UPPAAL

Alexandre David
1.2.05

Outline

m UPPAAL

- Modelling Language

- Specification Language
m|UPPAAL Verification Engine

- Symbolic exploration algorithm
- Zones & DBMs

m Verification Options
m Modelling Patterns

Intuition
only

Goal: Be able to use the tool &
understand what you are doing,
not what the tool is doing.

Modelling Language

TA In a Nutshell

push?

high

off x=<1000

push!

use

Modeling Language

m Network of TA = instances of templates
- argument const type expression
- argument type& name
m [ypes
- built-in types: int, intfmin,max], bool, arrays
- typedef struct { ... } name
- typedef built-in-type name +scalar sets

m Functions
- C-style syntax, no pointer but references OK.

m Select
- name : type

Un-timed Example: Jugs

Jugs Actions: Jug(const id t id)
ofill
eempty empty (id)
epour
2 5 Kk 1= id
Goal: obtain 1 unit. pour(id k) fill(id)

m Scalable, compact, & readable model.

const int N = 2; typedef int[O,N-1] id_t;
Jugs have their own id.

Actions = functions.

Pour: from id to another k different from id.

Jugs cont.

Jug levels & capacities:
int level[N];
const int capa[N] = {2,5};

void empty(id_t i) < level[i]=0; }
void fill(id_t i) { levell[i] = capali]; }

void pour(id_t i, id_t j)

{
int max = capalj] - level[j];
int poured = level[i] <? max;
level[i] -= poured;

) level[j] += poured;

Auto-instantiation: system Jug;

Train-Gate Crossing (Exercise)

Stopable
Area

* \crossing.

Train-Gate Modeling

Bk Train(constid_tid) <

N trains... ‘"‘~~::*A ﬁ
t-----3 Gate
Communication via channels. controller
chan appr[N], stop[N], leave[N];
urgent chan go[N]; list ~ enqueue()

dequeue()
front()

m Scale the model:

- constint N = 6; typedef int[O,N-1] id_t;
m Trains have their local clocks.
m The gate has its local list & functions.

Train-Gate Crossing

appr[id]! leave[id]!
Stopable
Area
h &1
e [10,20]

| [3,5]
[7,15]

River

stop[id]? golid]?

Scalar Sets

m Use: typedef scalar[N] setA;

defines a set of N scalars,

typedef scalar[N] setB;
defines another set of N scalars,

it is very important to use the typedef.

chan a[setA]; is an array of channels ranging
over a scalar set - similarly for other types.

limited operations to keep scalars symmetric.

m A way to specify symmetries in the model.

UPPAAL uses symmetry reduction automatically.

Reduction: Project the current state to a
representative of its equivalence class (w.r.t.
symmetry).

Specification Language

Logical Specifications

m Validation Properties
- Possibly: E<>P

m Safety Properties
- Invariant: A[] P
- Pos. Inv.: E[]P

m Liveness Properties
- Eventually: A<> P
- Leadsto: P->0Q

m Bounded Liveness
- Leads to within: P >_ Q

The expressions P and
Q must be type safe,
side effect free, and
evaluate to a boolean.

Only references to
integer variables,
constants, clocks, and
locations are allowed
(and arrays of these).

Logical Specifications \/

m Validation Properties
- Possibly: E<>P

- FE<>p

Logical Specifications \/

. o
o
m Safety Properties Ally
- Invariant: A[] P
- Pos. Inv.: E[]P -
k]../
|
- El]e
|

Logical Specifications \/

m Liveness Properties
~ Eventually: A<> P p—=>1
- Leadsto: P->0Q

Logical Specifications

m Bounded Liveness
- Leads to within: P 2> _, Q

Jug Example

m Safety: Never overflow.
- A[] forall(i:id_t) level[i] <= capali]

m Validation/Reachability: How to get 1 unit.
- E<> exists(i:id_t) level[i] ==

Train-Gate Crossing

m Safety: One train crossing.
- A[] forall (i : id_t) forall (j : id_t)
Train(i).Cross && Train(j).Cross imply i == j
m Liveness: Approaching trains eventually
Cross.
- Train(0).Appr --> Train(0).Cross
- Train(1).Appr --> Train(1).Cross

m No deadlock.
- A[] not deadlock

UPPAAL Verification Engine

Overview - Intuition Only

m Zones and DBMs
m Reachability algorithm revisited
@ Minimal Constraint Form

Zones
From infinite to finite

State Symbolic state (set)
(N, x=3.2, y=2.5) (N, 1<x<4,1<y<3)

Zone:
conjunction of
Y 1 Y 1 X-y<=n,
X<=n,
X>=n

XV

Symbolic Transitions

1<x<4 1SX,1Sy
<vyv<
y lsys=3 Y 2<xy<3
delays to
n
v
X

X>3
Y Yy 3<x,1<y
C conjuncts to 2<Xy<3
a -
X
- I 3 <x,y=0
' O" projects to X,y
m

Thus (n,1<x<4,1<y<3) % (m,3 < x, y=0)

Symbolic Exploration

y:=0 x:=0 v |

y<=2 X<=2

_

Reachable?

y<=2, Xx>=4 o—

Symbolic Exploration

Reachable?

Symbolic Exploration

Reachable?

Symbolic Exploration

Reachable?

Symbolic Exploration

y:=0 0 x:=0 v |
y<=2 X<=2
y<=2, Xx>=4 .
X
0

Reachable?

Symbolic Exploration

=0 =0
y L0 s
y<= X<=2

Reachable?

y<=2, Xx>=4

Symbolic Exploration

=0 =0
y L0 s
y<= X<=2

Reachable?

y<=2, Xx>=4

y 4

X

Symbolic Exploration

y:=0 0 x:=0 y
y<=2 X<=2
y<=2, Xx>=4
X
o

Reachable?

Symbolic Exploration

=0 =0
/ 0 .

y<=2 X<=2

y<=2, Xx>=4

@

_

Reachable?

Down

The simulator shows you
symbolic states!

Forward Reachability Algorithm

Init -> Final ?

/ PV O\ INITIAL Passed := J;

Waiting := Z
NVaiting \ Final Alting = {No.20)}

REPEAT

UNTIL Waiting =@
return false

Passey /

Forward Reachability Algorithm

Init -> Final ?

/ PV O\ INITIAL Passed := @;

Waiting := {(n,.Z,)}

NVaiting \ Final
REPEAT
pick (n,Z) in Waiting
Co®0 O
O O

SRS

O O OQ UNTIL Waiting =@
Olnit return false

Passed
O -

Forward Reachability Algorithm

Init -> Final ?

/ \ INITIAL Passed = @;
—~ :/’Zn - ’R_»O Waiting := {(ny,Zo)}

’ ;" Finan REPEAT
‘ pick (n,Z) in Waiting

OO O O If (n,Z) = Final return true
O O

SRS
O O OQ UNTIL Waiting =@
return false

Olnit Passed
O -

Forward Reachability Algorithm

Init -> Final ?

/PW

NVaiting

~

o)

Final

INITIAL Passed := @;
Waiting := {(n,.Z,)}

REPEAT
pick (n,Z) in Waiting
If (n,Z) = Final return true
for all (n,2)—(n’,2):
if for some (n’,Z2"”) Z’c Z’ continue

UNTIL Waiting =@
return false

Forward Reachability Algorithm

Init -> Final ?

/PW

NVaiting

~

o)

Final

INITIAL Passed := @;
Waiting := {(n,.Z,)}

REPEAT
pick (n,Z) in Waiting
If (n,Z) = Final return true
for all (n,2)—(n’,2):
if for some (n’,Z2"”) Z’c Z’ continue
else add (n’,Z’) to Waiting

UNTIL Waiting =@
return false

Forward Reachability Algorithm

Init -> Final ?

/PW

NVaiting

~

o)

Final

INITIAL Passed := @;
Waiting := {(n,.Z,)}

REPEAT
pick (n,Z) in Waiting
If (n,Z) = Final return true
for all (n,2)—(n’,2):
if for some (n’,Z2"”) Z’c Z’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting =@
return false

Forward Reachability Algorithm

Init -> Final ?

/PW

NVaiting \

Q-0 ©

O O
SRS

00O O
O

\anit Passey

o)

Final

INITIAL Passed := @;
Waiting := {(n,.Z,)}

REPEAT
pick (n,Z) in Waiting
If (n,Z) = Final return true
for all (n,2)—(n’,2):
if for some (n’,Z2"”) Z’c Z’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting =@
return false

Difference Bound Matrices

Zone

X.=-X.<=(C..

J

Difference Bound Matrices

,
,
’
7|,
7 .
1T s
7,
7 .
(s
7 .
7 s
/v
L
7| .
,
,
| '

/)

Canonical representation:

All constraints as tight as possible.
Needed for inclusion checking.
— Unique DBM to represent a zone.

Canonical Datastructures for Zones
Minimal Constraint Form

RTSS 1997
-4
x1-x2<=4
x2-x1<=10 @ @ Shortest
X3-x1<=2 Path
X2-Xx3<=2 Closure
x0-x1<=3 3 / o(n™3)
X3-X0<=5 @ @
-4
Space worst O(n"™2)
Shortest @ @ practice O(n)
Path
Reduction
o(n"™3) 3
Large gain in space. @ @ Verification
Small price in time. option "CDS".

Verification Options

Verification Options

. C:/Documents and Settings/kgl/Desktop/KIM /UPPAAL /UPPA

File Edit “iew Tools | Options Help

Seatch Order

Stake Space Reduction

_f

0 a ™

Editar | Simulator Wetifiel Stake Space Representation

Diagnostic Trace

CIVEFViEW

Extrapolation
PR RS Hash table size
E[] ([bodenk =: 4 Rpeuse odenC =
E<= [(bodend > 5) || (bodenkE > 51 || (bodenC = £
E<» not deadlock

b

l

Search Order
Depth First
Breadth First
State Space Reduction
None
Conservative
Aggressive
State Space Representation
DBM
Compact Form
Under Approximation
Over Approximation
Diagnostic Trace
Some
Shortest
Fastest

State Space Reduction

However,
Passed list useful for
pal efficiency

@%

O—0+—0+0*

No Cycles: Passed list not needed for termination

State Space Reduction

Cycles:
Only symbolic states
Involving loop-entry points
need to be saved on Passed list

Over-approximation
Convex Hull

TACAS04: An EXACT method performing
as well as Convex Hull has been
developed based on abstractions

taking max constants into account.

Under-approximation
Bitstate Hashing

/ PW O\
NVaiting \ Final
000 O
O O
O Oh
00 O
O

Olni Passed
\ -

Under-approximation
Bitstate Hashing

/PW

NVaiting \

Hash function

1 bit per
passed state

Under-approx.

O | |O |

N\

Inclusion check
only with

0 waiting states.
\ “Equality” with

1 passed.

\\ Init Passey

O
Sexe O// e ol e
. o o / the same bit.
\
/

Bit Array

Modelling Patterns

Variable Reduction

m Reduce size of state
space by explicitly oid dequene (
resetting variables {
when they are not int 1= 0;
used! ten 7= L

A4 Remove the front element of the gusue

while (i < len)

{
list[i] = list[i + 1];

s Automatically ot

performed for clock
variables (active clock }

reduction)

Clock Reduction (Automatic)

X Is only acti/ve in location S1

Definition
S X 1S /nactive at S if on all path
@ from S, x Is always reset before
/ being tested.
X:=0
x:=0

X< \ X>3

Synchronous Value Passing

Unconditional

Conditional

One-way

O

c!
var := out

O

c?
in := var,
var ;=0

O

O

c!
var ;= out

O

O

c??
in := var,
var :=0

O cond(in)

Asymmetric two-way

c!

var := out
©

d?

in == var

var :=0

O

c?

1n := var
©

d!

var := out

O

O

c!
var ;= out

d?
in := var,
var :=0

O

@5 condl(var) ‘ |

O

c?
in := var,
var := out

é‘.) cond2(in)

d!

O

Atomicity

m Loops & complex
control structures:
C-functions.

m To allow encoding of
multicasting.

= Committed locations._|

appre]?
\w

Free
len >0 len==10 e == front()
go[front()]! appre]? leave[e]?
enqueue(e) | dequeue()
L N)
Occ
stop[tail()]!

Bounded Liveness

m Leads to within: ¢ -2 _ @

- More efficient than leadsto:
¢ leadsto_, w reduced to
Ao(b=z < t) with

- bool b set to true and clock
z reset when ¢ holds.

- When y holds set b to false.

Bounded Liveness

m The truth value of b indicates whether or
not y should hold in the future.

A[] (b imply z <)
E<>b

Timers

Parametric timer:

m (re-)start(value)
start! var=value

m expired?
active (bool)
active go~?
(bool+urgent chan)

m time-out event
timeout?

Timer

Expired
start? timeout!
x=0 X==10
active=true,
to=var, ‘active=false,
var=0 | t0=0]
? .
}S(E’C;t ' Waiting
to=var | X<=to
var=0

Declare 'to’ with a tight range.

Zenoness

m Problem: UPPAAL does not check for
zenoness directly.

- A model has “"zeno” behavior if it can take an
infinite amount of actions in finite time.

- That is usually not a desirable behavior in
practice.

- Zeno models may wrongly conclude that some
properties hold though they logically should not.

- Rarely taken into account.

m Solution: Add an observer automata and
check for non-zenoness, i.e., that time will
always pass.

Zenoness

fenoCheck

x==10
=0

OK
Detect by A B
x==1 -adding the
OD observer: x<=10
x<1 x<1 Constant (10) can be anything

x=0 (>0), but choose it well w.r.t.
your model for efficiency.
Clocks 'x' are local.

-and check the property
ZenoCheck.A --> ZenoCheck.B

