Real-Time Software

Synchronization, Atomicity, Deadlocks

René Rydhof Hansen

8 October 2010

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 1/18



Today's Goals

@ Shared variable communication and synchronisation
@ Busy waiting

@ Semaphores

o Conditional Critical Regions

@ Monitors

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 2 /18



Communication and Synchronisation with Shared Memory

Communication

@ Message based

@ Shared memory (shared variable)
o Useful when tasks share physical memory
e Multi-core systems
e (Some) Multi-processor systems
o Distributed systems... not so much.

Synchronisation

@ “Full” communication not always needed
@ Tasks may need to synchronise

e Temporal ordering
e Waiting for something to happen
e Called condition synchronisation

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010



Implementing Communication with Shared Memory

Example (Well-known PSS territory)

task T1;

x = x + 1; -— x 1S shared with T2
task T2;

X = x + 1; --— x 18 shared with T1
Problem?

Atomicity is assumed at memory (word) level

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 4 /18



Implementing Communication with Shared Memory

Example (Well-known PSS territory)

task T1;
X = x + 1; -— x 1s shared with T2
task T2;
X = x + 1; --— x 18 shared with T1
Problem? Non-atomic operations, race conditions!
Solution? )

Atomicity is assumed at memory (word) level

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 4 /18



Implementing Communication with Shared Memory

Example (Well-known PSS territory)

task T1;
X = x + 1; -— x 1s shared with T2
task T2;
X = x + 1; --— x 18 shared with T1
Problem? Non-atomic operations, race conditions!
Solution? Mutual exclusion! )

Atomicity is assumed at memory (word) level

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 4 /18



Mutual Exclusion

Definition (Critical Section)

Sequence of statements that must be executed atomically

Implementing mutual exclusion for critical sections

task P;
loop

entry protocol
critical section

exit protocol

end ;

What protocol?

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 5/18



Implementing a Mutual Exclusion Protocol

Peterson’s Algorithm for Mutual Exclusion

task P1; task P2;
loop loop
flagl := up; flag2 := up;
turn := 2; turn := 1;
while flag2 = up and while flagl = up and
turn = 2 do turn = 1 do
null; null;
end ; end ;
-—- CRITICAL SECTION -— CRITICAL SECTION
flagl := down; flag2 := down;

@ Hard to generalise to n processes
@ Alternative: Decker's

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 6 /18



Shared Memory Impl. of Condition Synchronisation

Example (Condition sync. using busy wait)

Ensuring that P1 waits for (signal from) P2.
task P1; task P2;
while flag = down do flag := up;
null;
end ;
Problem? )

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 7 /18



Shared Memory Impl. of Condition Synchronisation

Example (Condition sync. using busy wait)

Ensuring that P1 waits for (signal from) P2.

task P1; task P2;
while flag = down do flag := up;
null;
end ;
Problem?

V.
Problems

o Inefficient
@ Too error prone

@ May lead to livelock

v

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010

7/18



Suspend and Resume

Example (Suspend and Resume )

Ensuring that P1 waits for (signal from) P2.

task P1; task P2;
while flag = down do flag := up;
suspend; resume P1;
end ;
flag := down;
Problem?

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010

8/ 18



Suspend and Resume

Example (Suspend and Resume

Ensuring that P1 waits for (signal from) P2.

task P1; task P2;
while flag = down do flag := up;
suspend; resume P1;
end ;
flag := down;

Problem? Race condition! Use special suspend protocol, e.g., two stage
suspend, suspend objects (Ada)

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 8 /18



e Simplify (and structure) synchronisation

@ Avoid busy waits

@ Simple mutual exclusion

Definition (Semaphore)

A semaphore is a non-negative integer with atomic increment and
decrement operators associated:

O wait(S) decrement S and suspend when it reaches zero

© signal(S) increment S

Implementation of semaphores

@ Often using hardware support: test and set, swap

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 9 /18



Semaphores: The Downside

Low level

Error prone

Brittle (one “small” error can take down the entire system)
May lead to deadlock

Deadlock

@ Prevention

Mutual exclusion
e Hold and wait

o No preemption
o Circular wait

@ Avoidance

@ Detection and recovery

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 10 / 18



Conditional Critical Regions

@ A section of code that is executed in mutual exclusion

@ Shared variables are grouped into named regions and tagged as
resources

@ Tasks cannot enter a region in which another task is executing

@ Condition synchronisation is provided by guards

@ Before a task can enter a critical region, the guard is evaluated (under
mutual exclusion)

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 11 /18



Conditional Critical Regions

Example (Bounded buffer using CCR)

resource buf : buffer;

task producer;
loop
region buf when buffer.size < N do

end region
end loop;
end producer

task consumer;
loop
region buf when buffer.size > 0 do
-- take char from buffer etc
end region
end loop;
end consumer

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 12 /18



Monitors

@ Monitors provide encapsulation and efficient condition synchronisation

@ Critical regions are written as procedures encasulated in a single
module

@ Variables that must be accessed under mutual exclusion are hidden
@ All method calls into module are executed under mutual exclusion
@ Only operations are visible outside monitor

@ What about condition synchronisation? Condition variables

o Different semantics
e Wait and signal operators
o Wait blocks and releases hold on the monitor

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 13 /18



Monitors

Example (Bounded buffer with monitors)

monitor buffer;

export append, take;
var (*declare necessary vars)
procedure append (I : integer);
end ;
procedure take (var I : integer);
end ;

begin
(* initialisation x*)

end ;

v

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 14 /18



Monitors

Example (Bounded buffer with monitors)

procedure append (I : integer);

begin

if NumberInBuffer = size then
wait(spaceavailable) ;

end if;
BUF [top] := I;
NumberInBuffer := NumberInBuffer+1;
top := (top+1l) mod size;
signal (itemavailable)

end append;

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 15 / 18



Monitors

Example (Bounded buffer with monitors)

procedure take (var I : integer);
begin
if NumberInBuffer = 0 then
wait(itemavailable);

end if;
I := BUF[basel];
base := (base+1) mod size;
NumberInBuffer := NumberInBuffer -1;
signal (spaceavailable);

end take;

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 16 / 18



Monitors: The Bad and The Ugly

Bad: handling of condition synchronisation
Bad: still too low level

Ugly: brittle

Ugly: internal structure hard to understand

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 17 / 18



Summary:
@ Shared variable communication and synchronisation
@ Busy waiting
Semaphores
Conditional Critical Regions

°
°

@ Monitors
@ Mutual exclusion (Peterson’s algorithm)
°

Suspend resume

TSW (2010e) (Lecture 09) Real-Time Software 8 October 2010 18 / 18



	Introduction
	Communication and Synchronization via Shared Memory
	Implementing Communication
	Implementing Synchronisation
	Busy wait
	Suspend/resume

	General Mechanisms
	Semaphores
	Conditional Critical Regions
	Monitors


	Conclusion

