni-saarland.de

Saarland University, Saarbrücken, Germany

Stefan Edelkamp
edelkamp@tzi.de

University of Bremen, Bremen, Germany

Abstract

Gamer is a symbolic planner that performs (in this case) bidi-
rectional symbolic search. It already participated in 2008 and
2011, so in this paper we will focus on the improvements
since then. The main improvements are: fixing some bugs and
implementing basic improvements; a disjunctive partitioning
of the transition relations; and the exploitation of state invari-
ants both during the preprocessing phase and during search.

Motivation
Symbolic search can obtain exponential savings in both time
and space compared to regular explicit-state search (McMil-
lan 1993). This is achieved by using binary decision dia-
grams (BDDs) (Bryant 1986) to represent both sets of states
and transition relations (TRs). Furthermore, the use of BDDs
allows a seamless implementation of detection of subsumed
states and collision of frontiers, which opens up the possibil-
ity of using regression and bidirectional search algorithms
efficiently (Alcázar, Fernández, and Borrajo 2014).

Gamer (Kissmann and Edelkamp 2011), the vanilla ver-
sion of cGamer, already participated in the International
Planning Competitions (IPC) of 2008 and 2011. While it
won the competition in 2008, in 2011 it solved 148 prob-
lems, which was kind of underwhelming given that the win-
ner solved 185 tasks. As described in Section 6.5.5 of Peter
Kissmann’s PhD Thesis (Kissmann 2012), after fixing some
bugs and implementing some basic improvements (such as
using a more efficient parser for grounded PDDL) Gamer
is able to solve 13 additional problems (own results). Also,
on a per domain analysis we can see that Gamer, although
still worse overall, outperforms the rest of the participants
in quite a few domains. All this means that symbolic search
cannot be ruled out and that Gamer, under the right circum-
stances, is still a strong contestant.

Driven by recent research, an important increase in per-
formance in Gamer has been obtained. Two orthogonal
works, one dealing with the handling of the TRs (Torralba,
Edelkamp, and Kissmann 2013) and another dealing with
the encoding of state invariants in symbolic search (Tor-
ralba and Alcázar 2013), reported significantly better cov-
erage than the one obtained by Gamer. cGamer, the plan-
ner described here, implements some techniques proposed
in these previous works.

Symbolic Search
Symbolic search was originally proposed in the area of
model checking (McMillan 1993). The basic idea is to per-
form set-based search as opposed to the traditional search
expanding one state at a time. Sets of states are represented
with efficient data structures, like Binary Decision Diagrams
(BDDs) (Bryant 1986). To perform the search, planning ac-
tions are represented with one or more Transition Relations
(TRs). The successor generation in symbolic search is per-
formed with the image and pre-image operations of a set of
states with respect a transition relation. Given a set of states
and a TR, the image operation computes the set of succes-
sor states that can be reached from any state in the set by
applying any operator represented by the TR. Similarly, the
pre-image operation computes the set of predecessor states
in regression.

Our predecessor planner, Gamer, is a symbolic search
planner that implements two algorithms: symbolic breadth-
first search and symbolic A∗ with symbolic pattern database
heuristics (Culberson and Schaeffer 1998; Edelkamp 2002).
From what we observed both in the results of IPC-11 and
our experimentation, using pattern databases (PDBs) is of-
ten worse than just using bidirectional blind search. This is
the case for most domains without non-unit action costs, and
even in unit-cost domains selecting patterns and precomput-
ing the PDBs is often not better than just searching in both
directions with no heuristics.

The main advantage of the bidirectional search is that it
can interleave the search in forward and backward direc-
tions. Gamer estimates which direction is easier to expand
by taking into account the time spent in the last steps. Thus,
the new version of Gamer features a symbolic bidirectional
Dijkstra search, that is able to cope with non-unit cost do-
mains (Edelkamp, Kissmann, and Torralba 2012).

Preprocessing
Apart from using Gamer’s parser, we employ Fast Down-
ward’s translator and preprocessor (Helmert 2006; 2009)
to generate the SAS+ encoding of the task.1 There are

1Using both Gamer and Fast Downward in the preprocessing
phase is redundant. We did so for convenience, as not all the nec-
essary techniques were implemented in both preprocessors.

74



three noteworthy considerations regarding the preprocessing
phase in cGamer:

• How the SAS+ variables are selected.
• How to compute h2 (Bonet and Geffner 2001) and prune

spurious operators.
• How conditional effects are dealt with.

SAS+ Variable Selection
Switching from Gamer’s SAS+ encoding to the Fast Down-
ward version (Helmert 2009), we observed a decrease of per-
formance in some benchmark domains. We changed the se-
lection of which invariant groups are used as SAS+ variables
in order to avoid that degradation in performance.

The Fast Downward planner chooses invariant groups
with the highest cardinality as SAS+ variables, until all the
fluents of the problem have been considered in a variable.
Aiming to further reduce the number of SAS+ variables se-
lected, we prefer to select invariant groups that contain flu-
ents that do not appear in other invariant groups. We base
our criterion on the observation that, since all the fluents of
the problem have to be included in a SAS+ variable, invari-
ant groups that have a fluent which does not appear in other
invariant groups will always be selected anyway.

As an example, think of the following case, based on a
simplified version of the IPC-2011 floortile domain: we have
two robots on a grid such that the robots cannot be at the
same cell at the same time. Two types of invariant groups
are detected:

1. Each robot is at exactly one single cell:
(at robot1 cell1),(at robot1 cell2),. . .

2. Each cell either is clear or has a robot at it:
(clear cell1),(at robot1 cell1),(at robot2 cell1)

Invariants of the first type have larger cardinality, so Fast
Downward would encode this problem with a variable per
robot that represents the location of the robot ({(at robot1
cell1),(at robot1 cell2),. . .}) and a variable of the kind
{(clear cell1),〈none of those〉} per cell. In our case, we pre-
fer to select invariant groups of the second type first because
each fluent (clear cell1) only takes part on a single invariant
group. Thus, we would only have a variable per cell of the
kind {(clear cell1),(at robot1 cell1),(at robot2 cell1)}, which
amounts to fewer variables and fluents.

This leads to the use of “exactly-one” invariant groups as
variables in most cases, avoiding the use of “at-most-one”
invariant groups if possible – which require an additional
〈none of those〉 fluent. With this policy the number of re-
sulting variables and fluents is usually lower. This may be
counterproductive if techniques that depend on the causal
graph are used, but this only affects us when choosing the
ordering of the variables.

Computing h2 Invariants and Pruning Spurious
Operators
We have implemented the computation of the h2 in Fast
Downward’s preprocessor. We also implemented a back-
ward version of h2 (Haslum 2008), which identifies pairs

of propositions that cannot be reached from goal states in
regression.

We use the mutexes obtained from h2 and the “exactly-
one” invariant groups from Fast Downward’s monotonicity
analysis to disambiguate the preconditions and the effects
of the operators of the problem (Alcázar et al. 2013). We
discard operators whose preconditions or effects are spuri-
ous sets of fluents, that is, contradict the previously inferred
state invariants. We do this because the number of ground
operators is significantly reduced in many planning domains
with respect to the standard preprocessor of Fast Downward.

The discovery and use of the state invariants during this
phase is interleaved: whenever new mutexes or spurious op-
erators are discovered in this process, we repeat the compu-
tation of h2 in both directions and the operator disambigua-
tion until no more constraints are inferred. We set a limit of
300 seconds for this phase.

Conditional Effects
Conditional effects are compiled away by using adl2strips
(Hoffmann et al. 2006), a tool initially developed by Jörg
Hoffmann and modified later by Sergio Núñez that converts
more expressive planning instances into STRIPS. adl2strips
implements two different methods for compiling away con-
ditional effects (Gazen and Knoblock 1997; Nebel 2011).
Both compilations have their pros and cons. Gazen and
Knoblock’s compilation may generate an exponential num-
ber of STRIPS actions on the size of the input task. On the
other hand, Nebel’s compilation guarantees that the number
of STRIPS actions is polynomial on the size of the input
task, but increases the plan length. Therefore, we use Gazen
and Knoblock’s compilation for tasks with at most three con-
ditional effects in the same PDDL action and Nebel’s com-
pilation otherwise.

Disjunctive Transition Relations
Torralba, Edelkamp, and Kissmann (2013) identified the im-
age and pre-image operations and the subsequent union of
successor sets as a bottleneck. In other words, the encoding
of planning operators in the Transition Relations (TRs) may
have a large impact on the overall performance. In Gamer,
a TR was used to represent each operator. Several alterna-
tives were proposed; among them, computing a disjunction
of the TRs of operators with the same cost stood out for its
simplicity and results.

Since the disjunction of all the TRs of the problem is
sometimes not tractable to compute, we set a limit MAX -
TR SIZE on the maximum number of nodes that any TR
may have. If this limit is reached during the computation of
the disjunction of TRs, several disjunctive TRs smaller than
MAX TR SIZE will be used instead of a single TR. When
multiple disjunctive TRs must be used, the choice of which
TRs must be merged is critical, as the number and size of
the resulting disjunctive TRs depends on it. This is done us-
ing a balanced merging approach based on the disjunction
tree used in the original Gamer to compute the disjunction
of successor sets. For the competition, cGamer uses a limit
of MAX TR SIZE=100k nodes.

75



Encoding State Invariants in Symbolic Search
Regression is common in symbolic search, both as a part of
the main search algorithm and as a way to derive admissi-
ble heuristics. Although constraints derived from state in-
variants are commonly used in explicit-state regression, in
symbolic regression this had not been done. Hence, Torralba
and Alcázar (2013) proposed several ways of encoding these
constraints in symbolic search. According with the experi-
mental results, the most efficient method to apply constraints
in symbolic search is to encode them in the TRs.

In cGamer we encode binary mutexes derived from the
computation of h2 and invariant groups derived from Fast
Downward’s monotonicity analysis. Before computing the
disjunction of the TRs described in the previous section, the
TR corresponding to each operator is enriched with all the
constraints that may be violated after applying the operator.
Thus, no state violating the constraints is generated in the
search.

An important difference with respect to the version pre-
sented in (Torralba and Alcázar 2013) is that we also de-
rive mutexes from the backward computation of h2. These
backward mutexes are used to prune the forward search in
a similar manner to how forward h2 mutexes are used in re-
gression.

Acknowledgements
This work has been partially supported by a FPI grant from
the Spanish government associated to the MICINN project
TIN2008-06701-C03-03, and it has also been supported by
the project TIN2011-27652-C03-02. We’d like to thank both
Jörg Hoffmann and Sergio Núñez for adl2strips.

References
Alcázar, V.; Borrajo, D.; Fernández, S.; and Fuentetaja, R.
2013. Revisiting regression in planning. In International
Joint Conference on Artificial Intelligence, 2254–2260.
Alcázar, V.; Fernández, S.; and Borrajo, D. 2014. Analyzing
the impact of partial states on duplicate detection and colli-
sion of frontiers. In International Conference on Automated
Planning and Scheduling.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Comput. Intell. 14(3):318–334.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
bolic A∗ search with pattern databases and the merge-and-
shrink abstraction. In European Conference on Artificial In-
telligence (ECAI), 306–311.
Edelkamp, S. 2002. Symbolic pattern databases in heuris-
tic search planning. In Conference on Artificial Intelligence
Planning Systems (AIPS), 274–283.
Gazen, B. C., and Knoblock, C. A. 1997. Combining the
expressivity of ucpop with the efficiency of graphplan. In
ECP, 221–233.

Haslum, P. 2008. Additive and reversed relaxed reachabil-
ity heuristics revisited. Proceedings of the 6th International
Planning Competition.
Helmert, M. 2006. The Fast Downward planning system. J.
Artif. Intell. Res. (JAIR) 26:191–246.
Helmert, M. 2009. Concise finite-domain representations
for PDDL planning tasks. Artificial Intelligence 173(5-
6):503–535.
Hoffmann, J.; Edelkamp, S.; Thı́ebaux, S.; Englert, R.; Li-
porace, F.; and Trüg, S. 2006. Engineering benchmarks for
planning: the domains used in the deterministic part of IPC-
4. Journal of Artificial Intelligence Research (JAIR) 26:453–
541.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In AAAI
Conference on Artificial Intelligence (AAAI), 992–997.
Kissmann, P. 2012. Symbolic Search in Planning and Gen-
eral Game Playing. Ph.D. Dissertation, Universität Bremen,
Germany.
McMillan, K. L. 1993. Symbolic Model Checking.
Nebel, B. 2011. On the compilability and expressive power
of propositional planning formalisms. CoRR abs/1106.0247.
Torralba, Á., and Alcázar, V. 2013. Constrained symbolic
search: On mutexes, BDD minimization and more. In Sym-
posium on Combinatorial Search (SoCS), 175–183.
Torralba, Á.; Edelkamp, S.; and Kissmann, P. 2013. Tran-
sition trees for cost-optimal symbolic planning. In Interna-
tional Conference on Automated Planning and Scheduling.

76


