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Motivations




Basic Idea

Do several things at once !

" Task A )(TaskB)| TaskC  )(Task D)

[ Task A ] Task C ]

Task B,

[Efficiency, Responsiveness, Scalability, ]




Concurrent People. ..

A natural thing ?




. and Concurrent Machines. ..

More and more parallelism !l

* [1970s] Symmetric Multi-Processing (SMP)

* [1980s] Super-scalar Processors

* [1990s]

yper-threading Processors

* [2000s] Cell Processors

e ..and other will follow ....




Super-scalar Processors
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Symmetric Multi-Processing

Multi-processors machines
All processors are identical

All processors are sharing
the same memory (RAM)

Multi-processing is -

RAM

for real !l

Now a days a lot of

¥ |
Front End T 1 1 Front End
l'.‘-—-?: =

o |\ |

Symmetric Multi-processing




Hyper-Threading

RAM

Emulate two processors inone (mmsmmm

through the dispatcher mEEEEE  mm=
Improve efficiency and i e
reactivity to multi-processed oy

FFFFFF

and/or multi-threaded programs |

Execution Core .

ligf;g:/inance improvements of E E EE Eﬁa

Tend to be more and more
common Hyper-Threading




Cell Processors

Developed by IBM in cooperation with
Toshiba and Sony (Playstation 3).

Highly Parallel Architecture
Designed for streaming (audio, video)

Main Components:

- 1Processing Element (PE)
- 1 Element Interconnection Bus (EIB)

- 8 Synergistic Processing Units (SPU)

64-bit PPC CPU

e -
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The CELL Architecture
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... in a Concurrent World !

* Applications can spread
over networks (Internet)

* Scalability go often
through the use of
others machines

* Multi-processed and/or
Multi-threaded applications can
better be adapted for networks
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Conclusion ?

Think concurrent |

The users are more and more familiar with multi-tasking

The hardware tend to handle more and more efficiently
concurrent programs

The networks are growing in bandwidth and power

The operating systems as well (schedulers)
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Common Problems
N
Concurrent Programming
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Concurrency is good but ...

* Atomicity
- Non-interference problems (race conditions)

* Synchronization

- Rendez-vous problems (deadlocks, livelocks)

* Mutual Exclusion

- Critical sections problems (starvation)
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Atomicity

4 )
An operation is said Atomic if the result

- can be observed before its termination )
R

Process 4 ., 10 | Process
A d ) B

A /

Race Condition
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Atomicity

4 )
An operation is said Atomic if the result

- can be observed before its termination )

Process | 10 | Process

Race Condition
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T Synchronization

4 )
Two processes are synchronized when

they can exchange some informations
N W

<
C B

e,

Deadlock Livelock
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Mutual Exclusion

Two processes are synchronized when
~ they can exchange some informations

Iwon't\ & & o o e e
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[
I A 1 [ Section
[ [
[ [

< /

(Vo

\----—-\———* ——————— P

Starvation
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A Process Life




The Role of an OS

[Task A

[Task B

[Task C

Operating
System

CPU2

CPU1

{Br‘ings Abstraction from the Hardware !}
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The Role of the OS

The programmer can assume:

1. Unlimited Resources
(CPU, Memory, ...)

2. Each task is protected from the others
(Execution, Memory, ...)

3. Access to the Resources is "fair”
(No starvation induced by the Scheduler)
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Why Processes ?

* More Tasks than Processors

The Scheduler needs to split tasks into smaller units
that can be executed on the processor(s) one after one.

* Making it easy for the Programmer
The Scheduler make believe to each task that it is the

only one on the machine (errors in a task won't interfere
with others).

* Prioritizing Programs
The Scheduler provides some control from user-space on
how often is executed one task and, more generally, what
resources does it takes.
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What is a Process ?

* One of the two main abstraction of Unix
(the other one is "everything is a file")

* A Process is the biggest processing unit
that can be scheduled

(the smallest are the threads)

* A Process always spawn from another one
(except the process init)
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Process Internal

[ §
|
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[ PC
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Process Control Block (PCB)

P do one thing()

Lowest Address )

do_one_thing()
paraml
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do_another thing()

p
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Address Space

Stack

Instructions

Static Data

Heap
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Process Control Block (PCB)

PID (PPOCZSS ID)l Task's unique process ID, which periodically wraps,
though never restarting at zero.

PPID (Parent Process ID): Process ID of a task's parent.

UID (US@I" ID)Z Effective user ID of the task's owner.

USER (USZI" Name): Effective user name of the task's owner.
GROUP (GI"OUP I\lame): Effective group name of the task's owner.

PR (PPiOf‘iTY)l Priority of the task.

NI (Nice VGIUZ)i Nice value of the task. A negative nice value means
higher priority, whereas a positive nice value means lower priority.
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The command "top”

top - 00:36:43 up 16:49, 5 users, load average: 0.91, 0.60, 0.32
Tasks: 76 total, 1 running, 75 sleeping, 0 stopped, 0 zombie
Cpu(s): 6% us, 1.0% sy, 0.0% ni, 92% id, 0.0% wa, 0.0% hi, 0.0% si
Mem: 507576k total, 495948k used, 11628k free, 20016k buffers
Swap: 497972k total, 4184k used, 493788k free, 212796k cached

PID USER PR NI VIRT RES SHR
4299 root 5 -10 202m 69m 6884
5363 fleury 15 0 93896 42m 10m
4671 fleury 15 0 30752 14m 7780
4665 fleury 16 0 11556 7476 5900

root 16 0 1500 516 456
root 34 19 0]
root 5 -10
root 5 -10
root 15 -10
root 5 =10
root 15 0
root 15 0
root 15 0
root 15 -10

o

ol elNelNoeNeolNolNelNoNeNoNeoll N e

PU %MEM TIME+ COMMAND
14. :55.13 XFree86
:20.37 rhythmbox
:56.37 terminal
:46.25 metacity
:00.47 init
:00.00 ksoftirqgd/O0
:00.73 events/0
:00.00 khelper
:00.00 kacpid
:00.10 kblockd/0
:00.00 khubd
:00.02 pdflush
:00.03 pdflush
:00.00 aio/0

(0 0]
.
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Process States

wait ()

Zombie

fork () /exec() exit ()

SIGNAL SIGNAL
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Creation of a Process

* System Call fork():

- Creates (nearly) identical copy of process

- Return value different for child/parent

* System Call exec():

- Over-write with new process memory

- Return value is O for success and 1 for failure
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Creation of a Process (fork)

Registers Registers

SP Stack SP main () Stack

PC

Y
Instr. fork () Instr.
Identity -

|

Identity
PID=1011 (2o | Data PID=1027 @ Data
. (::J PPID=1011
Heap Heap
Resources \ J Resources —

foo.txt foo.txt

Return Value:
* In Parent Process: "Child Process ID" or "-1" (on failure)

* In Child Process: "0" (always)
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fork()

#include <stdlib.h>
#include <stdio.h>

#include <unistd.h> [fleury@hermes]$ ./forking
Child is running

#include <sys/types.h>

int main() { Parent is running
pid_t ; [fleury@hermes ]S

switch(pid = fork())
{

case -1: /* Failure */
perror ("forking");

it(1); - :
sxit(l) Note: The Linux kernel run
case 0: /* Child code */ N "
printf("Child is running\n"); GIWG S The Ch||d f“ﬂST'
exit (0);

default: /* Parent Code */
printf("Parent is running\n");
exit (0);

}
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Creation of a Process (exec)

// \\ Stack
Registers e foo()
SP \_ Y,
Coem .. Instr.
—p» main- foo()
Identity AL /
prp=t011. | (o ) | Data
coe Heap
Resources C "
foo.txt

Return Value:
* "-1" (on failure) and "errno” is set to the error number

* Does not return on success
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execve()

[fleury@hermes]$ ./executing

total 36
-rwxr-xr-x 1 fleury fleury 12K Mar : executing
#include <stdio.h> —rw-r--r-—- 1 fleury fleury 286 Mar :54 executing.c

#include <stdlib.h> [EAkSIabets SN fleury fleury 13K Mar : forking

. . 1 fleury fleury 371 Mar : forking.c
#include <unistd.h> [ fleury@hermes|$

int main() {
char *cmd[] {"ls", "-1h", (char *)NULL};
char * [] = {"HOME=/usr/home", "LOGNAME=home", (char *)0};

if (execve("/bin/ls", cmd, env)) {
perror("foo");
exit(1l); /* Failure */

} CNofe: This code is never execu’red)

printf(“I'm still alive !\n"); -4
exit (0);
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The exec™() Familly

* execve( ) + Original system call, all other exec*() functions
are just front-end tfo it.

* Other exec*() functions are:

execl (), execlp(), execle(), execv (), execvp().

* What's the difference ?

- 1/v = Arguments are given as a "list" or a "vector”
- p/e = Environment is used as such (p) or given as an argument (e).

- Examples:
P execlp(uliu’ lllill’ "—al", 0);

e execl("/usr/bin/sh", "sh", "-¢", "1li -1 *.c", 0);
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Termination of a Process (exit)

Registers Registers
PRy main() )| Stack SP < (main() ) ) Stack
PC P e
Instr. Instr.
Identity - Identity e
PID=1011 (.. )| Data PID=1027 ... )| Data
@ Heap PPID=1011 Hegp
Resources \ Resources J
foo.txt foo.txt
Process
Tabl 1000
aoie
1007
1011
1027
N
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Termination of a Process (exit)

Registers
P main()
PC

Instr.

Identity
PID=1011

Resources

foo.txt

Process
Table

Retrieve the
return code

1000
1007
1011
1027

Registers

Identity

PID=1027
PPID=10

Stack

Instr.

Data
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wait()

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
$#include <sys/types.h>

[fleury@hermes]$ ./waiting
Child is running
Parent is running

[3]+ Stopped ./waiting
int main() { [fleury@hermes]$ ps a | grep waiting
pid t ; PID TTY STAT TIME CMD
24859 pts/3 T 0:01 ./waiting
switch(pid = fork()) 24860 pts/3 Z 0:00 [waiting] <defunct>

{
case -1: /* Failure */
perror ("waiting");

exit(1); /D Uninterruptible sleep (usually IO) h
case 0: /* Child code */ R Running or runnable (on run queue)

printf("Child is running\n"); 5 InTerruanble sleep

exit (0); (waiting for an event to complete)

T Stopped, either by a job control signal

defa‘flt; /* Parent Code */ . or because it is being traced.

5;?112({)1;“%1; R N (should never be seen)

exit (0); Z Defunct ("zombie") process,
} g terminated but not reaped by its paren‘r.j
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wait()

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

#include <sys/types.h> The Child 25543 has returned the value 0
#include <sys/wait.h> [fleury@hermes]$

[fleury@hermes]$ ./waiting
Child is running
Parent is running

int main() {
pid t ;

switch(pid = fork())
{

case -1: /* Failure */ Note: We are waiting for a precise child (pid)
perror ("waiting");

exit(1l); but we have only one, this could be avoided.

case 0: /* Child code */
printf("Child is running\n");
exit (0);

default: /* Parent Code */
printf("Parent is running\n");
while (pid != wait(&status))
printf("The Child %i has returned the value %i\n", pid, status/256);
exit (0);

}
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Process Tree

Note: init is a very special pr'ocessm »1init

even the root cannot kill it because ‘ \
it lies in kernel-space. J .
bash inetd klogd

startx

O\,

gnome-session

/\

terminal thunderbird

updatedb
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Interlude:
Processes in (nut)Shell
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Basic Commands

* bg ("Z or &):
Send the current job in the background

[ fg:
Run the background job in the foreground
* jobs:
List all the jobs present on the shell
* kill ("C):
Terminate a job
* wait:
Wait for the termination of a job

40



Demonstration of bg, fg, jobs, Kkill

* bg: Put several jobs in the background
* jobs: List them all
* fg: Select one and run it in foreground

* kill: send termination sighals o some of
the background jobs
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wait (Shell)

[fleury@hermes]$ ./test.sh

. test.sh
Job 1 exited with status O
total 16
drwxr-xr-x 2 fleury fleury :06 .
. drwxr-xr-x 74 fleury fleury :05 ..
# ! /bln/Sh —-YWXYr-Xr-x 1l fleury fleury :06 test.sh
Job 2 exited with status O
[fleury@hermes]$ ./test.sh
total 16
# JOb g drwxr-xr-x 2 fleury fleury :06 .
ls —-a & drwxr-xr-x 74 fleury fleury :05 ..
—rWXr-Xr-XxX 1 fleury fleur :06 test.sh
# PID of Job 1 U testeen
==$ Job 1 exited with status O
Job 2 exited with status O
# Job 2 [fleury@hermes]$
ls -al &
# Display status of Job 1
wait $
echo Job 1 exited with status $
# Dlsplay status of Job 2 Note: The order of
wait 3 execution might change.)

echo Job 2 exited with status S
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Process Management
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The get*() Familly

getpid(): Get process ID

getppid(): Get parent process ID

getuid(): Get user ID

geteuid(): Get effective user ID (ignoring set ID calls)
getgid(): Get group ID

getegid(): Get effective group ID (ignoring set ID calls)
getresuid(): Get real, effective and saved user ID
getresgid(): Get real, effective and saved group ID

getgroups (): Get the list of groups to which belong the user
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The command "id”

[fleury@hermes]$ id

uid=1000(fleury) gid=1000(fleury) groups=29(audio),1000(fleury)
[fleury@hermes]$ cp /bin/sh

[fleury@hermes]$ chmod +s sh

[fleury@hermes]$ su -

Password:

[root@hermes]$ id

uid=0(root) gid=0(root) groups=0(root)

[root@hermes]$ 1ls -1 ~fleury/sh

-rwsr-sr-x 1 fleury fleury 667180 Mar 26 17:26 /home/fleury/sh
[root@hermes]$ ~fleury/sh

[root@hermes]$ id

uid=0(root) gid=0(root) euid=1000(fleury) egid=1000(fleury) groups=0(root)
[root@hermes]$ exit

[root@hermes]$ id

uid=0(root) gid=0(root) groups=0(root)

[root@hermes]$ exit

[fleury@hermes]$




getgroups()

#include <stdio.h> [fleury@hermes]$ id
#include <unistd.h> uid=1000(fleury) gid=1000(fleury) groups=29(audio),1000(fleury)

SRR IR Ao M [ f leury@hermes]$ ./get groups

group[0] = 29
int main() { group[l] = 1000

int , i

gid t * , [fleury@hermes]$

/* Get the size of the table */
if ((size = getgroups(0, NULL)) < 0) {
perror("get groups");
exit(1l);
}
/* Memory allocation of the table */
if ((gid _table = calloc(size, sizeof(gid t))) == NULL){
perror("get groups");
exit(l);
}
/* Get the group list */
if (!getgroups(size, gid table)) {
perror("get groups");
exit(1l);
}
/* Display the list */
for (i=0; i<size; i++)
printf("group[%i] = %ul\n", i, gid table[i]);
free(gid table);

exit(0);
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The set™() Familly

* setuid()/setgid():

Sets the effective user/group ID of the current process

* setresuid()/setresgid():

Sets the real user ID, the effective user ID, and the saved
(effective) user ID of the current process.

* seteuid()/setegid():

Sets the effective user/group ID of the current process

* setreuid()/setregid():

Sets real and effective user IDs of the current process.
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Process Tree

init

|\

bash inetd klogd

startx
User (effective & real)

gnome-session X

/\

terminal thunderbird

| setuid bit

updatedb |Ro0ot (effective & not real)

48



sleep()

®* sleep():
Sleep for the specified number of seconds

®* usleep():
Suspend execution for microsecond intervals

®* nanosleep():
Pause execution for a specified time
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Process Scheduling
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Getting & Setting Priority

®* nice():
Change the nice value of a process. Return the
new priority value or "-1" in case of failure

®* renice():
Alter priority of running processes

* getpriority():
Get program scheduling priority

* setpriority():
Set program scheduling priority
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#include
#include
#include
#include

int main(

printf (

<sys/resource.h>

<stdlib.h>
<stdio.h>
<unistd.h>

) |

Note: Priority is a value
between -20 and 19.
Only root can go under O.

"process priority is

$i\n",

getpriority (PRIO_PROCESS, 0)
printf ("process group priority is %

) ;
i\n",

getpriority (PRIO_PGRP, 0));
printf("user priority is %i\n",
getpriority (PRIO USER, 0));
printf ("=====\n");
printf("new nice value: %i\n", nice(3));
printf("new nice value: %i\n", nice(3));
printf("new nice value: %i\n", nice(-9)
printf ("=====\n");
printf ("process priority is %i\n",
getpriority (PRIO_ PROCESS, 0));
printf ("process group priority is %i\n
getpriority (PRIO PGRP, 0));
printf("user priority is %i\n",
getpriority(PRIO USER, 0));
exit(0);

[fleury@hermes]$
process priority is 0
process group priority is 0
user priority is 0

new nice value: 3
new nice value: 6
new nice value: -1

process priority is 6
process group priority
user priority is 0
[fleury@hermes]$ su -c
Password:

process priority is 0
process group priority
user priority is -10

is 6

new nice value: 3
new nice value: 6
new nice value: -3

process priority is -3
process group priority
user priority is -10

./priority

./priority
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See also ...

mlock() / munlock()

mlockall() / munlockall ()
sched_get_priority_max()//sched_get_priority_min()
sched getaffinity() / sched setaffinity()
sched_getparam()//sched_setparam()

sched_getscheduler()//sched_setscheduler()
sched rr get interval()
sched yield()

capabilities()
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Questions ?




Next Week

* Signals in Unix
* Inter-process communication
- files
- pipes
- hamed pipes
- sharing memory chunks
- FIFO

- Semaphores
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