TSW — Reliability and

!'_ Fault Tolerance

Alexandre David
1.2.05

UMy
] !
L-
A2 &

o .
2
Q
- 2
4 -
& T

L4 +
&NMP-*

Credits.: some slides by Alan Burns & Anady Wellings.

i Alms

= Understand the factors which affect the reliability of
a system.

= Introduce how software design faults can be
tolerated.

s Concepts:
= Safety and Dependability
= Reliablility, failure and faults
= Failure modes
= Fault prevention and fault tolerance
= N-Version programming
= Dynamic Redundancy

i Sources of faults

= Inadequate specifications.
= Design errors in software.

s Hardware failure.

s Interference on the communication sub-
system.

i Safety and reliability \/

s Safety: freedom from those conditions that can
cause death, injury, occupational iliness, damage to
(or loss of) equipment (or property), or
environmental harm

= Most systems that have an element of risk associated
with their use are unsafe.
= Reliability: a measure of how well a system
conforms to the specification of its behavior.

= Safety Is the probability that conditions that can
lead to mishaps do not occur whether or not the
Intended function Is performed.

07-09-2010 TSW'10

i Safety and reliability

= A plane that never flies Is very safe but
unreliable.

= Nuclear bombs are very reliable demolition
devices but very unsafe.

= Increasing the likelihood to fire a weapon
Increases reliability but decreases safety.

i Dependabillity

s Dependability as applied to a computer
system is defined by the IFIP 10.4 Working
Group on Dependable Computing and Fault
Tolerance as:

n "[..] the trustworthiness of a computing system

which allows reliance to be justifiably placed on
the service it delivers [..]'

= General notion that encompasses security,
reliability, safety, fault tolerance...

i Dependability terminology /

—Attributes ~ Ways to assess dependability.

Dependability —
— Means Ways to increase dependability.

__Impairments \what affects dependability.
[Threats

07-09-2010 TSW'10

Dependability terminology

Dependability —

—ATttributes

— Means

Availability
Reliability
Safety

Confidentiality
Integrity
Maintainability

Fault Prevention

Fault Tolerance

07-09-2010

Impairments

Fault Removal

Fault Forecasting
Faults

Errors

/Threats

TSW'10

Failures

i Reliability, failure, and faults

= Reliability: how well a system conforms to Its
specified behavior.

= Deviation = failure.

= Failures are caused by all sorts of problems and show
themselves by unexpected external behaviors.

= The problems are called errors.
= Thelr causes are called faults.

fault —— error ——| failure ——{ other fault

i Types of faults

= Transient faults: they appear at some point,
stay, and they disappear. They are caused by
temporary external events.

= €.g. communication while crossing a tunnel...

= Permanent faults: they remain in the system
until repaired.
= €.g. broken cables.

= Intermittent faults: they occur from time to
time. They are caused by recurring events.
= €.g. overheating component.

10

i Software faults

= A.k.a. bugs.
= Bohrbugs: reproducible and identified.

= Heisenbugs: occur in rare conditions, usually
disappear upon inspection.

m Discuss: Software does not deteriorate with
age, It Is either correct or incorrect.

= Faults can remain dormant.
= Software Is reused.

11

i Fallure modes

Fallure mode

Value domain Tlmlng domaln Arbitrary
/ \ /\\(Falluncontrolled)

Constraint Value Early Omission Late
error error

v
Fail silent Fail stop Fail controlled

07-09-2010 TSW'10 12

i Byzantine failure

= Byzantine fault is an arbitrary fault that
causes omission failure or commission failure
(incorrect answer, corrupt data).

= Byzantine failure models a network of processes
where some of them fail. The problem is to
detect which ones.
= Byzantine Generals' Problem has no solution
unless n > 3t, where nis the number of
processes In the system and ¢ the number of
faulty processes (a.k.a. resilience of the

algorithm).

13

i Achieving reliable systems

= Fault prevention attempts to eliminate any
nossibility of faults creeping into a system
nefore 1t goes operational.

= Fault tolerance enables a system to continue
functioning even Iin the presence of faults.

= Both approaches: define failure modes.

14

i Fault prevention

s Fault avoidance and fault removal.

= Hints for fault avoidance:
= use most reliable components (@ fixed cost)

= use refined technigues to assemble sub-systems,
hierarchy

= package & shield hardware from interferences
= use rigorous/formal specification of requirements
= Use proven design methodologies

= choose language offering data abstraction and
modularity (e.g. encapsulation)

= Use tools and environment to manage complexity

15

i Fault removal

= Find faults and then remove them
= Use program verification, code inspection, testing

= Testing: not exhaustive, only gives
confidence with some probabillities.
« can find faults but not prove their absence
= testing may be impossible, only simulation
= problem of accuracy: simulation <> reality

= requirement errors may be discovered once the
system Is operational

16

i Fault tolerance

= Faults may still occur, uncontrollable or
unavoidable.

s Levels of fault tolerance:

= Full fault tolerance: the system continues to work
unaffected for a limited period of time.

» Graceful degradation: the system continues to
work with degraded performance or functionality.

= Fail safe: the system stops to work but returns to
a safe state before to maintain its integrity.

17

i Redundancy

= Fault tolerant techniques rely on redundancy:
duplicated hardware.

= The catch: to detect and recover, you need more
hardware & software — more complexity — less
reliability — more faults.

= Goal: minimize redundancy and maximize
reliability.

18

i Hardware fault tolerance

= Static: redundant components.
= If one has a fault, the others mask it.
= Voting techniques.
« Triple/N modular redundancy.
= Dynamic: redundancy inside a component.
= checksums, parity bits...

19

i Software fault tolerance

= Static: N-version programming

= Design diversity — counter design errors.
=« Independent developments.
= Better if different languages etc...
= Cost problem.
= Programs execute concurrently and the final result is
voted.
= Assume: Programs developed independently will fail

iIndependently.
= Dynamic: detect and recover.

= Detection: HW, OS, replication checks, asserts,
redundancy...

= Backward error recovery (unroll) with recovery blocks.
= Forward error recovery (correct) with exceptions.

20

i N-version programming

@rsion 1 @rsion 2

status

vote

—~—

version 3

\~~
—~—

21

i Votes

= Problems with comparisons
= text or integers easy
= floating point numbers tricky
= — Inexact voting techniques

= Even so: consistency problems with threshold
= A chooses to open a valve
= B chooses to close it
= Values are close but decisions are conflicting

22

i Error recovery

= GO back or go to a consistent state
= allows to confine the damage
= easler with modular decomposition

= Forward recovery: try {.. } catch(){ correct }

= Backward recovery:
= g0 back to a recovery point by checkpointing,

= but can’'t undo everything, e.g., a lightning bolt
that fries a component,

= domino effect

23

i Domino effect

= Concurrent processes interact
— dependencies between recovery points.

D R P
NS IPC, 2

e)
ol

Execution time

i Recovery blocks

= Entrance: recovery point.
= EXit: acceptance test.

= If fails, recover to recovery point and execute an
alternative module (don’t make the same mistake again!).

= If all alternatives are exhausted, propagate the error at a

higher level.

= E.Q. try different techniques
to solve an equation. Fast 15t
but imprecise, If too bad try
more expensive.

ensure <acceptance test>
by

<primary module>
else by

<alternative module>

else by
<alternative module>
else error 25

i Acceptance test

= Provides the error detection mechanism.
= Problem: Limit its overhead.
= Faulty/imprecise test may leave residual errors.

= Acceptance test — not correctness.
= Allow components to offer degraded services.

26

N-version programming Vvs.
recovery blocks

= Static vs. dynamic.
= Overhead: N*resources vs. recovery points.
= Error detection: voting vs. acceptance test.

= Atomicity: NV votes and then outputs, RB
outputs after passing the test.

= Common: alternative algorithms, both
vulnerable to errors in requirements.

27

i Concept summary \/

s Dependability, safety, reliablility, failure, faults.

= Fault prevention consists of fault avoidance and
fault removal.

= Fault tolerance: static and dynamic

= N-version programming: the independent
generation of N functionally equivalent programs
from the same specification.
= Assume: Programs developed independently will fail
iIndependently.
= Dynamic redundancy: detect & recover,
forward/backward error recovery.

07-09-2010 TSW'10 28

