A Self Balancing Robot

Or
A lesson on OSEK/VDX

Agenda

Introduction.

The robot & the model.
Installing and the that jazz.
Deconstructing the OS.

A series of interesting topics.
Concluding remarks.

Introduction

 What is a (Reactive) Real Time System?
e Components of RTS development:

— Known hardware platform,
— OS that allows “proper” scheduling.

The Robot

e This is old news....
e NXTway-GS

e Building instructions, software etc is trivially
found online at lejos-osek website.

The Model

* Any real autonomous robot has a model.
— This is the central point of control theory.
— Models for a 2-D moving robot is?
— A self balancing robot is...?

e Models are used for controllers ‘7@
— PID, Fuzzy Logic, etc. L

e How is this related to a RTS?

Installing and all the Jazz

 The intention was...
e Building, compiling etc. is easy.
 YouTube...

Deconstructing the OS (1)

e Why is OSEK/VDX interesting?

— It is build for a purpose by the German
automotive industry.

— Used in the industry.
— Designed for small embedded devices.

— Depending on HW hard real-time is expected.
e Airbags, ABS, ESP.
— Distributed via CAN-bus etc.

Deconstructing the OS (2)

e What is OSEK/VDX?

— "Offene Systeme und deren Schnittstellen fiir die
Elektronik im Kraftfahrzeug / Vehicle Distributed
Executive”

— Open Systems and their Interfaces for the
Electronics in Motor Vehicles.

— This means that it is a specification more than an
implementation.

Deconstructing the OS (3)

e Great stuff, point me to the documentation...

e OSEKnxt has certain limitations.

— The TOPPERS/ATK implementation is not
complete.

— Based on:
e OSEK OS Version 2.2.1
e OSEK OIL Verion 2.5

e Where does this leave us?

This is regular OS knowledge

. ! hl |
Interrupt routines ! ~ i
P atniaiaatete ¥ 3 s y

—d
|

O
%
2
S
>
O
]
|

I 1/O drivers

Libraries =~~~ \ /
‘ micro-controller .

e OSEKnxt does not support real ISR’s!

Submit to the scheduler

Messages Alarms Events Tasks Interrupts Resources
management management management management management management

Timers

management Scheduler

OSEK/VDX OS kernel

No 'new’ constructs

o static configuration (offline) : The application
architecture is completely known.

— Greatly simplify the design and the writing of the
kernel.

e allow to embed only the functions of the OS
that are really used.

* Predictable behavior. Fit requirements of real-
time applications.

OSEK OS and OIL

e Objects of an OSEK application are all defined when the
application is designed.

— Objects are static. i.e: there are no creation/deletion of
tasks, resources, etc dynamically during the execution of the
application.

e Data structures are used to store the properties of the
objects and are defined statically when the application is
built.

* Alanguage has been defined (and standardized) to
define the attributes of the objects in a simple way:

— OIL: OSEK Implementation Language

A tad more on OIL

e The OIL syntax is a simple one: based on objects (tasks,
resources, ...) with a value for each attribute.

— Some attributes have sub-attributes.
e Starting from the description of the application (text
file), data structures are automatically generated:
— fast;
— less error prone,;

— Independant of the OSEK vendor (the data structures are
not included in the standard);

— easy to update.

Adding it all together

C compiler
— o T——
Application code .c, .h object files .0, .obj, ..
N OIL compiler C compiler i
.,.---"""-__'_‘___-"‘---.‘ ..--""'-__'_‘___—""—-*
Application description . L .
oil Data structures .c, .h object files .0, .0Dj; ..

OS code
.c, .h, .lib, ..

Compilateur ¢
m— ____-_‘-"hv

bject files .0, .obj, .

link
.---"'""-_'_—_-“"‘--*

Executable files
HE6, bin, ...

Phew, thats it?

* No, now the real techical issues are coming.
e OSEKnxt < OSEK/VXD spec.
e Our focus of today is OSEKnxt

OSEKnxt Implements

category of service

Services

ActivateTask(TaskType tskid);
lerminateTask(void);
ChainTask(TaskType tskid);

lasks
Schedule(void);
GetTasklD{TaskRefType p_tskid);
GetTaskState(TaskType tskid, TaskStateRefType p_state)
Setevent|TaskType tskid, EventMaskType mask);
Events Clearkvent(EventMaskType mask);
Getevent({TaskType tskid, EventMaskRefType p_mask);
Waitkvent{EventMaskType mask);
GetResource{ResourceType resid);
Resources)
ReleaseResource(ResourceType resid);
Counters SignalCounter{CounterType cntid);
GetAlarmBase(AlarmType almid, AlarmBaseRefType p_info);
GetAlarm{AlarmType almid, TickRefType p_tick);
Alarms SetRelAlarm{AlarmType almid, TickType incr, TickType cycle);

SetAbsAlarm{AlarmType almid, TickType start, TickType cycle);
CancelAlarm{AlarmType almid);

Interruptions

EnableAllinterrupts(void);
DisableAllinterrupts(void);
ResumeAllinterrupts{veid);
SuspendAllinterrupts(void);
ResumeOSinterrupts(void);
SuspendOSinterrupts(void);
lhese services are described in nxtOSEK/toppers_osek/kernel/interrupt.c

Interrupt Service Routine (ISR) are not implemented in nxtOSEK. According to
nxtOSEK website “nxtOSEK restricts several TOPPERS ATK features due to the system
architecture. Users should not use ISR definitions and Interrupt handling APL”

ISR1: no registers seems allocated to Interrupt Control {or not link is dene in nxtOSEK
ISR2: nxtOSEK does not provide a “TRAP” tahle to link software and material
interrupticns. A fake solution to this problem is to allocate a very high priority and an
event to a task. To treat this task as an interruption (ISR2), the task just has to be
placed in WAITING state using the WaiteEvent service.

Communication

osekNXT does not provide OSEK COM standard service. (it seems that
[TOPPERS ATK is dedicated to OSEK OS and OSEK OIL but not OSEK COM)

Error Management

No information found about ROTS services

Others

GetActiveApplicationMode(void);
StartOS{AppModeType mode);
ShutdownOS(StatusType ercd);

Tasks

e Task has a state model:
— Basic
— Extended

e Tasks are finite series of C instructions.

Task keyword
I TASK(myTask){

//Task instructions

Call to service that /} TerminateTask();

Termintas a task

Skipping to Extended tasks

Task is inactive

TerminaMctivate

RN C>

Task is active

Taak has tha \’ preempt
j (ready to run)

Task is waiting

Tasks are flexible entities

 Programs build of tasks may be:

— Full preemptive

* |tis the most reactive model because any task may be preempted.
The highest priority Task is sure to get the CPU as soon as it is
activated.

— Non-preemptive

e Itis the most predictive model because a task which get the CPU
will never be preempted. Scheduling is a straightforward and the
OS memory footprint may be smaller.

— Mixed setting

e Forinstance, a very short task (in execution time) may be
configured as non-preempteble because the context switch is
longer than its execution.

* Decided at design time in the OIL file

» Example: 2 tasks (Task1 and Task2).
At start, Task1 runs. Then Task?2 is activated

Taskl state

Task1

Task2

Task2 state

Task2
awakening
A :
Running Ready Running| Suspended
‘ H
'y
Suspended { _Running Suspended

\ :

Prio(Taskl) = 5
Prio(Task2) = 10

e Example: 2 tasks (Task1 and Task?2).
At start, Task1 runs. Then Task?2 is activated

Taskl state

Taskl

Task2

Task2 state

Task2

awakening
Running %Running Suspended | Suspended ;
>
Suspended Ready | Running Suspended >

Prio(Taskl) = 5
Prio(Task2) = 10

Task Services

 Manipulate tasks in various ways.
— Terminate task
e OS terminates tasks. All tasks must terminate!

— Activate task

e Puts a new task in running state

— Chain tasks

e Replaces terminate task by explicitly calling a new task

OIL Description of task

Static priority of the

task
Task name
\
TASK myTask { State of the task a beginning:
PRIORITY = 2; __— -READYif AUTOSTART = TRUE
AUTOSTART = FALSE; - SUSPENDED if AUTOSTART =FALSE

STACKSIZE = 512; N
activations

V

Target specific extension
Here, the size of the stack.

ACTIVATION =1;
SCHEDULE = NON\
\ maximum memorized

Scheduling mode:
- FULL: Task is preemptable
-NON: Task id non-preemptable

Events, Alarms, Counters and Hooks

All of these gives us:

e Synchronization.

e Discrete counter to drive the system.
 Time based events.

 Running code at various interesting points.
This should also be (well) known by you.

Events

An event is like a flag that is raised to signal
something just happened.

An event is private: It is a property of an
Extended Task. Only the owning task may wait
for the event.

It is a N producers / 1 consumer model

— Any task (extended or basic) may invoke the service
which set an event.

— One task (an only one) may get the event (ie invoke
the service which wait for an event.

The implementation defines a max number of
events pr. taks.

Event masks

* Any extended task has:

— A bit vector coding events set

— A bit vector coding events it waits for
e To implement this feature, an event

corresponds to a binary mask: 0x01,0x02,
0x04.

— Fun eh?
— Bit operations are error prone!
— OS to the rescue.

Event Services (1)

e SetEvent

— StatusType SetEvent(TaskType <TaskID>,
EventMaskType <Mask>);

— This service is not blocking and may be called
from any task.

e ClearEvent
— StatusType ClearEvent(EventMaskType <Mask>);
— non-blocking service.
— May be called by the owning task (only)

Event Services (2)

e GetEvent

— StatusType GetEvent(TaskType <Taskld>,
EventMaskRefType event);

— The event mask of the task <Taskld> is copied to
the variable event (A pointer to an
EventMaskType is passed to the service);

— Non-blocking service, my be called from a task.

Event Services (3)

WaitEvent

— StatusType WaitEvent(EventMaskType
<Event|D>);

— Put the calling task in the WAITING state until one
of the events is set.

— May be called by the event owning (extended)
task only.

— Blocking service.

OIL Description of Events

Definition of the mask. It is:

EVENT evl { . TASK myTask {
VA= AUTO; < e O cormpler, PRIORITY=2,
Z - A litteral value which is the AUTOSTART = FALSE;
binary mask. ACTIVATION = 1;
SCHEDULE = NON;
EVENT ev2 { STACKSIZE = 512;
MASK = 0x4; List of the event the EVENT = evl;
). task uses. / EVENT = ev2;
The task is the owner of }
these events
If an event is used in more than myTask is automatically an
one task, only the name is Extended task because it

shared: An event is private. uses at least one event.

Code with events

Wait for 2 events simultaneously
The task will be waked up when

TASK(Task1) Set EV1 which is at least one of the 2 events will
owned by Task2

{ be set

SetEvent(Task2, EV1);

TASK(Task?2)

TerminateTask(); {

} EventMaskType event/ got;

WaitEvent(EV1 | EV2);

Useful to know what event has been set
\ GetEvent(Task2, &event_got);

if (event_got & EV1) {
//manage EV1
}
if (event_got & EV2) {
//manage EV2

}

TASK(Task3)
{

SetEvent(Task2, EV2);

TerminateTask();

}

TerminateTask();

Hook Routines

Features

e OSEK proposes dedicated routines (or functions)
to allow the user to «hook » an action at
important stages in system calls.

e “hook routines” are/have:
— called by the operating system,
— a priority greater than all tasks,
— a standardized interface,
— able to call a subset of the operating system services.

Startup/shutdown hook

(Re-)Start
5\\.
hardware-specific | call to & OrSa; xacutet:m OS executes | OS kernel ﬁtr:;;?:r
initialization code | StartOS : nl:ill?alizantgi osnys I StartupHook | is running running
1 2 3 4 5
« > source: OSEK 2.2.3

During StartupHook
all user interrupts are disabled

e ShutdownHook

— This routine is called when ShutdownQS() is called and
should be used for fatal error handling.

Errorhook/pre-post task hooks

ErrorHook:

* This routine is called when a system call does not
return E_OK, that is if an error occurs during a
system call(recursive calls).

PreTaskHook and PostTaskHook:

 PreTaskHook is called just before a task goes
from READY state to RUNNING state.

e PostTaskHook is called just before a task goes
from RUNNING state to

* READY or SUSPENDED state.

OIL and C hook example

*The hooks which are used must be declared in the OS object in the mplementation part
of the OIL file

OS config {
STATUS = EXTENDED;
ERRORHOOK = TRUE;
PRETASKHOOK = TRUE;

}I

In the C source:

void ErrorHook(StatusType error)
{}
void PreTaskHook(void)

{

TaskType id;
GetTaskID(&id);
printf("Before %d\n",id);
}

Counters and Alarms

 Goal: perform an “action” after a number of “ticks” from
an hardware device:

— Typical case: periodic activation of a task with a hardware timer.

e The “action” may be:
— signalization of an event.
— activation of a task.

— function call (a callback since it is a user function). The function
is executed on the context of the running task.

e The hardware device may be:
— atimer.

— any periodic interrupt source (for instance an interrupt
triggered by the low position of a piston of a motor. The
frequency is not a constant in this case.

Alarms

Timer I T

counter r'_ ’_l—'_‘_ I_I_,_I— |_'_l_l—‘
i = o T

4 Start of the
alarm

Periodic

alarm
AlarmTime =6
CycleTime =6

One shot ‘

alarm

Start of the
AlarmTime = 2

alarm

Alarm services

SetAbsAlarm
StatusType SetAbsAlarm (
AlarmType <AlarmID>,
TickType <start>,
TickType <cycle>)
 AlarmlID is the id of the alarm to start.
e startis the absolute date at which the alarm expire

e cycleis the relative date (counted from the start date)
at which the alarm expire again. If O, it is a one shot
alarm.

Alarm Services

SetRelAlarm
StatusType SetRelAlarm (
AlarmType <AlarmID>,
TickType <increment>,
TickType <cycle>)
e AlarmlID is the id of the alarm to start.

e increment is the relative date at which the alarm
expire

e cycle is the relative date (counted from the start date)
at which the alarm expire again. If O, it is a one shot
alarm.

Alarm Services

CancelAlarm
StatusType CancelAlarm (AlarmType <AlarmI|D>)
e AlarmlID is the id of the alarm to stop.
GetAlarm
e Get the remaining ticks before the alarm expires.

StatusType GetAlarm (larmType <AlarmID>,TickRefType
<tick>)

e AlarmlID is the id of the alarm to get.

e tickis a pointer to a TickType where GetAlarm store
the remaining ticks before the alarm expire.

Shared Resources

All the usual problems,

Along with the solutions.
A ressource is defined in the OIL file.
A task kan get or release a resource

Ressource Scheduling

To take resources into account in scheduling, a
slightly modified PCP (Priority Ceiling Protocol) is
used.

e Each resource has a priority such as:

— The priority is > to max of priorities of tasks which
may get the resource;

— When a task get a resource, its priority is raised to the
priority of the resource

— When a task release the resource, its priority is
lowered to the previous one.

Ressource example

TO‘
Priority of the Suspended Running | Suspended ")
resource es |
_wjRiunning (T3)[Ready | Running (T3) “-l Fiunnin%{ﬁ]
T \ / AN
Suspenda\ Ready { | Running}”
-
T2 \ \\
Suspended | | [Ready) \ o
N —, va—
unnin
g Hﬂﬂﬂ}f \ =

T3 gets the resource,
its priority is raised to
the resource priority

= s

T3 releases the resource,
its priority is returned to

the previous one

\

T1 gets the resource,
its priority is raised to
the resource priority

Is there more time?

* |f yes, we take a look at the code for balancing
robot.

Conlusion

e OSEK/VDX is powerful

— We have left out everything on conformance
classes.

 OSEKnxt is good learning experience.
e Gives all scheduling needs for soft real time.

Further Reading

http://tiresias.nuxit.net/chuwiki/download/le
go/LEGO and real time.pdf

http://portal.osek-
vdx.org/files/pdf/specs/deprecated/o0s221.pdf

http://portal.osek-
vdx.org/files/pdf/specs/0il25.pdf

http://lejos-osek.sourceforge.net/

http://www.embedded-
computing.com/pdfs/Metrowerks.Win03.pdf

Credits

* Trampoline teaching slides: diagrams and
structure.

Excercises

Download and install OSEKnxt

Find StatusType for the services mentioned in the
slides.

Review:

— Alarmtest

— Eventtest

— Resourcetest

Consider if OSEKnxt is the right way for your
project.

Compile and run the bluetooth tests.

