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Abstract

When dealing with transportation problems Operational Research (OR), and related ar-

eas as Artificial Intelligence (AI), have focused mostly on uni-modal transport problems.

Due to the current existence of bigger international logistics companies, transportation

problems are becoming increasingly more complex. One of the complexities arises from

the use of intermodal transportation. Intermodal transportation reflects the combina-

tion of at least two modes of transport in a single transport chain, without a change of

container for the goods. In this paper, a new hybrid approach is described which ad-

dresses complex intermodal transport problems. It combines OR techniques with AI

search methods in order to obtain good quality solutions, by exploiting the benefits of

both kinds of techniques. The solution has been applied to a real world problem from

one of the largest spanish companies using intermodal transportation, Acciona Trans-

mediterránea Cargo.
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1. Introduction

Nowadays, intermodal transportation plays a key role in international logistics. In-

termodal transport commonly refers to the combination of two or more modes of move-

ment of goods, such as road, rail, or sea [1, 2]. In this type of task, the use of Op-

erations Research (OR) is still limited. Research on logistic problems usually focuses
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only on one mode of movement of goods, whether by road [3, 4, 5], rail [6], or sea [7].

However, there are two observations that make intermodal transportation problems more

challenging than the uni-modal one: on one hand, the optimal path is not the shortest

path anymore; instead, additional costs have to be considered at the nodes where a new

transportation mean is applicable e.g., money and/or time. On the other hand, a new

class of constraints has to be observed, which (to make things harder) is dependant on

each node e.g., operating an exchange of transportation mean can actually involve other

subproblems as it happens when moving goods from a truck to a ship. Thus, it provides

very interesting and challenging tasks for researchers working in OR and related areas,

such as heuristic search.

This paper deals with a real-world problem and in particular it focuses on the spe-

cific intermodal transportation problem of the spanish company Acciona Transmediter-

rnea Cargo. As presented in the Related work section, in the literature, we did not find

any article describing the same intermodal transport problem. This particular problem

fits into the intermodal chain of container-transportation services described in the liter-

ature [1]. This chain usually links the initial pick-up point to the final delivery point of

the container, visiting in between different pick-up and delivery points. Transportation

is provided by several carriers. Our contribution attempts to provide a new application,

timiplan, to solve problems of this kind. The planning component of timiplan consists of

two phases: in phase one, for each set of goods to be picked up and delivered, the con-

tainers and trucks with minimum estimated cost to complete the service are selected. In

this phase, several assignment models are constructed and solved as linear programming

problems. In phase two, an Artificial Intelligence (AI) planner is used to select the best

(cheapest) plan to serve each service: from a first pick-up point to the last delivery point

over the service. The plan should fulfill a given set of constraints (temporal and regu-

latory), and will include the sequence of the transportation modes to be used. Although

some of the application areas addressed in AI and OR are very similar (e.g., planning,

scheduling), the methods that are used to solve these problems are substantially different.

This paper describes the application we have developed for a big logistics company, and

provide some experimental results that evaluate the software in real situations extracted

from the customer database.

The remainder of the paper is organized as follows. Section 2 gives a brief summary

of the transportation problem in its uni-modal and intermodal versions, introducing some

of the main approaches used to solve it. Section 3 describes the intermodal problem in
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detail. Section 4 presents the timiplan algorithm. In this section, two ways to tackle the

assignment problem of containers and trucks to services are described. In addition, in

this section the planning module to select the best transportation modes is explained in

detail. Section 5 shows the experiments performed. Also, it describes some comparative

results of the two versions of the timiplan algorithm. Lastly, Section 6 presents the

conclusions and further research.

2. Related Work

Many approaches have dealt with the uni-modal transport problem. Coslovich et

al. [5] focus on the container transportation problem taking into account the routing

costs, the resources, and the container repositioning costs. Their approach has several

similarities and analogies with our work (also in the solution approach, which uses the

decomposition into subproblems). However, their approach focuses only on a fleet man-

agement problem that arises in a truck company, excluding the transport by ship or rail

(significantly reducing the complexity of the problem). Powell et al. [3] tackle the prob-

lem of assigning drivers to loads in order to minimize the empty miles, but, again, only

considering truck transportation. An interesting uni-modal solution for large transporta-

tion problems also is proposed by Sprenger et al. [8].

There has also been some work in the intermodal transport problem [1, 2]. Chang [9]

focuses his study on how to select the best routes for shipments in an intermodal net-

work. Because the entire problem is NP-hard [9], the original problem is broken into

a set of smaller and easier subproblems, based on Lagrangian relaxation and decompo-

sition techniques. However, in contrast with us, Chang assumes that the trucks drivers

have no time constraints, and, additionally, Chang only reports results for problems car-

rying 10, 6, and 8 containers from the suppliers to the customer, over a small network

graph of 112 nodes and only 407 links. Our biggest problem requires 300 containers

movements over a network graph of 600 nodes and more than 3 × 105 links. Imai et

al. [10] also propose to decompose the original problem into two different subproblems

using a subgradient heuristic based on Lagrangian relaxation. However, they partially

tackle the problem of intermodal transportation, as long as they only consider the prob-

lem of vehicle routing that arises in picking up and delivering full container load from/to

an intermodal terminal (regardless of schedules of ships or trains). Bock [11] addresses a

similar multimodal problem using LP techniques but with several important differences

with the intermodal problem presented here. On one hand, Bock does not consider the
3



containers in his multimodal problem and, hence, does not take into account the initial

assignment of trucks to containers, which implies a significant reduction of the problem

complexity. On the other hand, the biggest problem he considers has only 65 vehicles

and 5 global transportation hubs. The biggest problem our approach deals with here has

300 trucks, 300 containers and more than 150 ship and train segments. Instead, Verma et

al. [12] focus on the transport of hazardous material using truck-rail multimodal trans-

portation (i.e. obviating the ship transportation mode) over a well-defined region of the

US with only 37 shipper/receivers and 31 train segments and, additionally, assuming

that the drivers have no time constraints. Gromicho et al. [13] propose an interesting and

promising approach but considering only a single network to transport a container from

a pick-up node to a delivery node. Therefore, they do not compute what container is the

best to complete a service, and they not address the problem of solving multiple services

sharing the same resources. Thus, all these approaches cannot be directly applied to our

problem described in Section 3.

Also, there have already been some approaches that try to combine AI techniques

with OR techniques. Bylander [14] uses linear programming as a heuristic that improves

the search process in nonlinear planning; Kautz [15] uses linear programming formula-

tions for planning problems with different resources, action costs, and difficult objective

functions; Fernández [16] solves the clustered-oversubscription problem by performing

an action selection pre-processing to help the planning task using linear programming.

In comparison with these works, we propose to use linear programming combined with

planning in a different way. In our case, linear programming is used first to compute the

assignment cost of resources to services in order to find the assignment with the least es-

timated cost. Later, we formulate each task as a planning problem where the previously

selected resources are taken into account.

While OR techniques solve problems that can be modeled with linear constraints

very efficiently, we advocate their combined usage with other general techniques like

Automated Planning (AP) [17]. One of the main reasons is that Automated Planning ac-

tually starts by considering a very expressive language which usually overcomes some

of the difficulties found when modeling a problem with linear constraints. Also, the

standard language considered in AP (most likely PDDL [18] but also many other vari-

ants) is very well suited to represent a wider class of problems. These differences do not

only apply to constraints, but also to the objective function, since AP can use non-linear

optimization functions.
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3. Problem Description

This paper focuses on the container-based intermodal transportation problem (trans-

portation of containerized cargo by a combination of truck, rail, and ocean shipping,

to move massive quantities of containers) [1], but with the requirements of the company

Acciona Transmediterránea Cargo. Formally, our intermodal transportation problem can

be defined as the tuple < G, F,C,R, B, S > where G is the network graph, F, C, R and

B are the sets of trucks, containers, trains and ships respectively and S the services that

should be fulfilled. Let G = (P, E) be a directed graph, where P and E are, respectively

the set of nodes and set of edges representing a direction in which the corresponding

arc can be traversed. In intermodal transportation there are different kinds of nodes: all

nodes in P represent nodes that can be reached by trucks and containers, and M ⊆ P,

represents intermodal nodes where one has to select between continuing with the current

mode or changing it (as ports or train stations). Also, there are different kinds of edges

representing roads, rails or ship routes.

Table 1: Truck and Container features.

Tr
uc

k

t f Time counter of truck f

p f Starting point, p f ∈ P, where the vehicle is located at time t f

s f Mean speed denoted

e f Cost per kilometer when truck f travels without any container or the container is empty

l f Cost per kilometer when truck f travels with a loaded container

cs f Cost per hour when truck f is stopped at a location

C
on

ta
in

er tc Time counter of container c

pc Starting point, pc ∈ P, where the container is located at time tc

Let F be a set of trucks, with |F| = nf , and let C be a set of containers, with |C| = nc.

Each truck f ∈ F and container c ∈ C is characterized by a series of parameters as

shown in Table 1. The existing temporal restrictions in the problem (each pick-up and

delivery is scheduled according to the service time of each place) imply that an explicit

management of the current time is needed. If a truck arrived early to a pick-up or delivery

point, it must wait, and when it arrives late a penalty cost is applied. In addition, a

container must wait at the station or port for the next departure of the train or ship. So,

associated to each truck and container, there is a time counter, t f and tc. The truck and

container movements conveniently increase the value of these time counters. Let also R

be a set of trains, and let B denote a set of container ships. Each train r ∈ R and b ∈ B

are characterized as shown in Table 2.
5



Table 2: Train and Ship features.
m0,m1, ...,mk Any predefined train/ship route is given by the ordered sequence of nodes m0,m1, ...,mk

where mi ∈ M and k > 0. Stations/ports m0,m1, ...,mk form the train/ship route

if train/ship starts its journey at m0 and visits consecutively m1, ...,mk

Pi j The time at which the train or ship leaves the node (station or port) mi ∈ M in direction

to node (station or port) m j ∈ M

Di j The time spent to go from mi to m j

ut Time spent loading a container in the train or ship

dt Time spent unloading a container from the train or ship

Let S be a set of services, with |S| = ns. For each service s ∈ S a predefined route is

given by the ordered sequence of points Us = (u1, u2, ..., u j), where u1 is a pick-up point,

u j is a delivery point, and uk, 1 < k < j, is a delivery or pick-up point. The pick-up

and delivery order is set by the Acciona’s client requesting the service. In addition, each

u ∈ Us is located in one node p ∈ P. Each pick-up or delivery point is characterized in

Table 3.

Table 3: Pick-up or Delivery points.
ptu The pickup or delivery time, ptu, which indicates the time at which the corresponding point u is

available for the pick-up or delivery service.

stu The service time, or the time spent to complete the pick-up or delivery service

pcu The penalty cost per hour, applied when the pick-up or delivery is delayed.

In intermodal transportation, several trucks are usually needed. For example, Fig-

ure 1 shows how, in order to complete the service, there are five available trucks, one

container, two trains and two ships. The first truck with the container picks the shipment

up from Pick–Up1 and transports it to Pick–Up2 using either road or train. If the train

option is selected, another truck will be necessary to transport the container to Pick–Up2.

Also, there are two other decision points related to the use of Ship1 and Train2. The use

of Ship2 and Truck4 is mandatory for reaching the Pick–Up3 point.

Notice that in the particular intermodal transportation problem of Acciona, only one

container is used for each service, because it is sufficient to transport the amount of

goods associated to the service. The planner is executed every day. A daily problem has

approximately 600 locations (summing up all pick-up and delivery locations, as well as

initial positions of trucks, containers, ships, and trains), more than 3 × 105 edges among

those locations, 300 trucks, 300 containers, 300 services, 50 train segments and 150 ship
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Figure 1: Example of Intermodal transportation graph.

segments. The company imposes a time limit of 2 hours for computing the daily plan.

4. The timiplan Algorithm

The first approach we followed consisted on trying to solve the complete problem

by using an automated planner. Automated Planning is concerned with the automatic

generation of a plan to solve a problem within a particular domain. At its simplest, a plan

is a sequence of actions. Given an initial state, the planner tries to find the actions such

that their ordered execution from the initial state achieves some goal conditions. Planners

can be domain-dependent or domain-independent. In domain-dependent planning, there

is no division between the solver and the domain knowledge. In general terms, they are

very efficient. However, they are usually difficult to build and they have to be rewritten

for each domain. On the other hand, domain-independent planners are not tied to one

particular domain (they can solve problems in a variety of different domains, given a

model of that domain in a suitable input language). The domain model specifies the

actions available to the planner. Each action may be executed only in some set of world

states (defined by its preconditions), and has some particular set of effects on the states

where they are applied. A planning problem consists of a domain model together with an

initial state of the world, and a desired goal state (or set of goal states). A planner solves

a planning problem by producing a sequence of instantiated actions (plan), which takes

the initial state to a goal state. Each action takes variable parameters and an instantiated

action is obtained only when those parameters are assigned constant values from the

state. Usually, these variables are prefixed with a question mark: ?truck, ?container.
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Figure 2 shows an example of planning process where the truck Truck1 is driven from

location L1 to location L4.

Figure 2: Example of a planning process.

Given that planning is the process of finding a set of instantiated actions that trans-

forms an initial state into a goal state, many possible instantiations of actions make

planning a hard combinatorial problem. Unfortunately, in the case of intermodal trans-

portation, given the size of the problem, no domain-independent planner can go be-

yond an initial instantiation phase, common in most of the state of the art planners.

For instance, the load-truck action has three parameters (truck, container, location). In

our problems, there are around 300 trucks and containers, and around 600 locations.

Thus, there are about 300 × 300 × 600 = 54 million potential instantiations of that

action solely. Table 4 shows the mean time (in seconds) to solve problems of size

N trucks × N containers × N services with different planners: SGPLAN [19], LPG [20]

and SAYPHI [21]. In all cases, the time grows exponentially with the size of the prob-

lem, and the problem 3 × 3 × 3 is not solved by any planner within a time limit of 500

seconds. However, SAYPHI is able to explicitly reason about the cost of the solutions,

so we prefer to use SAYPHI to perform the experiments in Section 5. In a similar way,

linear programming experiences a combinatorial explosion due to the huge number of

resources involved. In this case, because the intermodal transportation problem is NP-

Hard, some type of decomposition is required [5, 10, 9].

Our approach sequentially solves the problem, using three different steps for each

service. In step one, the container and truck/s with minimum cost estimated to complete

the service are selected (using LP to solve a classical assignment problem). In step
8



Problem Size SGPLAN522 LPG1.2 SAYPHI

1 × 1 × 1 0.0 s 4.272 s 0.12 s

2 × 2 × 2 0.57 s - 17.55 s

3 × 3 × 3 - - -

Table 4: The mean times to solve problems of different size by SGPLAN, LPG and SAYPHI. Each mean
time has been computed from 5 different executions. The symbol “-” means that the planner is not able
to obtain a solution within a time limit of 500 seconds. The experiments were conducted on a 2,4 GHz
quadcore processor with 4 GB RAM, running Linux.

two, a planning module is used to select the best path from a first pick-up point to the

last delivery point over the service. In this case, best means that the path fulfills the

given set of constraints, including the sequence of the transportation modes used (where

several trains and/or ships can be used) with the minimum cost. This two-step approach

balances the total cost obtained and the time required to compute the plan. The high

level algorithm has been depicted in Table 5. The network graph is the graph defined by

the locations (pick-up and delivery nodes, positions of trucks, containers, train stations

and ports) and edges (roads, rails and ship lines). In step three, timiplan updates the

assignment of trucks and containers to services taking into account the final position of

the trucks and containers used to complete the last planned service. In this third step, it

uses the same LP approach again.

timiplan (G, F, C, R, B, S)

;; Inputs: the graph (G), the set of trucks (F), containers (C), trains (R), ships (B) and services (S)

plan = ∅

;; Compute the initial assignment of trucks and containers to services (A)

A = solveAssignmentProblem(G, F, C, R, B, S)

For each s ∈ S

;; Select the truck/s and container to complete the service

selectedTrucks,selectedContainer= getServiceAssigment(A, s)

;; Plan the service with the truck/s and container selected. Select the best transportation modes

plan = ∪ {solvePlanningProblem(selectedTrucks, selectedContainer, R, B, s)}

;; Updates assignment with the new cost of selectedTrucks and selectedContainer

A = updateAssignmentProblem(G, F, C, R, B, S)

Return plan

Table 5: Top level algorithm of timiplan.
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4.1. Assignment Problem

The goal is to minimize the total cost of the assignments of truck/s and container to

complete the set of services. However, this problem is quite complex because there are a

great number of trucks, containers and services involved. Consider the simplified version

of the intermodal transportation problem of assigning an initial pair truck-container to

each service, such that the total cost of all assignments is minimal. In this assignment

problem, the cost matrix has size M × N, where M represents all possible combinations

of trucks with containers, N is the number of services, and each cell in the cost matrix is

the cost of associating the pair truck-container in a row with a service in a column.

Cost Matrix Size M × N GLPSOL4.25 MINIZINC1.3.1

2500(50 trucks × 50 containers) × 50 80.0 s 834.2 s

10000(100 trucks × 100 containers) × 100 396.4 s -

22500(150 trucks × 150 containers) × 150 - -

Table 6: Mean time to solve assignment problems with cost matrix of different sizes by GLPSOL, and
MINIZINC. Each mean time has been computed from 5 different executions. The symbol “-” means that
the LP solver produces a memory fault. The experiments were conducted on a 2,4 GHz quadcore processor
with 4 GB RAM, running Linux.

Table 6 shows the mean time to solve the assignment problem with different cost

matrix sizes, M × N, using two LP solvers: GLPSOL [22] and MINIZINC [23]. The LP

solvers are not able to solve the assignment problem of 22500 (pairs truck−container) ×

150 (services), i.e. the assignment problem of 150 trucks× 150 containers× 150 services.

However, our biggest problem is composed of 300 trucks, 300 containers and 300 ser-

vices. In any case, in the experiments performed in Section 5 the LP solver used was

GLPSOL.

Thus, we consider three easier assignment subproblems. This decomposition is

based on the three decisions that a human planner faces when planning new services

in order to minimize the cost and fulfill the constraints: i) What container is assigned

to each truck?, ii) What pair truck-container is assigned to each service?, and iii) What

truck is assigned to a container (in order to continue the service) when this one arrives to

a destination port or rail-station? This decomposition provides a natural reduction of the

problem complexity, more comprehensive than those based on stronger formulations or

Lagrangian relaxations [5, 10, 9]. Therefore, the first subproblem solves the assignment

of empty containers to trucks. The second subproblem solves the assignment of trucks
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with containers to services, using the assignments computed in the previous subproblem.

These operations involve the provision of an empty truck and container to the service.

The truck and container are used in the subsequent transportation until they arrive to the

last delivery point or until they arrive to an intermodal node in the service. In intermodal

transportation, additional trucks are needed in order to complete a service. These trucks

pick-up the containers from the destination station/port and transport it to complete the

service, or until they arrive to the next intermodal node. So in the third assignment sub-

problem, the method selects the best truck to pick-up the container from the destination

station/port to continue the service, taking into account again the previous assignments.

The algorithm is shown in Table 7.

solveAssignmentProblem(G, F, C, R , B, S, s)

;; Inputs: the network graph (G), the set of trucks (F), containers (C), trains (R), ships (B), services (S), and

the service to be completed (s)

;; Build the set of assignments of trucks to containers

setAssignmentsTrucksContainers=solveAssignTrucksContainers(G, F, C, R);

;; Select an empty truck and container to the service

setTrucks,container=solveAssignTrucksService(setAssignmentsTrucksContainers, R, B, S, s);

For each (ui, ui+1) ∈ Utr

;; If there is a route of train or ship that starts in mk , ends in mk+1 , ui is connected to mk and ui+1 is connected to mk+1

If (ui,mk) and (ui+1,mk+1)

;; Add a truck to the set of trucks that pick-up the container from mk+1 and continue the transportation route

setTrucks=solveAssignTrucksIntermodalNodes(setTrucks,container, R, B, S, s);

End

Return setTrucks,container

Table 7: Top level algorithm to solveAssignmentProblem.

To tackle these three assignment subproblems we use two different approaches. The

first one is a greedy approach that selects at each step the container and truck/s with the

least estimated cost. In the second approach, the three assignment problems are solved

using linear programming. These two approaches are described in detail in the next

sections.
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4.1.1. Solving the Assignment Problem using a Greedy Strategy

In this case, the truck/s and container to complete a service are selected following

a greedy strategy. Next the different assignment processes following this strategy are

formally described.

Assigning Containers to Trucks

First, the assignment problem of containers to trucks is solved. The algorithm iter-

ates for each container and selects the truck with least cost. If a truck f is selected for

a container c in the previous iteration, the truck f is removed from the list of available

trucks in the following iterations. The cost of assigning a truck f ∈ F to container c ∈ C

is denoted as c f c and it is computed in the following way. The truck f is located in node

p f ∈ P at time t f . The container c is located in node pc ∈ P at time tc. The truck has

to travel from p f to pc to pick-up the container with a cost cpu f c = dist(p f , pc) × e f ,

where dist(p f , pc) is the distance between p f and pc, and e f is the cost per kilometer

when the truck travels empty. The distance is computed over the graph given that the

(x,y) location of each node is known. In addition, the time ta at which the truck f arrives

to location pc is estimated as ta = t f +
dist(p f ,pc)

s f
where s f is the mean speed of the truck.

The waiting cost of a truck for a container is computed in Equation 1.

wc f c =

 (tc − ta) × cs f if ta < tc,

0 If ta ≥ tc.
(1)

where cs f is the penalty cost when truck f is stopped at a location. Thus, Equation 2

computes the final cost of the assignment of truck f to container c.

c f c = cpu f c + wc f c (2)

The output of this assignment process is a set W = ( f c1, f c2, ..., f cn) where each f ci

is a pair ( f , c) of a truck and container. This set W is used in the next assignment process.

Assigning Trucks and Containers to Transportation Routes

Second, the algorithm iterates for each service and selects the pair ( f , c) ∈ W with

least cost. If a pair ( f , c) is selected for a service s in the previous iteration, it takes into

account the final position and time of the pair truck-container, ( f , c), used to complete

the service s in the following iterations. The service s ∈ S is given by the sequence of

points Us = (u1, u2, ..., u j). In the previous assignment process it already computed the
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cost to assign the truck f ∈ F to container c ∈ C located in node pc ∈ P. Now, first it

computes the cost to complete the first pick-up point u1. Initially, the truck f with the

container c travels to node u1 with a cost ctu1
f c = dist(pc, u1) × e f .

The time tu1 at which the truck f arrives to u1 ∈ U is estimated as tu1 = ta +
dist(pc,u1)

s f

where s f is the mean speed of the truck and ta was computed in the previous assignment

process. The pick-up cost is computed following Equation 3

puu1
f c =


(ptu1 − tu1) × cs f if tu1 < ptu1 ,

(tu1 − ptu1) × pcu1 if tu1 > ptu1 ,

0 If tu1 = ptu1 .

(3)

where ptu1 indicates the time at which u1 is available for the pick-up service, and pcu1

is the penalty cost applied when the pick-up is delayed. Now, the truck and container

with the shipment loaded in u1 drive to the pick-up or delivery point u2. If there is only a

transportation mode between u1 and u2, and this is a road mode, the algorithm proceeds

as follows. The truck f with the container c travels from node u1 to node u2 with cost

ctu2
f c = dist(u1, u2) × l f , where l f is the cost per kilometer when the truck travels loaded.

The time tu2 at which the truck f arrives to u2 and the pick-up or delivery cost puu2
f c is

computed in a similar way than previously.

If the road mode is the only transportation mode between points in s ∈ S , the algo-

rithm proceeds in the same way with the remainder of delivery or pick-up points. In this

case, Equation 4 computes the cost of the assignment of a truck with a container to a

service.

c f c−s = c f c + (ctu1
f c + puu1

f c) +

j∑
i=2

(ctui
f c + puui

f c) (4)

If a transportation mode between points uk and uk+1 different to road mode (i.e. rail

mode or ship mode) is possible, the algorithm proceeds differently. Suppose the rail

mode or ship mode between uk and uk+1 starts in ms ∈ M, finishes in me ∈ M, uk is

connected with ms ∈ M by road, and me ∈ M is connected with uk+1 by road. The

truck and container with the shipment drive from uk to node ms ∈ M with cost ctms
f c =

dist(uk,ms) × l f . At this point, the cost assignment process between truck ( f , c) and

s finishes because in me the container is transported by another truck in the assignment

process, as described in the next section. Equation 5 computes the cost of the assignment

of a truck with a container to a service when different transportation modes are presented
13



in s.

c f c−s = c f c + (ctu1
f c + puu1

f c) +

k∑
i=2

(ctui
f c + puui

f c) + ctms
f c (5)

Assigning Trucks to Multimodal Nodes

In the case of intermodal nodes in the graph, the computation of the estimated cost

of the assignment of trucks to intermodal nodes is different. Let s ∈ S be the service that

is being computed. Let h ∈ F be the last truck that transported the container assigned to

tr from uk to ms. uk is the last pick-up or delivery point visited in s, and ms is the start

node for the last rail or ship transportation connected with uk. Let o ∈ C be the container

assigned to s located in me, where me is the end node for transportation that starts in ms.

Let uk+1 be the next delivery or pick-up point to visit in s, where me ∈ M is connected

with uk+1.

The time at which the container arrives to me can be estimated. The time tms at

which the truck h and container o arrived to ms is estimated as tms = tuk +
dist(uk ,ms)

sh
. In

the station or port ms, the container is disengaged from the truck. Then, the estimated

time at which the container arrived to me, tme is computed as tme = tms + ut + Dse + dt,

where ut is the time spent to load the container on the train or ship, Dse is the time spent

moving the container between the node ms and me, and dt is the time spent to unload the

container from the train or ship.

For each truck f ∈ F, the cost c f o−s is recomputed using Equation 4 (if no more

intermodal nodes are presented in s) or Equation 5 (if more intermodal nodes are pre-

sented in s). For costs where truck h is involved, it is taken into account that h is located

in ms at time tms . For costs where container o is involved, it is taken into account that

it is located in me at time tme . In addition, it is taken into account that uk+1 is the next

delivery or pick-up node to visit for service s. The new truck selected will be the truck

with least c f o−s computed.

If more intermodal nodes are found in s, a new process to assign a truck to intermodal

node is started, and a new truck is selected.

4.1.2. Assignment Problem using Linear Programming

The assignment problem can be formulated as a linear programming problem. For

each assignment problem described previously, a cost matrix is constructed and a linear

programming model is designed in order to minimize the total assignment cost. In the
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next sections the different cost matrix and linear programming models are described in

detail.

Assigning Containers to Trucks

The algorithm for solving the problem is based on the cost matrix M f c. Cost matrix

M f c has a row for each truck f ∈ F and a column for each container c ∈ C. Each position

in the cost matrix is computed according to Equation 2. The linear programming model

generated to solve the assignment problem is defined as follows:

Minimize
∑n f

i=1
∑nc

j=1 ci jxi j (6)

sub ject to
∑nc

j=1 xi j = 1 (i = 1, 2, ..., n f ), (7)

∑n f

i=1 xi j = 1 ( j = 1, 2, ..., nc), (8)

xi j ∈ {0, 1} (i = 1, 2, ..., n f ) ( j = 1, 2, ..., nc) (9)

where n f is the number of trucks and nc is the number of containers. If there are less

trucks than containers, n f < nc, (nc − n f ) containers do not have a truck assigned at the

end of the assignment process. In this case, Equation 8 is modeled as
∑n f

i=1 xi j = 1 and

Equation 7 as
∑nc

j=1 xi j ≤ 1. If nc < n f , (n f−nc) trucks do not have a container assigned at

the end of the process. In this case, Equation 7 is modeled as
∑nc

j=1 xi j = 1 and Equation 8

as
∑n f

i=1 xi j ≤ 1. If the number of trucks is equal to the number of containers, n f = nc,

Equation 7 and Equation 8 are modeled as a strict equality. The GLPSOL solver [22]

was used to solve this assignment problem. The return of this assignment process is a

set S = ( f c1, f c2, ..., f cn) where each f ci is a pair ( f , c) of a truck and container.

Assigning Trucks and Containers to Transportation Routes

The algorithm for solving the problem is based on the cost matrix M f c−s, that has a

row for each pair ( f , c) ∈ W, and a column for each s ∈ S . Each position in the cost

matrix is computed as Equation 4 (if no intermodal nodes are presented) or Equation 5

(if intermodal nodes are presented). In this case, the assignment model is defined as

follows:
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Minimize
∑n

i=1
∑ns

j=1 ci jxi j (10)

sub ject to
∑ns

j=1 xi j = 1 (i = 1, 2, ..., n), (11)

∑n
i=1 xi j = 1 ( j = 1, 2, ..., ns), (12)

xi j ∈ {0, 1} (i = 1, 2, ..., n) ( j = 1, 2, ..., ns) (13)

where n is the number of pairs ( f , c) of trucks and containers computed previously, and

ns is the number of services. If there are less pairs ( f , c) than services, n < ns, (ns − n)

services do not have a truck and container assigned at the end of the assignment process.

In this case, the Equation 12 is modeled as
∑n

i=1 xi j = 1 and Equation 11 as
∑ns

j=1 xi j ≤ 1.

If ns < n, (n − ns) pairs of trucks and containers do not have a service assigned at the

end of the process. In this case, Equation 11 is modeled as
∑ns

j=1 xi j = 1 and Equation 12

as
∑n

i=1 xi j ≤ 1. If the number of pairs of trucks and containers is equal to the number of

services, ns = n, Equation 11 and Equation 12 are modeled as a strict equality.

Assigning Trucks to Intermodal Nodes

The costs are computed in similarly as when the greedy strategy was used. In this

case, the costs of the matrix cost M f c−s corresponding to s are recomputed (service that

is being computed), chc−s where h ∈ F is the last truck used in s located in ms, and c f o−s

where o ∈ C is the container used in s located in me (Figure 3).

Figure 3: Cost matrix M f c−tr recomputed.

The costs c f o−s and chc−s are recomputed using Equation 4 (if no more intermodal

nodes are present) or Equation 5 (if more intermodal nodes are present). For costs where
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truck h is involved, it is taken into account that h is located in ms at time pms . For costs

where container o is involved, it is taken into account that it is located in me at time pme .

For costs where s is involved, it is taken into account that uk+1 is the next delivery or

pick-up node to visit. The assignment model is built in the same way that in the previous

section. If more intermodal nodes are found in s, a new assignment truck to intermodal

node process is started, and a new truck is selected.

4.2. Planning Problem

Once the truck/s and container are selected for the current service, a planning prob-

lem is built in order to find the best transportation modes to complete it.

The most efficient current domain-independent planners are based on heuristic search.

Heuristic planners [24] are composed of a heuristic search algorithm guided by a domain-

independent heuristic function. We use the SAYPHI [21] planner. The high level algo-

rithm to solve the transportation planning problem is depicted in Table 8. The algorithm

receives as input the truck/s and container selected in the previous phase to complete the

service. First the algorithm selects the trains and ships that can be used to complete the

service. Later the problem is constructed taking into account the trains, ships and the

truck/s and container selected to complete the service. The problem is modeled using

the PDDL [18] language which is a standard planning domain and problem description

language. Lastly timiplan executes the planner, which searches in the space of combina-

tions and decides about the best transportation modes in order to complete the service.

4.2.1. Domain Description

In this section, the planning domain will be described using PDDL notation. PDDL

allows the users to represent the predicates and functions that can be used to describe the

states, what actions can be executed (transportation actions in our case), and what the

conditions and effects of actions are.

Predicates are the properties of the objects interesting for this application. In our

case, several predicates are used, but here only the most relevant ones are described:

• (at ?goods - goods ?node- node): goods ?goods is at node ?node. The node ?node

corresponds to a pick-up point.

• (in ?goods - goods ?c - container): goods ?goods is inside container ?c.
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solvePlanningProblem(selectedTrucks, selectedContainer, R, B, s)

;; Inputs: the truck/s selected to solve the service (selectedTrucks), the selectedContainer (selectedContainer), trains (R), ships (B), and the transportation

;; service to be completed (s). It selects the trains and ships present in the service

For each (ui, ui+1) ∈ Us

For each r ∈ R

;; If there is a route of the train that starts in mr
k , ends in mr

k+1 , ui is connected to mr
k and ui+1 is connected to mr

k+1

If dist(ui,mr
k) + dist(ui+1,mr

k+1) < dist(ui, ui+1)

;; Add the train to the transportation route

setTrains=addTrain(r);

For each b ∈ B

;; If there is a route of the ship that starts in mb
k , ends in mb

k+1 , ui is connected to mb
k and ui+1 is connected to mb

k+1

If dist(ui,mb
k ) + dist(ui+1,mb

k+1) < dist(ui, ui+1)

;; Add the ship to the transportation route

setShips=addShip(b);

;; Write the pddl problem

pddlProblem=writePDDLProblem(selectedTrucks, selectedContainer, setTrains, setShips, s);

;; Plan the pddl problem

plan=callSAYPHI(pddlProblem);

End

Return plan

Table 8: Top level algorithm to solvePlanningProblem.

• (road ?node1 - node ?node2 - node): nodes ?node1 and ?node2 are connected by

a road.

Numeric functions are frequently useful in real domains. They allow the user handling

numerical values in PDDL. The functions can be used in actions preconditions or effects

and their initial value is given in the problem file. In our case, these are some relevant

functions:

• (distance ?node1 - node ?node2 - node): distance in kilometers between node

?node1 and node ?node2.

• (pickup-time ?goods - goods ?node - node): time at which the corresponding node

?node is available for the pick-up service.

• (penalization-pickup-delayed ?goods - goods ?node - node): penalty cost per hour

applied when the pick-up is delayed.
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Actions change the state of the world. An action is defined by a list of parameters, a

list of conditions and a list of effects. As an example, Figure 4 shows the description

of action LOAD-TRAIN. An action is applicable if its preconditions are true within the

current world state. In this case, the container and train should be in the same location,

and there should be time to load the container inside the train before the departure time.

This planning action also describes the changes (effects) applied to the world state after

its execution. In this case, the container is inside the train in the destination station. As

seen, actions are declaratively defined, so it is relatively easy for end users to understand

what they perform or even modify them when problem constraints change.

(:action load-train

:parameters (?t - train ?c - container ?station1 ?station2 - localization)

:precondition (and (in-town ?c ?station1)

(in-town ?t ?station1)

(<= (+ (time-container ?o) (time-load-train ?t ?station1))

(departure-time-train ?t ?station1 ?station2)))

:effect (and (not (in-town ?c ?station1))

(in-train ?c ?t)

(assign (time-container ?c)

(departure-time-train ?t ?station1 ?station2))))

Figure 4: Action LOAD-TRAIN described in PDDL.

4.2.2. Problem Description

A problem specifies an initial state, and a set of goals to achieve. The initial state is

specified as a list of literals assumed to be true in the initial state. A literal is an instanti-

ated predicate (i.e. literal = (predicate argument-value*)). As an example, (road n5 n2)

is a literal where road is the predicate, and n5 and n2 are its instantiated arguments. The

goals specify the end condition of the search problem. The solution to a problem is an

ordered set of actions (usually a sequence) that, if applied to the initial state, transforms

it into a state where all goals are true. In our case, this initial state can be expressed using

again PDDL as in Figure 5. In this case the initial state describes the resources used in

the problem (trucks, containers, ships, trains), the roads, and the different pick-up and

delivery points.

The goals in the problem are to reach the state where both pick-up and delivery

points have been served. This goal can be defined as shown in Figure 6. In this case, the

goal is to pick-up goods from node n1 and deliver it to node n6.
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(:init

;; Trucks

(in-town truck1 n1)

(= (cost-per-kilometer-empty truck1) 0.5)

...

;; Roads

(road n5 n2)

(= (distance n5 n2) 347.0)

...

;; Containers

(in-town container1 n1)

(empty container1)

...

;; Goods

(in-town goods1 n5)

(= (pickup-time goods1 n5) 100)

(= (penalization-pickup-delayed goods1 n5) 0.1)

...

;; Ships

(in-town ship1 n0)

(ship-trip n0 n3)

(= (departure-time-ship ship1 n0 n3) 200)

...

Figure 5: Example of an initial state of a problem described in PDDL.

(:goal (and (picked goods1 n1)

(delivered goods1 n6)))

Figure 6: Goals to achieve.

5. Empirical Evaluation of timiplan

To evaluate the timiplan algorithm, we use a set of representative problems, based

on real data gathered by the company. The problems were generated using ship routes

and pick-up and delivery points gathered from real problems. There has been a positive

qualitative evaluation from users. However, direct comparison against the current so-

lutions adopted by Acciona is not possible at this point. First, their databases, handled

by humans, have many inconsistencies (bad written addresses, same company with dif-

ferent names, ...), and it is necessary to estimate values which are not provided in the

databases (time spent for each pick-up or delivery service, driving hours/rest periods for

the drivers, ...). Second, our application was developed by the central offices to address

the loss of solutions quality due to the decentralized planning (resources) among the

branches, as it is currently done. Thus, currently there is no human solving a 300 ser-

vices assignment (each branch considers instead a smaller problem). There are no plans

of such size to compare against, and also coming up with a plan for 300 services is a hard

task for humans. However, they already examined the generated plans and considered

them to be in the range they would generate.

Two versions of the timiplan algorithm are used to solve problems of different sizes.
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Both versions differ on how they perform the first step of the algorithm: the assignment

of truck/s and container to services. In the first one, a greedy strategy is used to select

the best container and truck/s to complete the service as explained in Section 4.1.1. In

the second one, an assignment model is constructed as a linear programming problem in

order to find the best assignment of the containers and trucks to the services as explained

in Section 4.1.2. The greedy approach provides a reasonable simple solution to compare

the LP approach and also a baseline reference to determine how much improvement

(in terms of cost) is produced when using the LP approach, although obviously the LP

approach will require more computing time. All the experiments we report here were

conducted on a 2,4 GHz quadcore processor with 4 GB RAM, running Linux.

Table 9: Types of problems used in the experimentation.
Problem Type Transportation Nodes Edges Trucks Containers Ship Train

Routes Segments Segments

1 75 150 21758 75 75 60 5

2 100 200 39008 100 100 70 10

3 125 250 61258 125 125 80 15

4 150 300 88508 150 150 90 20

5 175 350 120758 175 175 100 25

6 200 400 158008 200 200 110 30

7 225 450 200258 225 225 120 35

8 250 500 247508 250 250 130 40

9 275 550 299758 275 275 140 45

10 300 600 357008 300 300 150 50

In order to evaluate the timiplan algorithm we study the time and cost requirements

of our algorithm defining ten types of problems in ascending order of size. Each problem

has a linear increase in the number of services (between 75 and 300), nodes (between 150

and 600), trucks (between 75 and 300), containers (between 75 and 300), ships segments

(between 60 and 150) and train segments (between 5 and 50). For each problem size, ten

different problems are solved in order to obtain representative mean values and standard

deviations. Given that the company started mainly as a ship transportation company, all

problems contain locations on islands, so it is necessary to use ships. The number of

elements for each problem size is shown in Table 9.

Figure 7 shows graphically the comparison of mean times to solve problems of the

different type proposed using the two different versions of the timiplan algorithm.
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Figure 7: Mean solving time and standard deviations.

The solid red line shows the mean times and standard deviations spent by the timi-

plan algorithm when using linear programming. The dashed blue line shows the mean

times and standard deviations needed by the timiplan algorithm when it uses the greedy

strategy. In the case of timiplan (LP), the mean time grows from 65.15 seconds (the

mean time timiplan takes to solve the simplest problem) to 6896.09 seconds (mean time

it takes to solve the most complex problem). Given that it performs a more complex as-

signment of trucks and containers to routes, this version of the timiplan algorithm needs

more time to solve problems than the greedy approach. In the latter, the mean time

ranges from 38.05 seconds to 3236.94 seconds. In both cases, time grows exponentially,

with the curve of timiplan (Greedy) being less steep.

The sensitivity of both solutions to the cost schema defined by the company is ana-

lyzed with three different cost configurations, ordered in decreasing order of cost. Each

configuration uses a cost per kilometer e f when truck f travels without any container or

the container is empty, and a cost per kilometer l f when truck f travels with a loaded

container. Acciona Transmediterránea Cargo tries to minimize the number of kilometers

where each truck travels unloaded, so in all cost configurations e f > l f . In addition,

each cost configuration uses a cost per hour cs f when truck f is stopped in a location, a

penalty cost pcv per hour applied when a delivery is delayed, and a penalty cost pcu per

hour applied when a pick-up is delayed. Configuration 1 has higher costs than configu-

ration 2, and configuration 3 is the cheapest one. Again, these cost settings are based on

real data gathered from the company.

Figure 8 shows the comparison of quality (cost) of solutions of the same problems

solved previously. Costs are expressed in millions of euros. In this case, the solid red
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line labeled as timiplan (LP) shows the mean costs and standard deviations obtained by

the timiplan algorithm when it uses linear programming. The dashed blue line timiplan

(Greedy) shows the same information when using the greedy strategy. Figure 8 shows

the results from the three different cost configurations considered. The difference in

costs between the LP and Greedy versions depends on the cost configuration. So, taking

into account the cost configurations established at the beginning, the solution for the cost

configuration 1 for the problem type 10 is approximately 1.53 millions of euros cheaper

than the solution obtained by the greedy approach; it is approximately 0.91 millions

of euros cheaper for the cost configuration 2; and it is 0.37 millions of euros cheaper

for the cost configuration 3. Given these results, when higher cost penalties are used,

the differences in the total cost (quality) between the LP and Greedy plans are more

significant. Given that the main driver of Acciona is the reduction in cost, once the rest

of constraints are fulfilled (specially as regards to the time limit imposed), the combined

approach of OR and AI techniques is empirically proven to be better than a reasonable

simpler Greedy approach.

Figure 8: Mean costs (in million euros) and standard deviations for the three proposed cost configurations.

Although it is impossible to directly compare the timiplan solutions with the so-

lutions adopted by Acciona for the reasons listed above, it can be stated with fully

confidence what truck/s and container the Acciona planner selected for each particu-

lar service. This information can be supplied to the first step of timiplan. Thus, we can

compare the performance of timiplan when it uses in the first step the assignment of

truck/s and containers to services proposed by Acciona, and when it uses in the first step

the assignment proposed by timiplan (Section 4.1.2). After the first step, the second step
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of timiplan (Section 4.2) is executed normally. Figure 9 shows the cost per day obtained

by timiplan working in these two different ways for five real and consecutive daily prob-

lems extracted from the databases of Acciona (removing by hand the inconsistencies as

the bad written addresses for these problems, which requires an enormous effort). In

both cases, it used the cost configuration 3.

Figure 9: The costs per day obtained using the assignment of truck/s and containers to services proposed
by timiplan and by the Acciona planner for five consecutive daily problems.

Figure 9 shows that when timiplan uses the assignment of truck/s and containers

to services it proposes the cost per day is significantly reduced with respect to the one

coming from Acciona’s solution. This reduction is due to two main reasons: i) timiplan

performs a centralized planning while Acciona human planners perform decentralized

planning (resources) among the different branches. Therefore, the use of all available re-

sources of the company for each problem is advantageous with respect to only using the

resources of a single branch. ii) Linear programming is able to find the best assignment

of truck/s and containers to services for all the available resources overcoming the log-

ical limitations of a human planner. It is impossible for a human planner to address the

total assignment problem of 300 trucks×300 containers×300 routes, and, additionally,

take into account costs, ship/train segments,. . .

6. Conclusions

This paper has introduced timiplan, that provides a very good tradeoff between time

to plan and quality of the solutions for the intermodal transportation problem from

one of the largest spanish companies using intermodal transportation, Acciona Trans-

mediterránea Cargo. However, clearly, the bottleneck in this problem is the combi-
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natorial explosion which makes obtaining optimal solutions impossible in the time limit

imposed by the company using only classical planning or only OR techniques. Given the

size of the problem, existing domain-independent planners cannot solve it in a reason-

able time. In a similar way, linear programming experiences a combinatorial explosion

and some type of decomposition is required [5, 10, 9]. Instead, this paper presents a

novel way to decompose the intermodal transportation problem, using the combination

of OR and AP techniques. Our approach decomposes the problem into two different

subproblems. In the first one, the assignment cost of resources (trucks and containers)

to tasks (services) is computed. In the second one, each task is formulated as a planning

problem where different actions are taken (selecting the best transportation modes) to

achieve the goals (the different pick-up and delivery requests for each service) taking

into account the resources (trucks and containers) selected in the previous phase. LP has

shown to be effective to optimally solve the different assignment subproblems, and au-

tomated planning has solved successfully the selection of the best transportation modes.

This novel way of combining linear programming and planning has allowed us to bal-

ance the total cost (quality) obtained, the time required to compute a solution and the

time to model the different optimization problems.

Another key issue in relation to solving real world problems consists on the difficulty

of modelling. In our case, we could have opted to spend much more time on modelling

the whole problem as a LP or CSP problem, or to spend much more time on coming

up with a solution to the grounding explosion problem for current planners. It might

be possible that following those alternatives would have generated a better solution in

terms of quality and/or time. We believe that our current solution is a viable solution that

has also minimized the modelling time (programming effort) providing a good solution

to the task. As a side effect, we have also separated the modelling difficulties, so that

we deal with the best solution in terms of the multiple criteria problem of <modelling

time, quality of solution, time to solve>. Empirical evaluation shows that this combina-

tion of techniques finds valid (but suboptimal) plans to complete all the daily services

of the company within the imposed time limit, and outperforming the quality of plans

obtained by a reasonable simpler approach. timiplan, provides several improvements to

the company operations.

In order to finally deploy timiplan we have to pre-process the databases (or include

some kind of robust input parsing). As future work, we consider combining LP and

automated planning in a different way to find better solutions (lower cost) in less time.
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