Real-Time Software

Real-Time Facilities

René Rydhof Hansen

14. september 2010

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 1/27



Time
Clocks, delays, and timeouts

Specification of timing requirements

Temporal scopes

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 2/27



Real-Time Systems

Characteristics of a RTS

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 3/27



Real-Time Systems

Characteristics of a RTS
@ Timing constraints

@ Dependability requirements
@ Concurrent control of separate components

@ Facilities to interact with special purpose hardware

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 3/27



Real-Time Systems

Characteristics of a RTS
o

@ Dependability requirements
@ Concurrent control of separate components

@ Facilities to interact with special purpose hardware

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 3/27



Real-Time Facilities: Requirements

Interfacing with time

@ Measuring durations

@ Delaying processes until some future time

@ Programming timeouts so non-occurrence of some event can be
recognised

v

Representing timing requirements

@ Specifying rates of execution

@ Specifying deadlines

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 4 /27



The Notion of Time

Fundamental Model

@ Continuous
@ Discrete
@ Hybrid

@ Transitive
Vx,y,z: (x<yANy<z) = x<z

@ Linear
VX, y: x<yVy<xVx=y
o Irreflexive
Vx: =(x < x)

@ Dense
Vx,y:x<y = 3Jz: (x<z<y)

W

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 5/27



Access to a Clock

@ Direct access to time frame of environment through specialised
hardware, e.g., UTC service provided by GPS

@ Internal hardware (adequate approximation)

@ Need a programming language abstraction, e.g., library functions, to
access special hardware

Example (Clocks in Real-Time Java)

@ java.lang.System.currentTimeMillis: returns the number of
milliseconds since 01 JAN 1970 (GMT) and is used by
java.util.Date

@ Real-time Java adds real-time clocks with high reslution time types

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 6 /27



Real-Time Java: Representing Time

Clock class

o General framework that allows definition of many (types of) clocks,
e.g., execution time clocks

@ Always one real-time clock sync’ed with external world:
getReal TimeClock

@ setResolution only supported on some platforms

HighResolutionTime

@ HighResolutionTime is the “base” class for time in RT Java

@ Subclassed for further use

Absolute Time and RelativeTime

@ Subclasses of HighResolutionTime: one for absolute time and one for
relative time (durations)

o

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 7/27



Real-Time Java: Clock class

public abstract class Clock

{

public
public
public

public
public

public

Clock ();
static Clock getRealtimeClock ();
abstract RelativeTime getResolution ();

AbsoluteTime getTime();
abstract void getTime(AbsoluteTime time);

abstract

void setResolution(RelativeTime resolution);

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 8 /27



Real-Time Java Time Types: HighResolutionTime

public abstract class HighResolutionTime implements
java.lang.Comparable
{

public abstract AbsoluteTime absolute(Clock clock,
AbsoluteTime destination);

public boolean equals(HighResolutionTime time);

public final long getMilliseconds ();
public final int getNanoseconds();

public void set(HighResolutionTime time);
public void set(long millis);
public void set(long millis , int nanos);

}

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 9 /27



Real-Time Java Time Types: AbsoluteTime

public class AbsoluteTime extends HighResolutionTime

{

// various constructor methods including
public AbsoluteTime(AbsoluteTime T);
public AbsoluteTime(long millis, int nanos);

public AbsoluteTime absolute(Clock clock,
AbsoluteTime dest);

public AbsoluteTime add(long millis, int nanos);
public final AbsoluteTime add(RelativeTime time);

public final RelativeTime subtract(AbsoluteTime time);
public final AbsoluteTime subtract(RelativeTime time);

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 10 / 27



Real-Time Java Time Types: RelativeTime

public class RelativeTime extends HighResolutionTime

{

// various constructor methods including
public RelativeTime(long millis, int nanos);
public RelativeTime(RelativeTime time);

public AbsoluteTime absolute(Clock clock,
AbsoluteTime destination)

public RelativeTime add(long millis, int nanos);
public final RelativeTime add(RelativeTime time);

public final RelativeTime subtract(RelativeTime time);

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 11 /27



Real-Time Java: Measuring Time

Example (Measuring Time)

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 12 /27



Real-Time Java: Measuring Time

Example (Measuring Time)

void foo ()
{

AbsoluteTime oldTime, newTime;
RelativeTime interval;

Clock clock = Clock.getRealtimeClock ();
oldTime = clock.getTime ();

// other computations

newTime = clock.getTime ();
interval = newTime.subtract(oldTime);

v

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 13 /27



Clocks in C and POSIX

@ Standard library for interfacing to calendar time

@ Defines a basic time type time_t and several routines for
manipulating objects of type time

@ Requires at least one clock of minimum resolution 50Hz (20ms)

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 14 /27



C/POSIX Real-Time Clocks

#define CLOCK.REALTIME ...; // clockid_t type

struct timespec {
time_t tv_sec; /* number of seconds x/
long tv_nsec; /* number of nanoseconds x/
Iy
typedef ... clockid_t;

int clock_gettime(clockid_t clock_id, struct timespec xtp);
int clock_settime(clockid_t clock_id ,

const struct timespec xtp);
int clock_getres(clockid_t clock_id, struct timespec *res);

int clock_getcpuclockid(pid_-t pid, clockid_t xclock_id);
int clock_getcpuclockid(pthread_t thread_id,
clockid_t xclock_id);

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
/x nanosleep return —1 if the sleep is interrupted by a x/
/x signal. In this case, rmtp has the remaining sleep time x/

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 15 / 27



Delaying a process

Relative and Absolute Delay
@ Relative delay, e.g., “delay for 10ms"

@ Absolute delay, e.g., “resume in 10ms”

Delay operations (usually) only guarantees process is made

@ Granularity difference between clocks
@ Disabled interrupts

@ Process runnable but not executing

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 16 / 27



Delaying a process

@ Useful (necessary!) to avoid busy-waits

Relative and Absolute Delay

o Relative delay, e.g., “delay for 10ms”

@ Absolute delay, e.g., “resume in 10ms”

Delay operations (usually) only guarantees process is made

@ Granularity difference between clocks
@ Disabled interrupts

@ Process runnable but not executing

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 16 / 27



Language Support for Delaying a Process
Example (Relative delay in Ada)

Start := Clock;
loop

exit when (Clock — Start) > 10.0
end loop;

Why Ada?

@ A Jot of legacy code
@ Still often used for critical embedded RTSs )

Language Support for Delaying a Process
e POSIX: sleep and nanosleep

@ Java: sleep
@ Real-Time Java: high resolution sleep

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 17 / 27



Absolute Delays

Absolute delay

START := Clock;
FIRST_ACTION;

delay 10.0 — (Clock — START);
SECOND_ACTION;;

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 18 / 27



Absolute Delays

Absolute delay... WRONG!

START := Clock;
FIRST_ACTION;

delay 10.0 — (Clock — START);
SECOND_ACTION;;

Absolute delay

START := Clock;
FIRST_ACTION;

delay until START + 10.0;
SECOND_ACTION;

@ Both delay and delay until only guarantees
@ Real-Time Java: sleep can be relative or absolute
o POSIX requires use of an absolute timer and signals

delays

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 18 / 27



Definition (Local Drift)

The time over-run associated with both relative and absolute delays

@ Local drift be eliminated
° arising from superimposed local drifts be
eliminated

Example (Regular activity)

task T;
task body T is
begin
loop
Action;
delay 5.0; — cannot delay less than 5 sec.
end loop;
end T;

y

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 19 /27



Handling Cumulative Drift: Periodic Activity

Example (Periodic activity)

task body T is
Interval : constant Duration := 5.0;
Next_Time : Time;
begin
Next_Time := Clock + Interval;
loop
Action ;
delay until Next_Time;
Next_Time := Next_Time + Interval;
end loop;
end T;

@ Will run on average every 5 seconds
@ Local drift only

o If Action takes six seconds, the delay statement will have no effect

TSW (2010e) (Lecture 03)

Real-Time Software

14. september 2010



@ Simplest time constraint
@ Useful for specifying maximum wait time

o Detect “non-occurrence” of event
e Timely error recovery

@ Useful for specifying maximum execution time

e Result refinement (first compute fast but imprecise result, then use
remaining time to refine result)

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 21 /27



Timeouts in Real-Time Java

public class Timed
extends AsynchronouslylnterruptedException
implements java.io.Serializable

{

public Timed(HighResolutionTime time)
throws lIllegalArgumentException;

public boolean dolnterruptible(Interruptible logic);

public void resetTime(HighResolutionTime time);

}

@ Uses ATC (asynchronous transfer of control): execution may be
interrupted at any time (not only at sync time)

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 22 /27



POSIX

@ POSIX does not support ATC and, therefore, it is difficult to get the
same effect as Ada and Real-Time Java

@ POSIX does support timers

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 23 /27



Temporal Scopes

Definition (from [BW])

“A collection of statements with an associated timing constraint”

Attributes of temporal scopes:
° : the time by which the execution of a TS must be finished

° : the minimum amount of time that must elapse
before start of execution of a TS

° : the maximum amount of time that can elapse before
the start of execution of a TS

° : maximum amount of time a TS can be
actively executing

° : maximum of time that can elapse from start
to end of execution of a TS

Temporal scopes with combinations of these attributes are also possible

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 24 /27



Temporal Scopes

Recurrence of temporal scopes

@ Periodic

e Aperiodic (potentially zero minimal interarrival time)

@ Sporadic (non-zero minimal interarrival time)

4
Deadlines

e Hard
@ Soft

@ Interactive (“only” performance issue)

@ Firm

Scheduling

Algorithm to reduce non-determinism in a system to enable reasoning
about feasibility of temporal scopes

v

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 25 /27



Exercises

O [BW] 9.1.
@ [BW] 9.2.

© Discuss notions of time and (engineering) consequences.

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 26 / 27



Summary and Next Time

Summary:
@ Time in a real-time programming language
o Access to a clock

e Delay
e Timeouts

@ Temporal scopes

o Deadline, minimum delay, maximum delay, maximum execution time,
maximum elapse time

Next time:
@ Scheduling
@ Response-Time Analysis (RTA)

TSW (2010e) (Lecture 03) Real-Time Software 14. september 2010 27 / 27



	Introduction
	RTS Programming Facilities
	Accessing Time
	Clocks in Real-Time Java
	Clocks in C and POSIX
	Delaying a Process
	Timeouts

	Temporal Scopes
	Conclusion

