
Real-Time Software
Synchronization, Atomicity, Deadlocks

René Rydhof Hansen

8 October 2010

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 1 / 18



Today’s Goals

Shared variable communication and synchronisation

Busy waiting

Semaphores

Conditional Critical Regions

Monitors

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 2 / 18



Communication and Synchronisation with Shared Memory

Communication

Message based

Shared memory (shared variable)

Useful when tasks share physical memory
Multi-core systems
(Some) Multi-processor systems
Distributed systems... not so much.

Synchronisation

“Full” communication not always needed

Tasks may need to synchronise

Temporal ordering
Waiting for something to happen
Called condition synchronisation

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 3 / 18



Implementing Communication with Shared Memory

Example (Well-known PSS territory)

task T1;
...
x := x + 1; -- x is shared with T2

...

task T2;
...
x := x + 1; -- x is shared with T1

...

Problem?

Assumption

Atomicity is assumed at memory (word) level

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 4 / 18



Implementing Communication with Shared Memory

Example (Well-known PSS territory)

task T1;
...
x := x + 1; -- x is shared with T2

...

task T2;
...
x := x + 1; -- x is shared with T1

...

Problem? Non-atomic operations, race conditions!
Solution?

Assumption

Atomicity is assumed at memory (word) level

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 4 / 18



Implementing Communication with Shared Memory

Example (Well-known PSS territory)

task T1;
...
x := x + 1; -- x is shared with T2

...

task T2;
...
x := x + 1; -- x is shared with T1

...

Problem? Non-atomic operations, race conditions!
Solution? Mutual exclusion!

Assumption

Atomicity is assumed at memory (word) level

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 4 / 18



Mutual Exclusion

Definition (Critical Section)

Sequence of statements that must be executed atomically

Implementing mutual exclusion for critical sections

task P;
loop

...
entry protocol

critical section
exit protocol
...

end;

What protocol?

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 5 / 18



Implementing a Mutual Exclusion Protocol

Peterson’s Algorithm for Mutual Exclusion

task P1;
loop

flag1 := up;
turn := 2;
while flag2 = up and

turn = 2 do
null;

end;
-- CRITICAL SECTION

flag1 := down;
...

task P2;
loop

flag2 := up;
turn := 1;
while flag1 = up and

turn = 1 do
null;

end;
-- CRITICAL SECTION

flag2 := down;
...

Hard to generalise to n processes

Alternative: Decker’s

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 6 / 18



Shared Memory Impl. of Condition Synchronisation

Example (Condition sync. using busy wait)

Ensuring that P1 waits for (signal from) P2.

task P1; task P2;
... ...
while flag = down do flag := up;

null; ...
end;
...

Problem?

Problems

Inefficient

Too error prone

May lead to livelock

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 7 / 18



Shared Memory Impl. of Condition Synchronisation

Example (Condition sync. using busy wait)

Ensuring that P1 waits for (signal from) P2.

task P1; task P2;
... ...
while flag = down do flag := up;

null; ...
end;
...

Problem?

Problems

Inefficient

Too error prone

May lead to livelock

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 7 / 18



Suspend and Resume

Example (Suspend and Resume )

Ensuring that P1 waits for (signal from) P2.

task P1; task P2;
... ...
while flag = down do flag := up;

suspend; resume P1;
end; ...
flag := down;
...

Problem?

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 8 / 18



Suspend and Resume

Example (Suspend and Resume the WRONG way)

Ensuring that P1 waits for (signal from) P2.

task P1; task P2;
... ...
while flag = down do flag := up;

suspend; resume P1;
end; ...
flag := down;
...

Problem? Race condition! Use special suspend protocol, e.g., two stage
suspend, suspend objects (Ada)

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 8 / 18



Semaphores

Why?

Simplify (and structure) synchronisation

Avoid busy waits

Simple mutual exclusion

Definition (Semaphore)

A semaphore is a non-negative integer with atomic increment and
decrement operators associated:

1 wait(S) decrement S and suspend when it reaches zero

2 signal(S) increment S

Implementation of semaphores

Often using hardware support: test and set, swap

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 9 / 18



Semaphores: The Downside

Low level

Error prone

Brittle (one “small” error can take down the entire system)

May lead to deadlock

Deadlock

Prevention

Mutual exclusion
Hold and wait
No preemption
Circular wait

Avoidance

Detection and recovery

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 10 / 18



Conditional Critical Regions

A section of code that is executed in mutual exclusion

Shared variables are grouped into named regions and tagged as
resources

Tasks cannot enter a region in which another task is executing

Condition synchronisation is provided by guards

Before a task can enter a critical region, the guard is evaluated (under
mutual exclusion)

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 11 / 18



Conditional Critical Regions

Example (Bounded buffer using CCR)

resource buf : buffer;

task producer;
loop

region buf when buffer.size < N do
...

end region
end loop;

end producer

task consumer;
loop

region buf when buffer.size > 0 do
-- take char from buffer etc

end region
end loop;

end consumer

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 12 / 18



Monitors

Monitors

Monitors provide encapsulation and efficient condition synchronisation

Critical regions are written as procedures encasulated in a single
module

Variables that must be accessed under mutual exclusion are hidden

All method calls into module are executed under mutual exclusion

Only operations are visible outside monitor

What about condition synchronisation? Condition variables

Different semantics
Wait and signal operators
Wait blocks and releases hold on the monitor

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 13 / 18



Monitors

Example (Bounded buffer with monitors)

monitor buffer;
export append , take;

var (* declare necessary vars*)

procedure append (I : integer );
...

end;

procedure take (var I : integer );
...

end;
begin

(* initialisation *)
end;

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 14 / 18



Monitors

Example (Bounded buffer with monitors)

procedure append (I : integer );
begin

if NumberInBuffer = size then
wait(spaceavailable );

end if;
BUF[top] := I;
NumberInBuffer := NumberInBuffer +1;
top := (top+1) mod size;
signal(itemavailable)

end append;

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 15 / 18



Monitors

Example (Bounded buffer with monitors)

procedure take (var I : integer );
begin

if NumberInBuffer = 0 then
wait(itemavailable );

end if;
I := BUF[base];
base := (base +1) mod size;
NumberInBuffer := NumberInBuffer -1;
signal(spaceavailable );

end take;

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 16 / 18



Monitors: The Bad and The Ugly

Bad: handling of condition synchronisation

Bad: still too low level

Ugly: brittle

Ugly: internal structure hard to understand

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 17 / 18



Summary

Summary:

Shared variable communication and synchronisation

Busy waiting

Semaphores

Conditional Critical Regions

Monitors

Mutual exclusion (Peterson’s algorithm)

Suspend resume

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 18 / 18


	Introduction
	Communication and Synchronization via Shared Memory
	Implementing Communication
	Implementing Synchronisation
	Busy wait
	Suspend/resume

	General Mechanisms
	Semaphores
	Conditional Critical Regions
	Monitors


	Conclusion

