Real-Time Software

Programming Real-Time Abstractions

René Rydhof Hansen

15 October 2010

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 1/20



Today's Goals

@ Programming real-time abstractions

Cyclic executive

o Priority-based scheduling under POSIX

e Priority-based scheduling under Real-Time Java
o Interrupt handling under Real-Time Java

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 2 /20



Implementing Cyclic Executive “Scheduling”

@ Reugqires a very simple run-time with

e Regular timing interrupt
e Table of procedure to call

loop
wait_for_interrupt;
proc_a; proc_b; proc_c; Task Period Cost
wait_for_interrupt; 3 25 10
izgz_:j proc_b; proc_d; o5 8
wait_for_interrupt; ¢ 50 5
proc_a; proc_b; proc_c; d 50 4
wait_for_interrupt; e 100 2
proc_a; proc_b; proc_d;

end loop;

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 3 /20



Priority-Based Scheduling

@ Widely supported

o Ada, Real-Time Java, POSIX
e Most (commercial) RTOSs

@ Usually preemptive
@ Requires “reasonable” range of priorities

@ Requires priority inheritance of some form

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 4/20



POSIX Priority Based Scheduling

Policies for Priority-Based Scheduling

@ FIFO: A task runs until it completes or it is blocked

@ Round-Robin: A task runs until it completes or is blocked or is
pre-empted

@ Sporadic Server: A task runs as a sporadic server

@ OTHER: Implementation defined

Priorities

@ Supports priority inheritance and ceiling protocols
@ Dynamic priorities

@ For FIFO and round-robin: at least 32 priorities must be supported

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 5/ 20



POSIX Priority Based Scheduling

Scheduler Granularity

@ Scheduling policy can be set on a per thread basis

@ Thread scheduling
e System contention
@ Threads compete globally in a system
e Process contention

o Threads compete locally in a process
@ Scheduling unspecified relative to threads in other processes or threads
with system contention

Other facilities in POSIX

@ Priority inheritance to be associated with mutexes (ICPP)

@ Message queues to be priority ordered

@ Support for dynamically changing a thread’s priority

@ Threads determine if their attributes are inherited by child threads

v

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 6 /20



Sporadic Server in POSIX

@ A sporadic server assigns a limited amount of CPU capacity to handle
events, has a replenishment period, a budget, and two priorities

@ The server runs at a high priority when it has some budget left and a
low one when its budget is exhausted

@ When a server runs at the high priority, the amount of execution time
it consumes is subtracted from its budget

@ The amount of budget consumed is replenished at the time the server
was activated plus the replenishment period

@ When its budget reaches zero, the server’s priority is set to the low
value

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 7 /20



Real-Time Profiles in POSIX

PSE51 Minimal real-time profile

@ Threads, fixed priority scheduling, mutexes with priority
inheritance, condition variable, semaphores, signals and
simple |/O—analogous to Ravenscar

PSE52 Real-time control profile

@ Multiprocessors, file system, message queues, tracing
PSE53 Dedicated real-time profile

e Multi-threaded processes, asynchronous |/0
PSE54 Multipurpose real-time systems profile

@ Real-time and non real-time, memory management,
networks etc.

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 8 /20



Real-Time Java

@ Scheduling at the level of objects: schedulable object

o Extends notion of schedulability (for tasks, threads)
e Schedulable object: any object implementing the Schedulable
interface

@ Scheduling parameters are represented by a class
@ Enables online as well as static priority based scheduling

@ Implementations are required to support at least 28 real-time priority
levels

@ Non real-time threads are given priority levels below the minimum
real-time priority

@ Like Ada and Real-Time POSIX, RTSJ supports a preemptive
priority-based dispatching policy

@ Unlike Ada and RT POSIX, RTSJ does not require a preempted

thread to be placed at the head of the run queue associated with its
priority level

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 9 /20



Schedulable Interface

@ Implemented by

o RealtimeThread
o NoHeapRealtimeThread
o AsyncEventHandler

@ Objects of these classes all have scheduling parameters

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 10 / 20



Schedulable Interface

public interface Schedulable
extends java.lang.Runnable {

public void addToFeasibility();
public void removeFromFeasibility ();

public MemoryParameters getMemoryParameters ();
public void setMemoryParameters (MemoryParameters memory)

public ReleaseParameters getReleaseParameters();
public void setReleaseParameters(ReleaseParameters reles

public SchedulingParameters getSchedulingParameters();
public void setSchedulingParameters (
SchedulingParameters scheduling);

public Scheduler getScheduler ();
public void setScheduler (Scheduler scheduler);

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 11 /20



RTSJ AsyncEventHandler

public class AsyncEventHandler
extends java.lang.Object
implements Schedulable

{

public AsyncEventHandler (
SchedulingParameters scheduling,
ReleaseParameters release,
MemoryParameters memory,
MemoryArea area,
boolean nonheap);

public void handleAsyncEvent ();

// the program to be exzecuted
protected int getAndClearPendingFireCount ();
b

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 12 /20



The SchedulingParameters Class

public abstract class SchedulingParameters {
public SchedulingParameters ();

3

public class PriorityParameters extends SchedulingParame
public PriorityParameters(int priority);

public int getPriority ();
public void setPriority(int priority) throws
IllegalArgumentException;

}

public class ImportanceParameters extends PriorityParame
public ImportanceParameters(int priority, int importan
public int getImportance();
public void setImportance(int importance);

}

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 13 /20



The Scheduler Class

@ Mostly concerned with online (schedulability) tests

public abstract class Scheduler {
protected Scheduler ();

protected abstract void addToFeasibility(
Schedulable schedulable);

protected abstract void removeFromFeasibility(
Schedulable schedulable);

public abstract boolean isFeasible();
// checks the current set of schedulable objects

public boolean changelfFeasible(Schedulable schedulable,
ReleaseParameters release,
MemoryParameters memory) ;

public static Scheduler getDefaultScheduler ();
public static void setDefaultScheduler (Scheduler scheduler);

public abstract java.lang.String getPolicyName ();
}

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 14 /20



The PriorityScheduler Class

@ Standard preemptive priority-based scheduling

class PriorityScheduler extends Scheduler

{
public PriorityScheduler ()
protected void addToFeasibility(Schedulable s);
public int getMaxPriority();
public int getMinPriority ();
public int getNormPriority();
public static PriorityScheduler instance();
}

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 15 /20



Other Facilities in Real-Time Java

@ Priority inheritance and ICCP (called priority ceiling emulation)

@ Support for aperiodic threads in the form of processing groups; a
group of aperiodic threads can be linked together and assigned
characteristics which aid the feasibility analysis

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 16 / 20



Profile in Real-Time Java

Level 0 Similar to a cyclic executive
Level 1 FPS, periodic and sporadic events, mutual exclusion

Level 2 Asynchronous event handlers and/or
NoHeapRealtimethreads, wait and notify

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 17 /20



Interrupt Handling in Real-Time Java

@ RTSJ views an interrupt as an asynchronous event
@ The interrupt is equivalent to a call of the fire method

@ The association between the interrupt and the event is achieved via
the bindTo method in the AsyncEvent class

@ The parameter is of string type, and this is used in an
implementation-dependent manner—one approach might be to pass
the address of the interrupt vector

@ When the interrupt occurs, the appropriate handler’s fire method is
called

@ Now, it is possible to associate the handler with a schedulable object
and give it an appropriate priority and release parameters

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 18 / 20



Interrupt Handling

AsyncEvent Interrupt = new AsyncEvent ();
AsyncEventHandler InterruptHandler = new
BoundAsyncEventHandler(priParams,
releaseParams,
null , null, null);

Interrupt.addHandler (InterruptHandler);
Interrupt.bindTo ("0177760");

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 19 /20



Summary:
@ Programming real-time abstractions

Cyclic executive

e Priority-based scheduling under POSIX

o Priority-based scheduling under Real-Time Java
o Interrupt handling under Real-Time Java

TSW (2010e) (Lecture 11) Real-Time Software 15 October 2010 20 / 20



	Introduction
	Implementing Cyclic Executive ``Scheduling''
	Priority Based Scheduling
	POSIX
	Real-Time Java

	Interrupt Handling in Real-Time Java
	Conclusion

