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Abstract

Lately, several important advancements have been obtained in
symbolic search. First, bidirectional blind search has obtained
good results on many domains. Second, perimeter-based ab-
straction heuristics have been proposed as an important im-
provement over regular abstraction heuristics. Motivated by
the synergy between bidirectional search and perimeter-based
abstraction heuristics, here we present SymBA∗, which per-
forms bidirectional A∗ using the frontiers of the opposite
search to infer informed perimeter-based abstraction heuris-
tics.

Motivation
Most cost-optimal planners are based on A∗ guided with an
admissible heuristic. Bidirectional search has not been ex-
plored so extensively, due to the inherent difficulties of re-
gression in planning and the computational cost of detecting
collision between frontiers (Alcázar, Fernández, and Borrajo
2014). However, symbolic search (McMillan 1993) reasons
using sets of states, avoiding the otherwise complex prob-
lem of subsumption of states and substantially reducing the
cost of detecting the collision of frontiers. Moreover, re-
cent advances in symbolic search planning have helped to
overcome some of the problems of performing regression in
planning (Torralba and Alcázar 2013). Thus, recent results
have shown that symbolic bidirectional blind search has be-
come one of the best alternatives for cost-optimal planning,
outperforming not only A∗-based planners but also BDDA∗,
the symbolic search variant of A∗.

These recent improvements have risen the question of
whether it is possible to use heuristics in combination with
symbolic bidirectional search. Bidirectional heuristic search
has a long history (Pohl 1969; de Champeaux 1983), but the
hardness of proving optimality reduces considerably the ad-
vantages it has over regular A∗ (Kaindl and Kainz 1997).
Because of this, bidirectional heuristic search has fallen out
of flavor, with the majority of the search and planning com-
munity working mostly with regular A∗.

Abstraction heuristics, like Pattern Databases
(PDBs) (Culberson and Schaeffer 1998) and Merge-
and-Shrink (M&S) (Helmert et al. 2014), are commonly
used admissible heuristics. These heuristics can be
enhanced with a perimeter (Felner and Ofek 2007;
Eyerich and Helmert 2013; Torralba, Linares López, and

Borrajo 2013), which leads to a strictly more informed
heuristic than both the abstraction heuristic and the perime-
ter alone. Now, abstraction heuristics do not require a
perimeter of a fixed radius to obtain better estimates –
any frontier in the original space can be used as a seed to
improve the heuristic as long as the g value of the expanded
states is optimal. Because of this, we propose the use of the
frontier in one direction in a bidirectional search algorithm
to enhance an abstraction heuristic used by the search in the
opposite direction.

The aim of the SymBA∗ planner is to exploit the synergy
between bidirectional search and perimeter-based abstrac-
tion heuristics. SymBA∗ performs bidirectional searches on
different state spaces. It starts in the original search space
and, when the search becomes too hard, it derives an ab-
straction heuristic enhanced by the frontier of the opposite
direction. The planner decides at any point whether to ad-
vance the search in the original state space, enlarging the
perimeter, or search in an abstract state space to provide bet-
ter heuristic estimations for the unabstracted search.1

This paper describes the main algorithm used by the plan-
ner and technical and implementation details. A more elab-
orate theoretical discussion will be presented in a future pa-
per.

Symbolic Bidirectional A∗

SymBA∗ performs several symbolic bidirectional A∗

searches on different state spaces. We denote a bidirectional
search on a state space, Θi, as SΘi . A bidirectional search is
composed of two unidirectional searches in opposite direc-
tions: a forward search, SΘi

fw , and a backward search, SΘi
bw .

We will use SΘi
u to denote a unidirectional search in an un-

specified direction. f(SΘi
u ) denotes the value of the f -layer

with minimum f .
First, SymBA∗ starts a bidirectional search in the origi-

nal state space. Since no abstraction heuristic has been de-
rived yet, it behaves like symbolic bidirectional blind search.

1A connection can be made with hierarchical heuristic
search (Holte, Grajkowski, and Tanner 2005), in particular with
Switchback (Larsen et al. 2010) and its improved version Short-
Circuit (Leighton, Ruml, and Holte 2011), as both traverse the ab-
stract state lazily to avoid searching parts that are irrelevant for the
problem at hand.
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This search continues until the next step in both directions
is deemed as not searchable, because SymBA∗ estimates
that it will take too much time or memory. Only then, a
new bidirectional search is initialized in an abstract state
space. Both the forward and backward searches are initial-
ized with the frontiers of the current original search. The ab-
stract searches provide heuristic estimations for the original
search, increasing the f -value of states in the search frontier.
Eventually, the search in the original state space will be sim-
plified (as the number of states with minimum f -value will
be smaller)2and SymBA∗ will continue expanding states in
the original search space.

A distinction must be made between bidirectional search
in the original state space and the ones performed in abstract
state spaces. The first type of search aims to find a plan, so
techniques like nipping and pruning (Kwa 1989) should re-
main activated to prune both search frontiers whenever they
meet. On the other hand, searches on abstract state spaces
are used to derive heuristic estimates for the original search.
The additional pruning is deactivated in order to guarantee
that the derived heuristics are admissible.

Algorithm 1: SymBA∗

1 SΘ
fw ← 〈I,Θ〉

2 SΘ
bw ← 〈G,Θ〉

3 SearchPool ← {SΘ
fw ,S

Θ
bw}

4 π ← None

5 while max(f(SΘ
fw ), f(SΘ

bw )) < Cost(π) do
6 if ∃S ∈ SearchPool | IsCandidate(S) then
7 SΘi

u ← SelectSearch(SearchPool )
8 π′ ← Expand-frontier(SΘi

u )
9 if Θi = Θ ∧ π′ 6= ∅ ∧ Cost(π′) < Cost(π) then

10 π ← π′

11 Notify-h(SΘi , SΘ)
12 else
13 α←Select-abstraction(SΘ

fw , SΘ
bw)

14
〈
SΘα
fw ,SΘα

bw

〉
←Apply(α, SΘ

fw , SΘ
bw)

15 SearchPool ← SearchPool ∪ {SΘα
fw ,SΘα

bw }
16 return π

Algorithm 1 shows the main algorithm of SymBA∗,
which decides whether to advance the search in the original
state space or in one of the abstract state spaces. SymBA∗

maintains a pool of all the current active searches. The pool
is initialized with a bidirectional search on the original state
space. The algorithm proceeds while the current best solu-
tion so far has not been proven optimal (line 5). At each
iteration, the algorithm filters the searches that are valid can-
didates from the pool and selects the most promising ones.

A search is a valid candidate if and only if it is both useful
and searchable. The search in the original search space is

2This is not entirely true in the symbolic case, as having fewer
states does not mean that the BDD that represents them is smaller,
but in most cases there is a positive correlation.

always useful. A search in an abstract search space is useful
if and only if there are still states from the opposite frontier
that do not correspond to a state already expanded in the
abstract space. The main intuition behind this is that non-
useful searches cannot possibly simplify the next step in the
original search space. A search is searchable if the estimated
time needed to perform the next step does not surpass the
bounds imposed by our parameters. Among all the searches
that are valid candidates, we select those that have a greater
minimum f -value, because they are closer to proving that
the current solution is optimal. If more than one search has
the same minimum f -value, we select the one whose next
step is estimated to take less time.

Once a search has been selected, the procedure
ExpandFrontier expands the set of states that have a
minimum g-value among those that have a minimum f -
value, like in the standard implementation of BDDA∗. If this
was in the original state space, a new plan may be found (if
the new plan has a lower cost, it is stored). If this was in
an abstract state space, we update the heuristic value of the
other searches in the opposite direction in the pool, both ab-
stract and original. In order to easily re-evaluate the heuris-
tic, we use the Symbolic List A∗ implementation proposed
in (Edelkamp, Kissmann, and Torralba 2012).

If there are no valid search candidates (line 12), a new
bidirectional search is added to the pool (which amounts to
two new searches). First, we select a new abstraction strat-
egy (line 13). Using the strategy, we relax the current fron-
tiers of the original state space search, until the frontier size
is small enough to continue the search and there is no pre-
vious equivalent search (line 14). Finally, the new search is
included in the pool to be selected in subsequent iterations.

Abstraction Hierarchies
The SymBA∗ planner can be used with different abstrac-
tion hierarchies. We use the Symbolic M&S abstractions de-
scribed in (Torralba, Linares López, and Borrajo 2013) and
Symbolic PDB abstractions.

For the pattern selection, instead of choosing a particu-
lar fixed pattern for the abstraction like previous domain-
independent methods (Haslum et al. 2007; Kissmann and
Edelkamp 2011; Edelkamp 2006), we seek a complete hi-
erarchy. This hierarchy consists of an ordering on the vari-
ables such that the variables at the beginning are abstracted
first until a small enough abstraction is obtained. This or-
dering is similar to the one used by linear merge strategies
of M&S, although in this case it is reversed, as the merge
strategies consider important variables first whereas we ab-
stract away important variables last.

These orderings are computed by adding goal variables to
the ordering (Goal first strategies) or variables causally con-
nected to variables already in the ordering (CG first strate-
gies). Tie-breaking is performed either randomly (Random)
or by taking Gamer’s ordering (Gamer) or its reverse (Re-
verse Gamer). The SymBA∗ planner makes use of three dif-
ferent strategies, derived from the previously described cri-
teria:

• CG Goal Random: Adds variables causally connected to
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variables already in the ordering. If there is none, a goal
variable is added. Ties are broken randomly.

• Goal CG Gamer: Goal variables are added first. Then,
variables causally connected to variables already in the
ordering are added. Ties are broken by adding to the or-
dering variables lower in Gamer’s ordering.

• Reverse Gamer: The ordering is the same as Gamer’s, but
reversed. This aims to obtain abstractions that are effi-
ciently computable, as the variables are abstracted away
from the top of the BDD. Goals and causal links are ex-
plicitly ignored, although they are taken into account in
Gamer’s ordering. Also, at some point the abstraction may
not contain goal variables, although this is fine as long as
we work with a perimeter.

The SymBA∗ Planner Configuration
The SymBA∗ planner is implemented on top of the Fast
Downward planning system (Helmert 2006). We have pre-
sented two different configurations of SymBA∗ to the IPC-
2014 competition: SymBA∗-1 and SymBA∗-2. They differ
on the abstraction hierarchies used. They both use PDB ab-
stractions, and SymBA∗-2, additionally, uses M&S abstrac-
tions.

Each call to Select-abstraction returns a different
abstraction, choosing an abstraction from each of the follow-
ing hierarchies in a round robin schema:

1. (only in SymBA∗-2) M&S using bisimulation shrinking,
with a maximum number of 10000 abstract states

2. PDBs with CG Goal Random

3. PDBs with Goal CG Gamer

4. PDBs with Reverse Gamer

The strategies are always used in the same order. We
bound the time available for selecting the abstraction to 500
seconds. Moreover, when the planner has spent 1500 sec-
onds or 3GB, we consider that searching more abstractions
to generate better heuristics will not pay off. In that case, the
search continues only in the original state space, with the
heuristics that have been generated so far.

All symbolic searches use the latest improvements on
image computation (Torralba, Edelkamp, and Kissmann
2013) and h2 constraints for symbolic search (Torralba and
Alcázar 2013). In particular, we use a disjunctive partition-
ing of TRs with a maximum TR size of 100k nodes and a
timeout of 60 seconds to generate the TRs. Constraints from
the state invariants are encoded directly in the TRs.

Searches are considered to be searchable whenever their
frontier has fewer than 10 million nodes and the next step
is estimated to take at most 30 seconds. If the time bound
is surpassed, the bound on the number of frontier nodes is
updated to half of the current frontier. To guarantee that new
abstract searches are searchable, the size of the frontier is
reduced by abstracting away variables from the abstraction
hierarchy until the relaxed frontier has fewer nodes than 80%
of the bound on the number of nodes.

Preprocessing
There are two noteworthy considerations regarding the pre-
processing phase in SymBA∗:

• How the SAS+ variables are selected.

• How to compute h2 (Bonet and Geffner 2001) and prune
spurious operators.

SAS+ Variable Selection
Switching from Gamer’s SAS+ encoding to the Fast Down-
ward version (Helmert 2009), we observed a decrease of per-
formance in some benchmark domains. We changed the se-
lection of which invariant groups are used as SAS+ variables
in order to avoid that degradation in performance.

The Fast Downward planner chooses invariant groups
with the highest cardinality as SAS+ variables, until all the
fluents of the problem have been considered in a variable.
Aiming to further reduce the number of SAS+ variables se-
lected, we prefer to select invariant groups that contain flu-
ents that do not appear in other invariant groups. We base
our criterion on the observation that, since all the fluents of
the problem have to be included in a SAS+ variable, invari-
ant groups that have a fluent which does not appear in other
invariant groups will always be selected anyway.

As an example, think of the following case, based on a
simplified version of the IPC-2011 floortile domain: we have
two robots on a grid such that the robots cannot be at the
same cell at the same time. Two types of invariant groups
are detected:

1. Each robot is at exactly one single cell:
(at robot1 cell1),(at robot1 cell2),. . .

2. Each cell either is clear or has a robot at it:
(clear cell1),(at robot1 cell1),(at robot2 cell1)

Invariants of the first type have larger cardinality, so Fast
Downward would encode this problem with a variable per
robot that represents the location of the robot ({(at robot1
cell1),(at robot1 cell2),. . .}) and a variable of the kind
{(clear cell1),〈none of those〉} per cell. In our case, we pre-
fer to select invariant groups of the second type first because
each fluent (clear cell1) only takes part on a single invariant
group. Thus, we would only have a variable per cell of the
kind {(clear cell1),(at robot1 cell1),(at robot2 cell1)}, which
amounts to fewer variables and fluents.

This leads to the use of “exactly-one” invariant groups as
variables in most cases, avoiding the use of “at-most-one”
invariant groups if possible – which require an additional
〈none of those〉 fluent. With this policy the number of re-
sulting variables and fluents is usually lower. This may be
counterproductive for techniques that depend on the causal
graph, like the abstraction strategies that we use.

Computing h2 Invariants and Pruning Spurious
Operators
We have implemented the computation of the h2 heuris-
tic in Fast Downward’s preprocessor. We also implemented
a backward version of h2 (Haslum 2008), which identifies
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pairs of propositions that cannot be reached from goal states
in regression.

We use the mutexes obtained from h2 and the “exactly-
one” invariant groups from Fast Downward’s monotonicity
analysis to disambiguate the preconditions and the effects
of the operators of the problem (Alcázar et al. 2013). We
discard operators whose preconditions or effects are spuri-
ous sets of fluents, that is, contradict the previously inferred
state invariants. We do this because the number of ground
operators is significantly reduced in many planning domains
with respect to the standard preprocessor of Fast Downward.

The discovery and use of the state invariants during this
phase is interleaved: whenever new mutexes or spurious op-
erators are discovered in this process, we repeat the compu-
tation of h2 in both directions and the operator disambigua-
tion until no more constraints are inferred. We set a limit of
300 seconds for this phase.

Conditional Effect Support
The Fast Downward planning system partially supports con-
ditional effects. They are correctly handled by the A∗ search,
but the current public version of M&S does not support
them. We chose to disable M&S relaxations in these cases,
so that only Symbolic Perimeter PDBs were used in domains
with conditional effects.

To handle conditional effects in symbolic search, we en-
code them in the TRs. According to the semantics of condi-
tional effects, they are applied in order. If more than one ef-
fect is applied over the same variable, the last one overwrites
all the others. Hence, to generate the TR with conditional
effects we group all the effects by the variable they mod-
ify. Each conditional effect is encoded as the conjunction of
its condition, its effect and the negation of the conditions of
previous effects over the same variable.

For the h2 computation, conditional effects are not com-
piled away, but rather we ignore conditional preconditions
and all the delete effects that are conditional or that delete a
conditional effect.

Technical Details
To perform BDD operations, we used version 2.5 of Fabio
Somenzi’s CUDD library. The planner is compiled in 32-
bit (-m32), using the compiler optimization (-O3) and with
support of c++-11 features (–std=c++11).
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