Model-Checking,
Scheduling Analysis
(and Code Synthesis):
Alexandre David

!'_ Times
1.2.05

adavid@cs.aau.dk
Thanks to Wang Yi

i Classical approach to RTS

= Decompose the 6§55e
controller as TR
= a set of tasks ‘
computations § |
= running on a RTOS
scheduler heater
= Constraints: timer |
. . temperature monitor
= timing — deadlines security switch
= QoS anti-bread-burning
= task model — release
pattern

How to get it right?

i How to get a correct controller?

Verification -
Model-checking

Code synthesis

Is my system correct? Generate the code

Does it satisfy its for a correct controller.
requirements?

A bit of both: Check design — schedulability, @
generate scheduler, put together the tasks.

01-10-2010 TSW'09, Aalborg University

i Research directions

= Real Time Scheduling [RTSS ...]

= Task models, Schedulability analysis
= Real time operating systems

= Automata/logic-based methods

[CAV,

ACAS ...]

= FSM, PetriNets, Statecharts, Timed Automata
= Modelling, Model checking ...

= (RT) Programming Languages |[...]
= Esterel, Signal, Lustre, Ada ...

i Motivation

= Classic RTS scheduling:

= define tasks, computation time C, period T,
deadline D, assign priority P

» different scheduling policies
= fixed: rate monotonic (T), deadline monotonic (D)

= dynamic: EDF (D)
= analytical solving
= But in practice tasks have
= Shared resources
= dependencies
= complex control structures & interactions

i Wish List

s From a timed model to executable code.

=« Generated — guarantee correctness
dependencies, timing, shared resources...

= Timing analysis of RTS.

= Different scheduling policies.
= WCRT

i Approach with Times

= Use TA to model the arrival pattern of tasks.
= Have default policies included for convenience.

= Augment the model with a scheduler.
= And shared resources + dependencies.

= Check for schedulability using UPPAAL as the
back-end model-checker.

= Generate code of the scheduler (with custom
arrival pattern).

i Problem Statement

« Schedulability analysis
= (A [| Ay || .. A, || Scheduler)E

?
— () —

= Scheduler given with a policy.
= ¢ IS a requirement — formula in some logic.

= Schedule synthesis
« Find X s.t. (A, || A, || .. A | X)E ¢

i Modeling

= RTS behavior: TA.
=« General approach, general model-checker.

= Schedulability analysis: TA + tasks.
= Add tasks to the model.
= TA used to model the task arrival pattern.

= Idea: any pattern available, with any kind of
dependency, including resource sharing.

i Example: Periodic Task

01-10-2010

x=0

x<100

task1 x==100
x=0

Whenever you enter that location,
release taskl.
Model — every 100 time units.

TSW'09, Aalborg University

10

i Modeling with Tasks

= From a modeling point of view
a task = some external program.

=« Can interact with the model through an interface.

= Parameters:
« WCET
= Deadline
= Period
=« Dependencies
= Resource access

11

i Model of the System Execution

Event execute task
Plant S—

release task

<

>

U

queue task

How to queue & pick a task:
Scheduling policy.

12

i TAT Example

| = Event handler:
P.7) = Release P initially.
x>10 y<50 : :
37 h? = Run-to-completion semantics:
y=0 x=0 = whenever a? and x>10,
Q Q(3,9) release Q
N = then whenever b? and y<50,
f? Z;Z release P,
| or whenever f, release R
@ R(2,2)]

= Task handler
Task(C,D) = Schedule & compute tasks

13

i What is a TAT?

s Take a TA <L, T,I>

= Locations, initial location, Transition relation,
Invariants.
= Add a mapping M: L — 2P with P being a set
of tasks.

x Semantics

= TA states: (l,v)
location vector + clock valuations

« TAT states: (I,v,q)
... + task queue

14

i TAT Example

01-10-2010

Initial State: (A, x=y=0, [P(1,7)])
Example transitions:

delay 0.6 — (A, x=y=0.6, [P(0.4,6.4)])

delay 9.5 —» (A, x=y=10.1, [])

action a — (B, x=10.1,y=0, [Q(3,9)])

action f — (C, x=10.1,y=0, [Q(3,9),R(2,2)])

delay 2 — (C, x=12.1,y=2, [Q(3,7)])

actionr » (B, x=12.1,y=2, [Q(3,7),Q(3,9)])
action b — (A, x=0,y=2, [Q(3,7),Q(3,9),P(1,7])

TSW'09, Aalborg University 15

i Semantics
= (lL,v,q) - (I'V',q") by 2 kinds of transitions:

= actions: tasks may be added, g grows
(Iv,q) —9ar (I'v', Sch(M(I'),q)) if g

= delay: tasks are executed, q shrinks
(I,v,q) —»9 (l,v+d, Run(d,q)) if I()(v+d)

= Sch & Run: functions to update the queue.
Sch: scheduling policy.
Run: execute the first task.

16

i Schedulability

= Bound instances of tasks.
= Bound the queue.

= Check that the queue is schedulable
= Sstays within bounds

= all deadlines are met
A state (m,u,q) is schedulable with Sch if

(given SCh(q)= [Pl(clldl)PZ(CZIdZ)'"Pn(cnldn)])
(Ci+...+¢)<=d, for all i <n.

17

i Decidability Results

= [1998]
For Non-preemptive scheduling strategies, the schedulability
of an automaton can be checked by reachability analysis on
ordinary timed automata.

= [TACAS 2002]
For Preemptive scheduling strategies, the schedulability of
an automaton can be checked by reachability analysis on
Bounded Subtraction Timed Automata (BSA).

= Natural coding: Stop time when you preempt
— stop-watches — undecidable.

= Alternative: Use subtraction to “cancel” non-executed time.

= [TACAS 2003]
For fixed-priority scheduling, the problem can be solved
using TA with only 2 extra clocks.

18

i Undecidability Result

= [TACAS 2004]
The problem is undecidable if the following
conditions hold together:
=« Preemptive scheduling
=« Interval computation times

» Feedback i.e. the finishing time of tasks may
influence the release times of new tasks.

19

i An Overview of TIMES

01-10-2010

System Specification

Editor

-

_

Control structure

A Extended
Timed
Automata Y,

-

_

Scheduling strategy

EDF,
FIXED, etc.
_/

-

Task parameters

Table,
Task Code

—|

XML

Scheduler
generator

System Analysis

Analyser

Scheduler
Analyser

Uppaal
Verifier

(" Controller \I—
Synthe5|zer)

/' Yes, schedulable
[T No, not schedulable

[]

Executlon Trace

Optimal Schedule

(I
|

y

Code
Generator

TSW'09, Aalborg University

20

i Your Project

= You can use UPPAAL or Times, or both
= to check for schedulability
= correctness of your protocols/programs.

= You can play with the UPPAAL scheduler
template.

= Problems:
= Where do you get C? — Measurements.
=« Where do you get D? — Safety criteria.

= Where do you get T? — Sampling, control
algorithm...

21

