
TSW – Reliability and
Fault Tolerance

Alexandre David
1.2.05

Credits: some slides by Alan Burns & Andy Wellings.



07-09-2010 TSW'10 2

Aims
Understand the factors which affect the reliability of 
a system.
Introduce how software design faults can be 
tolerated.
Concepts: 

Safety and Dependability
Reliability, failure and faults
Failure modes
Fault prevention and fault tolerance
N-Version programming
Dynamic Redundancy



07-09-2010 TSW'10 3

Sources of faults
Inadequate specifications.
Design errors in software.
Hardware failure.
Interference on the communication sub-
system.



07-09-2010 TSW'10 4

Safety and reliability
Safety: freedom from those conditions that can 
cause death, injury, occupational illness, damage to 
(or loss of) equipment (or property), or 
environmental harm

Most systems that have an element of risk associated 
with their use are unsafe.

Reliability: a measure of how well a system 
conforms to the specification of its behavior.

Safety is the probability that conditions that can 
lead to mishaps do not occur whether or not the 
intended function is performed.



07-09-2010 TSW'10 5

Safety and reliability
A plane that never flies is very safe but 
unreliable.
Nuclear bombs are very reliable demolition 
devices but very unsafe.
Increasing the likelihood to fire a weapon 
increases reliability but decreases safety.



07-09-2010 TSW'10 6

Dependability
Dependability as applied to a computer 
system is defined by the IFIP 10.4 Working 
Group on Dependable Computing and Fault 
Tolerance as:

"[..] the trustworthiness of a computing system 
which allows reliance to be justifiably placed on 
the service it delivers [..]"

General notion that encompasses security, 
reliability, safety, fault tolerance…



07-09-2010 TSW'10 7

Dependability terminology

Dependability

Attributes

Means

Impairments
/Threats

Ways to assess dependability.

What affects dependability.

Ways to increase dependability.



07-09-2010 TSW'10 8

Dependability terminology

Dependability

Availability

Confidentiality

Reliability

Safety

Integrity

Maintainability

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Faults

Errors

Failures

Attributes

Means

Impairments
/Threats



07-09-2010 TSW'10 9

Reliability, failure, and faults
Reliability: how well a system conforms to its 
specified behavior.

Deviation = failure.
Failures are caused by all sorts of problems and show 
themselves by unexpected external behaviors.

The problems are called errors.
Their causes are called faults.

fault error failure other fault



07-09-2010 TSW'10 10

Types of faults
Transient faults: they appear at some point, 
stay, and they disappear. They are caused by 
temporary external events.

e.g. communication while crossing a tunnel…
Permanent faults: they remain in the system 
until repaired.

e.g. broken cables.
Intermittent faults: they occur from time to 
time. They are caused by recurring events.

e.g. overheating component.



07-09-2010 TSW'10 11

Software faults
A.k.a. bugs.

Bohrbugs: reproducible and identified.
Heisenbugs: occur in rare conditions, usually 
disappear upon inspection.

Discuss: Software does not deteriorate with 
age, it is either correct or incorrect.

Faults can remain dormant.
Software is reused.



07-09-2010 TSW'10 12

Failure modes
Failure mode

Value domain Timing domain Arbitrary
(Fail uncontrolled)

Constraint 
error

Value 
error

Early Omission Late

Fail silent Fail stop Fail controlled



07-09-2010 TSW'10 13

Byzantine failure
Byzantine fault is an arbitrary fault that 
causes omission failure or commission failure 
(incorrect answer, corrupt data).

Byzantine failure models a network of processes 
where some of them fail. The problem is to 
detect which ones.

Byzantine Generals' Problem has no solution 
unless n > 3t, where n is the number of 
processes in the system and t the number of 
faulty processes (a.k.a. resilience of the 
algorithm).



07-09-2010 TSW'10 14

Achieving reliable systems
Fault prevention attempts to eliminate any 
possibility of faults creeping into a system 
before it goes operational.

Fault tolerance enables a system to continue 
functioning even in the presence of faults.

Both approaches: define failure modes.



07-09-2010 TSW'10 15

Fault prevention
Fault avoidance and fault removal.
Hints for fault avoidance:

use most reliable components (@ fixed cost)
use refined techniques to assemble sub-systems, 
hierarchy
package & shield hardware from interferences
use rigorous/formal specification of requirements
use proven design methodologies
choose language offering data abstraction and 
modularity (e.g. encapsulation)
use tools and environment to manage complexity



07-09-2010 TSW'10 16

Fault removal
Find faults and then remove them

use program verification, code inspection, testing

Testing: not exhaustive, only gives 
confidence with some probabilities.

can find faults but not prove their absence
testing may be impossible, only simulation
problem of accuracy: simulation ↔ reality
requirement errors may be discovered once the 
system is operational



07-09-2010 TSW'10 17

Fault tolerance
Faults may still occur, uncontrollable or 
unavoidable.
Levels of fault tolerance:

Full fault tolerance: the system continues to work 
unaffected for a limited period of time.
Graceful degradation: the system continues to 
work with degraded performance or functionality.
Fail safe: the system stops to work but returns to 
a safe state before to maintain its integrity.



07-09-2010 TSW'10 18

Redundancy
Fault tolerant techniques rely on redundancy: 
duplicated hardware.

The catch: to detect and recover, you need more 
hardware & software → more complexity → less 
reliability → more faults.
Goal: minimize redundancy and maximize 
reliability.



07-09-2010 TSW'10 19

Hardware fault tolerance
Static: redundant components.

If one has a fault, the others mask it.
Voting techniques.
Triple/N modular redundancy.

Dynamic: redundancy inside a component.
checksums, parity bits…



07-09-2010 TSW'10 20

Software fault tolerance
Static: N-version programming

Design diversity – counter design errors.
Independent developments.
Better if different languages etc…
Cost problem.

Programs execute concurrently and the final result is 
voted.
Assume: Programs developed independently will fail 
independently.

Dynamic: detect and recover.
Detection: HW, OS, replication checks, asserts, 
redundancy…
Backward error recovery (unroll) with recovery blocks.
Forward error recovery (correct) with exceptions.



07-09-2010 TSW'10 21

N-version programming

version 1 version 2 version 3

driver

vote
status



07-09-2010 TSW'10 22

Votes
Problems with comparisons

text or integers easy
floating point numbers tricky
→ inexact voting techniques
Even so: consistency problems with threshold

A chooses to open a valve
B chooses to close it
values are close but decisions are conflicting



07-09-2010 TSW'10 23

Error recovery
Go back or go to a consistent state

allows to confine the damage
easier with modular decomposition

Forward recovery: try {.. } catch(){ correct }
Backward recovery:

go back to a recovery point by checkpointing,
but can’t undo everything, e.g., a lightning bolt 
that fries a component,
domino effect



07-09-2010 TSW'10 24

Domino effect
Concurrent processes interact
→ dependencies between recovery points.

R22

R21

R13

R12

R11

IPC4

IPC3

IPC2

IPC1

Ex
ec

ut
io

n 
tim

e

Terror

P1
P2



07-09-2010 TSW'10 25

Recovery blocks
Entrance: recovery point.
Exit: acceptance test.

If fails, recover to recovery point and execute an 
alternative module (don’t make the same mistake again!).
If all alternatives are exhausted, propagate the error at a 
higher level.
E.g. try different techniques
to solve an equation. Fast 1st

but imprecise, if too bad try
more expensive.

ensure <acceptance test>
by

<primary module>
else by

<alternative module>
...

else by
<alternative module>

else error



07-09-2010 TSW'10 26

Acceptance test
Provides the error detection mechanism.

Problem: Limit its overhead.
Faulty/imprecise test may leave residual errors.

Acceptance test – not correctness.
Allow components to offer degraded services.



07-09-2010 TSW'10 27

N-version programming vs.
recovery blocks

Static vs. dynamic.
Overhead: N*resources vs. recovery points.

Error detection: voting vs. acceptance test.

Atomicity: NV votes and then outputs, RB 
outputs after passing the test.
Common: alternative algorithms, both 
vulnerable to errors in requirements.



07-09-2010 TSW'10 28

Concept summary
Dependability, safety, reliability, failure, faults.
Fault prevention consists of fault avoidance and 
fault removal.
Fault tolerance: static and dynamic
N-version programming: the independent 
generation of N functionally equivalent programs 
from the same specification.

Assume: Programs developed independently will fail 
independently.

Dynamic redundancy: detect & recover, 
forward/backward error recovery.


