
1

Introduction to Parallel Computing

Task decomposition and mapping

Alexandre David

2

Introduction to Parallel Computing 2

Overview
• Introduction to parallel algorithms

• Decomposition techniques

• Task interactions

• Load balancing

3

Introduction to Parallel Computing 3

Introduction
• Parallel algorithms have the added dimension of

concurrency.
• Typical tasks:

• Identify concurrent works.
• Map them to processors.
• Distribute inputs, outputs, and other data.
• Manage shared resources.
• Synchronize the processors.

There are other courses specifically on concurrency. We won’t treat the
problems proper to concurrency such as deadlocks, livelocks, theory on
semaphores and synchronization. However, we will use them, and when
needed, apply techniques to avoid problems like deadlocks.

4

Introduction to Parallel Computing 4

Decomposing problems
• Decomposition into concurrent tasks.

• No unique solution.
• Different sizes.
• Decomposition illustrated as a directed graph:

• Nodes = tasks.
• Edges = dependency.

Task dependency graph!

Many solutions are often possible but few will yield good performance and be
scalable. We have to consider the computational and storage resources
needed to solve the problems.
Size of the tasks in the sense of the amount of work to do. Can be more, less,
or unknown. Unknown in the case of a search algorithm is common.
Dependency: All the results from incoming edges are required for the tasks at
the current node.

We will not consider tools for automatic decomposition. They work fairly well
only for highly structured programs or options of programs.

5

Introduction to Parallel Computing 5

Example: Matrix * Vector

N tasks, 1 task/row:

Matrix

Ve
ct

or

Task dependency graph?

6

Introduction to Parallel Computing 6

Example: database query processing

MODEL = ``CIVIC'' AND YEAR = 2001 AND
(COLOR = ``GREEN'' OR COLOR = ``WHITE)

The question is: How to decompose this into concurrent tasks? Different tasks
may generate intermediate results that will be used by other tasks.

7

Introduction to Parallel Computing 7

Measure of concurrency?
Nb. of processors?Optimal?

A solution

How much concurrency do we have here? How many processors to use? Is it
optimal?

8

Introduction to Parallel Computing 8

Another Solution

Better/worse?

Is it better or worse? Why?

9

Introduction to Parallel Computing 9

Granularity
• Number and size of tasks.

• Fine-grained: many small tasks.
• Coarse-grained: few large tasks.

• Related: degree of concurrency.
(Nb. of tasks executable in parallel).
• Maximal degree of concurrency.
• Average degree of concurrency.

•Previous matrix*vector fine-grained.
•Database example coarse grained.
Degree of concurrency: Number of tasks that can be executed in parallel.
Average degree of concurrency is a more useful measure.
Assume that the tasks in the previous database examples have the same
granularity. What’s their average degrees of concurrency? 7/3=2.33 and
7/4=1.75.

Common sense: Increasing the granularity of decomposition and utilizing the
resulting concurrency to perform more tasks in parallel increases performance.
However, there is a limit to granularity due to the nature of the problem itself.

10

Introduction to Parallel Computing 10

Coarser Matrix * Vector

N tasks, 3 task/row:

Matrix

Ve
ct

or

11

Introduction to Parallel Computing 11

Granularity
• Average degree of concurrency if we take into account

varying amount of work?
• Critical path = longest directed path between any start &

finish nodes.
• Critical path length = sum of the weights of nodes along

this path.
• Average degree of concurrency = total amount of work /

critical path length.

Weights on nodes denote the amount of work to be done on these nodes.
Longest path → shortest time needed to execute in parallel.

12

Introduction to Parallel Computing 12

Database example

Critical path (3). Critical path (4).
Critical path length = 27. Critical path length = 34.

Av. deg. of concurrency = 63/27. Av. deg. of conc. = 64/34.

2.33 1.88

13

Introduction to Parallel Computing 13

Exercise
(a)

(b)

(c) (d)

• Maximum degree of
concurrency.
• Critical path length.
• Maximum possible speedup.
• Minimum number of
processes to reach this
speedup.
• Maximum speedup if we
limit the processes to 2,4,
and 8.

18

Introduction to Parallel Computing 18

Interaction between tasks
• Tasks often share data.
• Task interaction graph:

• Nodes = tasks.
• Edges = interaction.
• Optional weights.

• Task dependency graph is a sub-graph of the task
interaction graph.

Another important factor is interaction between tasks on different processors.
Share data implies synchronization protocols (mutual exclusion, etc) to ensure
consistency.
Edges generally undirected. When directed edges are used, they show the
direction of the flow of data (and the flow is unidirectional).
Dependency between tasks implies interaction between them.

19

Introduction to Parallel Computing 19

Processes and mapping
• Tasks run on processors.
• Process: processing agent executing the tasks. Not

exactly like in your OS course.
• Mapping = assignment of tasks to processes.
• API exposes processes and binding to processors not

always controlled.
• Scheduling of threads is not controlled.
• What makes a good mapping?

Here we are not talking directly on the mapping to processors. A processor
can execute two processes.
Good mapping:
•Maximize concurrency by mapping independent tasks to different processes.
•Minimize interaction by mapping interacting tasks on the same process.
Can be conflicting, good trade-off is the key to performance.

Decomposition determines degree of concurrency.
Mapping determines how much concurrency is utilized and how efficiently.

20

Introduction to Parallel Computing 20

Mapping example

Notice that the mapping keeps one process from the previous stage because
of dependency: We can avoid interaction by keeping the same process.

21

Introduction to Parallel Computing 21

Processes vs. processors
• Processes = logical computing agent.
• Processor = hardware computational unit.
• In general 1-1 correspondence but this model gives

better abstraction.
• Useful for hardware supporting multiple programming

paradigms.

Now remains the question:
How do you decompose?

Example of hybrid hardware: cluster of MP machines. Each node has shared
memory and communicates with other nodes via MPI.

1. Decompose and map to processes for MPI.
2. Decompose again but suitable for shared memory.

22

Introduction to Parallel Computing 22

Decomposition techniques
• Recursive decomposition.

• Divide-and-conquer.
• Data decomposition.

• Large data structure.
• Exploratory decomposition.

• Search algorithms.
• Speculative decomposition.

• Dependent choices in computations.

23

Introduction to Parallel Computing 23

Recursive decomposition
• Problem solvable by divide-and-conquer:

• Decompose into sub-problems.
• Do it recursively.

• Combine the sub-solutions.
• Do it recursively.

• Concurrency: The sub-problems are solved in parallel.

Small problem is to start and finish: with one process only.

24

Introduction to Parallel Computing 24

Quicksort example

<5≤

<3≤ <9≤

<7≤
<10≤

<11≤

Recall on the quicksort algorithm:
•Choose a pivot.
•Partition the array.
•Recursive call.
•Combine result: nothing to do.

25

Introduction to Parallel Computing 25

Minimal number

4 9 1 7 8 11 2 12

26

Introduction to Parallel Computing 26

Data decomposition
• 2 steps:

• Partition the data.
• Induce partition into tasks.

• How to partition data?
• Partition output data:

• Independent “sub-outputs”.
• Partition input data:

• Local computations, followed by combination.

• 1-D, 2-D, 3-D block decomposition.

Partitioning of input data is a bit similar to divide-and-conquer.

27

Introduction to Parallel Computing 27

Matrix multiplication by block

We can partition further for the tasks. Notice the dependency between tasks.
What is the task dependency graph?

28

Introduction to Parallel Computing 28

Intermediate data partitioning

Linear combination
of the intermediate
results.

29

Introduction to Parallel Computing 29

Owner-compute rule
• Process assigned to some data

• is responsible for all computations associated with it.
• Input data decomposition:

• All computations done on the (partitioned) input data
are done by the process.

• Output data decomposition:
• All computations for the (partitioned) output data are

done by the process.

Important rule, very useful, in particular stresses locality.

30

Introduction to Parallel Computing 30

Exploratory decomposition

Model-checker example

model
(syntax)

states
(semantics)

Suitable for search algorithms. Partition the search space into smaller parts
and search in parallel. We search the solution by a tree search technique.

31

Introduction to Parallel Computing 31

Performance anomalies

Work depends on the order of the search!

32

Introduction to Parallel Computing 32

Speculative decomposition
• Dependencies between tasks are not known a-priori.

• How to identify independent tasks?
• Conservative approach: identify tasks that are

guaranteed to be independent.
• Optimistic approach: schedule tasks even if we are

not sure – may roll-back later.

Not possible to identify independent tasks in advance. Conservative
approaches may yield limited concurrency. Optimistic approach = speculative.
Optimistic approach is similar to branch prediction algorithms in processors.

33

Introduction to Parallel Computing 33

So far…
• Decomposition techniques.

• Identify tasks.
• Analyze with task dependency & interaction graphs.
• Map tasks to processes.

• Now properties of tasks that affect a good mapping.
• Task generation, size of tasks, and size of data.

34

Introduction to Parallel Computing 34

Task generation
• Static task generation.

• Tasks are known beforehand.
• Apply to well-structured problems.

• Dynamic task generation.
• Tasks generated on-the-fly.
• Tasks & task dependency graph not available

beforehand.

The well-structured problem can typically be decomposed using data or
recursive decomposition techniques.
Dynamic tasks generation: Exploratory or speculative decomposition
techniques are generally used, but not always. Example: quicksort.

35

Introduction to Parallel Computing 35

Task sizes
• Relative amount of time for completion.

• Uniform – same size for all tasks.
• Matrix multiplication.

• Non-uniform.
• Optimization & search problems.

Typically the size of non-uniform tasks is difficult to evaluate beforehand.

36

Introduction to Parallel Computing 36

Size of data associated with tasks
• Important because of locality reasons.
• Different types of data with different sizes

• Input/output/intermediate data.
• Size of context – cheap or expensive communication with

other tasks.

37

Introduction to Parallel Computing 37

Characteristics of task interactions
• Static interactions.

• Tasks and interactions known beforehand.
• And interaction at pre-determined times.

• Dynamic interactions.
• Timing of interaction unknown.
• Or set of tasks not known in advance.

• Regular interactions.
• The interaction graph follows a pattern.

• Irregular interactions.
• No pattern.

Static vs. dynamic.
Static or dynamic interaction pattern.
Dynamic harder to code, more difficult for MPI.

38

Introduction to Parallel Computing 38

Example: Image Dithering

The color of each pixel is determined as the weighted average of its original
value and the values of the neighboring pixels. Decompose into regions, 1
task/region. Pattern is a 2-D mesh. Regular pattern.

39

Introduction to Parallel Computing 39

Characteristics of task interactions
• Data sharing interactions:

• Read-only interactions.
• Read only data associated with other tasks.

• Read-write interactions.
• Read & modify data of other tasks.

Read-only vs. read-write.
Read-only example: matrix multiplication (share input). Read-write example:
15-puzzle with shared priority list of states to be explored; Priority given by
some heuristic to evaluate the distance to the goal.

40

Introduction to Parallel Computing 40

Characteristics of task interactions
• One-way interactions.

• Only one task initiates and completes the
communication without interrupting the other one.

• Two-way interactions.
• Producer – consumer model.

One-way vs. two-way.
One-way more difficult with MPI since MPI has an explicit send & receive set
of calls. Conversion one-way to two-way with polling or another thread waiting
for communication.

41

Introduction to Parallel Computing 41

Mapping techniques for load balancing
• Map tasks onto processes.
• Goal: minimize overheads.

• Communication.
• Idling.

• Uneven load distribution may cause idling.
• Constraints from task dependency → wait for other

tasks.

Minimizing communication may contradict minimizing idling. Put tasks that
communicate with each other on the same process but may unbalance the
load -> distribute them but increase communication.
Load balancing is not enough to minimize idling.

42

Introduction to Parallel Computing 42

Example

Global balancing OK but due to task dependency P4 is idling.

43

Introduction to Parallel Computing 43

Mapping techniques
• Static mapping.

• NP-complete problem for non-uniform tasks.
• Large data compared to computation.

• Dynamic mapping.
• Dynamically generated tasks.
• Task size unknown.

Even static mapping may be difficult: The problem of obtaining an optimal
mapping is an NP-complete problem for non-uniform tasks. In practice simple
heuristics provide good mappings.
Cost of moving data may out-weight the advantages of dynamic mapping.
In shared address space dynamic mapping may work well even with large
data, but be careful with the underlying architecture (NUMA/UMA) because
data may be moved physically.

44

Introduction to Parallel Computing 44

Schemes for static mapping
• Mappings based on data partitioning.
• Mappings based on task graph partitioning.
• Hybrid mappings.

45

Introduction to Parallel Computing 45

Array distribution scheme
• Combine with “owner computes” rule to partition into sub-

tasks.

1-D block distribution scheme.

Data partitioning mapping.
Mapping data = mapping tasks.
Simple block-distribution.

46

Introduction to Parallel Computing 46

Block distribution cont.

Generalize to higher dimensions: 4x4, 2x8.

47

Introduction to Parallel Computing 47

Example: Matrix*Matrix
• Partition output of C=A*B.
• Each entry needs the same amount of computation.
• Blocks on 1 or 2 dimensions.
• Different data sharing patterns.
• Higher dimensional distributions

• means we can use more processes.
• sometimes reduces interaction.

In the case of matrix n*n multiplication, 1-D -> n processes at most, 2-D n2

processes at most.

48

Introduction to Parallel Computing 48

O(n2/sqrt(p)) vs. O(n2) shared data.

49

Introduction to Parallel Computing 49

Imbalance problem
• If the amount of computation associated with data varies

a lot then block decomposition leads to imbalances.
• Example: LU factorization (or Gaussian elimination).

Computations

Exercise on LU-decomposition.

50

Introduction to Parallel Computing 50

LU factorization
• Non singular square matrix A (invertible).
• A = L*U.
• Useful for solving linear equations.

L

U
A

51

Introduction to Parallel Computing 51

LU factorization

In practice we work on A.

N steps

52

Introduction to Parallel Computing 52

LU algorithm

Proc LU(A)
begin

for k := 1 to n-1 do
for j := k+1 to n do

A[j,k] := A[j,k]/A[k,k]
endfor
for j := k+1 to n do

for i := k+1 to n do
A[i,j] := A[i,j] – A[i,k]*A[k,j]

endfor
endfor

endfor
end

Normalize L
U[k,j] := A[k,j]/L[k,k]

U[k,k]

L[j,k]

L[i,k] U[k,j] L

U

A

53

Introduction to Parallel Computing 53

Decomposition Exercise:
• Task dependency graph?
• Mapping to 3 & 4 processes?

Load imbalance for individual tasks. Load imbalance from dependencies.

55

Introduction to Parallel Computing 55

Cyclic and block-cyclic distributions
• Idea:

• Partition an array into many more blocks than
available processes.

• Assign partitions (tasks) to processes in a round-robin
manner.

• → each process gets several non adjacent blocks.

56

Introduction to Parallel Computing 56

Block-Cyclic Distributions

a) Partition 16x16 into 2*4 groups of 2 rows.
αp groups of n/αp rows.

b) Partition 16x16 into square blocks of size
4*4 distributed on 2*2 processes.
α2p groups of n/α2p squares.

Reduce the amount of idling because all processes have a sampling of tasks
from all parts of the matrix.
But lack of locality may result in performance penalties + leads to high degree
of interaction. Good value for α to find a compromise.

57

Introduction to Parallel Computing 57

Randomized distributions

Irregular distribution with regular mapping!
Not good.

58

Introduction to Parallel Computing 58

1-D randomized distribution

Permutation

59

Introduction to Parallel Computing 59

2-D randomized distribution

2-D block random distribution.

Block mapping.

60

Introduction to Parallel Computing 60

Graph partitioning
• For sparse data structures and data dependent

interaction patterns.
• Numerical simulations. Discretize the problem and

represent it as a mesh.
• Sparse matrix: assign equal number of nodes to

processes & minimize interaction.
• Example: simulation of dispersion of a water contaminant

in Lake Superior.

61

Introduction to Parallel Computing 61

Discretization

62

Introduction to Parallel Computing 62

Partitioning Lake Superior

Random partitioning. Partitioning with minimum
edge cut.

Finding an exact optimal partitioning
is an NP-complete problem.

Minimum edge cut from a graph point of view. Keep locality of data with
processes to minimize interaction.

63

Introduction to Parallel Computing 63

Mappings based on task partitioning
• Partition the task dependency graph.

• Good when static task dependency graph with known
task sizes.

Mapping on 8
processes.

Determining an optimal mapping is NP-complete. Good heuristics for
structured graphs.
Binary tree task dependency graph: occurs in recursive decompositions as
seen before. The mapping minimizes interaction. There is idling but it is
inherent to the task dependency graph, we do not add more.
This example good on a hypercube. See why?

64

Introduction to Parallel Computing 64

Hierarchical mappings
• Combine several mapping techniques in a structured

(hierarchical) way.
• Task mapping of a binary tree (quicksort) does not use

all processors.
• Mapping based on task dependency graph (hierarchy)

& block.

65

Introduction to Parallel Computing 65

Schemes for dynamic mapping
• Centralized Schemes.

• Master manages pool of tasks.
• Slaves obtain work.
• Limited scalability.

• Distributed Schemes.
• Processes exchange tasks to balance work.
• Not simple, many issues.

Centralized schemes are easy to implement but present an obvious bottleneck
(the master).
Self-scheduling: slaves pick up work to do whenever they are idle.
Bottleneck: tasks of size M, it takes t to assign work to a slave → at most M/t
processes can be kept busy.
Chunk-scheduling: a way to reduce bottlenecks by getting a group of tasks.
Problem for load imbalances.

Distributed schemes more difficult to implement.
How do you choose sender & receiver? i.e. if A is overloaded, which process
gets something?
Initiate transfer by sender or receiver? i.e. A overloaded sends work or B idle
requests work?
How much work to transfer?
When to transfer?
Answers are application specific.

66

Introduction to Parallel Computing 66

Minimizing interaction overheads
• Maximize data locality.

• Minimize volume of data-exchange.
• Minimize frequency of interactions.

• Minimize contention and hot spots.
• Share a link, same memory block, etc…
• Re-design original algorithm to change the interaction

pattern.

Minimize volume of exchange → maximize temporal locality. Use higher
dimensional distributions, like in the matrix multiplication example. We can
store intermediate results and update global results less often.
Minimize frequency of interactions → maximize spatial locality.

Related to the previously seen cost model for communications.

Changing the interaction pattern: For the matrix multiplication example, the
sum is commutative so we can re-order the operations modulo sqrt(p) to
remove contention.

67

Introduction to Parallel Computing 67

Minimizing interaction overheads
• Overlapping computations with interactions – to reduce

idling.
• Initiate interactions in advance.
• Non-blocking communications.
• Multi-threading.

• Replicating data or computation.
• Group communication instead of point to point.
• Overlapping interactions.

Replication is useful when the cost of interaction is greater than replicating the
computation. Replicating data is like caching, good for read-only accesses.
Processing power is cheap, memory access is expensive – also apply at larger
scale with communicating processes.

Collective communication such as broadcast. However, depending on the
communication pattern, a custom collective communication may be better.

