Processes in UNIX

Emmanuel Fleury
B1-201
fleury@cs.aau.dk

Bl o

GNU FDL
; FREE DOC
WIKIPEDIA LICENSE

1

Overview

* Motivations

* Problems in Concurrency
* A Process Life

* Interlude

* Process Management

* Process Scheduling

Motivations

Basic Idea

Do several things at once !

" Task A)(TaskB)| TaskC)(Task D)

[Task A] Task C]

Task B,

[Efficiency, Responsiveness, Scalability,]

Concurrent People. ..

A natural thing ?

. and Concurrent Machines. ..

More and more parallelism !l

* [1970s] Symmetric Multi-Processing (SMP)

* [1980s] Super-scalar Processors

* [1990s]

yper-threading Processors

* [2000s] Cell Processors

e ..and other will follow

Super-scalar Processors

Implement Parallelism . Raw
on a single chip 0 O oo St o o | | e R
IR B . = = - F 1 1 1 | B
. - §F 1 1 1 | I i . - 1 §] i .
Dispatch the tasks e —— ——tti i
. K F 8 1 | i . [§ §F 1 R | B .

processing units

EfflClenCY STI"OHQIY - Front End Bl BB Fontend
depends on the S ==
d|5pa1-cher Execution Core E E"“E“Ea g ﬁg
Difficult o compute the =Rl R
WCET (Worst Case E E
Execution Time)

Scalar Processor Super-Scalar Processor

7

Symmetric Multi-Processing

Multi-processors machines
All processors are identical

All processors are sharing
the same memory (RAM)

Multi-processing is -

RAM

for real !l

Now a days a lot of

¥ |
Front End T 1 1 Front End
l'.‘-—-?: =

o |\ |

Symmetric Multi-processing

Hyper-Threading

RAM

Emulate two processors inone (mmsmmm

through the dispatcher mEEEEE mm=
Improve efficiency and i e
reactivity to multi-processed oy

FFFFFF

and/or multi-threaded programs |

Execution Core .

ligf;g:/inance improvements of E E EE Eﬁa

Tend to be more and more
common Hyper-Threading

Cell Processors

Developed by IBM in cooperation with
Toshiba and Sony (Playstation 3).

Highly Parallel Architecture
Designed for streaming (audio, video)

Main Components:

- 1Processing Element (PE)
- 1 Element Interconnection Bus (EIB)

- 8 Synergistic Processing Units (SPU)

64-bit PPC CPU

e -

L5y
Ghantal

Local Storage
L5
Channel

Local Storage
i
Channal

Loeal Storage

] e
Charirsa]

L2 Cache

Local Storaps

L5L
Channal

LB
Glanne!

Local Storage

L5u
Channai

Local Storags

] i

MIC
Dual XDR

The CELL Architecture

10

... in a Concurrent World !

* Applications can spread
over networks (Internet)

* Scalability go often
through the use of
others machines

* Multi-processed and/or
Multi-threaded applications can
better be adapted for networks

11

Conclusion ?

Think concurrent |

The users are more and more familiar with multi-tasking

The hardware tend to handle more and more efficiently
concurrent programs

The networks are growing in bandwidth and power

The operating systems as well (schedulers)

12

Common Problems
N
Concurrent Programming

13

Concurrency is good but ...

* Atomicity
- Non-interference problems (race conditions)

* Synchronization

- Rendez-vous problems (deadlocks, livelocks)

* Mutual Exclusion

- Critical sections problems (starvation)

14

Atomicity

4)
An operation is said Atomic if the result

- can be observed before its termination)
R

Process 4 ., 10 | Process
A d) B

A /

Race Condition

15

Atomicity

4)
An operation is said Atomic if the result

- can be observed before its termination)

Process | 10 | Process

Race Condition

16

T Synchronization

4)
Two processes are synchronized when

they can exchange some informations
N W

<
C B

e,

Deadlock Livelock

17

Mutual Exclusion

Two processes are synchronized when
~ they can exchange some informations

Iwon't\ & & o o e e
—~ D [< R

[
I A 1 [Section
[[
[[

< /

(Vo

\----—-\———* ——————— P

Starvation

18

A Process Life

The Role of an OS

[Task A

[Task B

[Task C

Operating
System

CPU2

CPU1

{Br‘ings Abstraction from the Hardware !}

20

The Role of the OS

The programmer can assume:

1. Unlimited Resources
(CPU, Memory, ...)

2. Each task is protected from the others
(Execution, Memory, ...)

3. Access to the Resources is "fair”
(No starvation induced by the Scheduler)

21

Why Processes ?

* More Tasks than Processors

The Scheduler needs to split tasks into smaller units
that can be executed on the processor(s) one after one.

* Making it easy for the Programmer
The Scheduler make believe to each task that it is the

only one on the machine (errors in a task won't interfere
with others).

* Prioritizing Programs
The Scheduler provides some control from user-space on
how often is executed one task and, more generally, what
resources does it takes.

22

What is a Process ?

* One of the two main abstraction of Unix
(the other one is "everything is a file")

* A Process is the biggest processing unit
that can be scheduled

(the smallest are the threads)

* A Process always spawn from another one
(except the process init)

23

Process Internal

[§
|

Jom w

| Registers

SP
[PC
GPRO

GPR1

I
I
I Identit

Y PID
I UID
| 61D
I .
| Resources Open Files
I
I

Locks
Sockets

| N

Process Control Block (PCB)

P do one thing()

Lowest Address)

do_one_thing()
paraml
param2

do_another thing()

p

varl ‘
var2

R

)

Highest Address)

Address Space

Stack

Instructions

Static Data

Heap

24

Process Control Block (PCB)

PID (PPOCZSS ID)l Task's unique process ID, which periodically wraps,
though never restarting at zero.

PPID (Parent Process ID): Process ID of a task's parent.

UID (US@I" ID)Z Effective user ID of the task's owner.

USER (USZI" Name): Effective user name of the task's owner.
GROUP (GI"OUP I\lame): Effective group name of the task's owner.

PR (PPiOf‘iTY)l Priority of the task.

NI (Nice VGIUZ)i Nice value of the task. A negative nice value means
higher priority, whereas a positive nice value means lower priority.

25

The command "top”

top - 00:36:43 up 16:49, 5 users, load average: 0.91, 0.60, 0.32
Tasks: 76 total, 1 running, 75 sleeping, 0 stopped, 0 zombie
Cpu(s): 6% us, 1.0% sy, 0.0% ni, 92% id, 0.0% wa, 0.0% hi, 0.0% si
Mem: 507576k total, 495948k used, 11628k free, 20016k buffers
Swap: 497972k total, 4184k used, 493788k free, 212796k cached

PID USER PR NI VIRT RES SHR
4299 root 5 -10 202m 69m 6884
5363 fleury 15 0 93896 42m 10m
4671 fleury 15 0 30752 14m 7780
4665 fleury 16 0 11556 7476 5900

root 16 0 1500 516 456
root 34 19 0]
root 5 -10
root 5 -10
root 15 -10
root 5 =10
root 15 0
root 15 0
root 15 0
root 15 -10

o

ol elNelNoeNeolNolNelNoNeNoNeoll N e

PU %MEM TIME+ COMMAND
14. :55.13 XFree86
:20.37 rhythmbox
:56.37 terminal
:46.25 metacity
:00.47 init
:00.00 ksoftirqgd/O0
:00.73 events/0
:00.00 khelper
:00.00 kacpid
:00.10 kblockd/0
:00.00 khubd
:00.02 pdflush
:00.03 pdflush
:00.00 aio/0

(0 0]
.

O O O O O O O O

O O O O O O O o Oo

O O O O O O O O O

N nuninoTuniunomoum nn N n 1
e o e o e o o 0o o 0 o o o
O OO O OO OOOO N WUV
O OO OO OOCOOoOOoOCoOorFrN

e o e o & o o o o o 0o o

O O OO OO OOO - Ul Vv Ul O
O O O O O O O OO0 OO 00U

Process States

wait ()

Zombie

fork () /exec() exit ()

SIGNAL SIGNAL

27

Creation of a Process

* System Call fork():

- Creates (nearly) identical copy of process

- Return value different for child/parent

* System Call exec():

- Over-write with new process memory

- Return value is O for success and 1 for failure

28

Creation of a Process (fork)

Registers Registers

SP Stack SP main () Stack

PC

Y
Instr. fork () Instr.
Identity -

|

Identity
PID=1011 (2o | Data PID=1027 @ Data
. (::J PPID=1011
Heap Heap
Resources \ J Resources —

foo.txt foo.txt

Return Value:
* In Parent Process: "Child Process ID" or "-1" (on failure)

* In Child Process: "0" (always)

29

fork()

#include <stdlib.h>
#include <stdio.h>

#include <unistd.h> [fleury@hermes]$./forking
Child is running

#include <sys/types.h>

int main() { Parent is running
pid_t ; [fleury@hermes]S

switch(pid = fork())
{

case -1: /* Failure */
perror ("forking");

it(1); - :
sxit(l) Note: The Linux kernel run
case 0: /* Child code */ N "
printf("Child is running\n"); GIWG S The Ch||d f“ﬂST'
exit (0);

default: /* Parent Code */
printf("Parent is running\n");
exit (0);

}

30

Creation of a Process (exec)

// \\ Stack
Registers e foo()
SP _ Y,
Coem .. Instr.
—p» main- foo()
Identity AL /
prp=t011. | (o) | Data
coe Heap
Resources C "
foo.txt

Return Value:
* "-1" (on failure) and "errno” is set to the error number

* Does not return on success

31

execve()

[fleury@hermes]$./executing

total 36
-rwxr-xr-x 1 fleury fleury 12K Mar : executing
#include <stdio.h> —rw-r--r-—- 1 fleury fleury 286 Mar :54 executing.c

#include <stdlib.h> [EAkSIabets SN fleury fleury 13K Mar : forking

. . 1 fleury fleury 371 Mar : forking.c
#include <unistd.h> [fleury@hermes|$

int main() {
char *cmd[] {"ls", "-1h", (char *)NULL};
char * [] = {"HOME=/usr/home", "LOGNAME=home", (char *)0};

if (execve("/bin/ls", cmd, env)) {
perror("foo");
exit(1l); /* Failure */

} CNofe: This code is never execu’red)

printf(“I'm still alive !\n"); -4
exit (0);

32

The exec™() Familly

* execve() + Original system call, all other exec*() functions
are just front-end tfo it.

* Other exec*() functions are:

execl (), execlp(), execle(), execv (), execvp().

* What's the difference ?

- 1/v = Arguments are given as a "list" or a "vector”
- p/e = Environment is used as such (p) or given as an argument (e).

- Examples:
P execlp(uliu’ lllill’ "—al", 0);

e execl("/usr/bin/sh", "sh", "-¢", "1li -1 *.c", 0);

33

Termination of a Process (exit)

Registers Registers
PRy main())| Stack SP < (main())) Stack
PC P e
Instr. Instr.
Identity - Identity e
PID=1011 (..)| Data PID=1027 ...)| Data
@ Heap PPID=1011 Hegp
Resources \ Resources J
foo.txt foo.txt
Process
Tabl 1000
aoie
1007
1011
1027
N

34

Termination of a Process (exit)

Registers
P main()
PC

Instr.

Identity
PID=1011

Resources

foo.txt

Process
Table

Retrieve the
return code

1000
1007
1011
1027

Registers

Identity

PID=1027
PPID=10

Stack

Instr.

Data

35

wait()

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
$#include <sys/types.h>

[fleury@hermes]$./waiting
Child is running
Parent is running

[3]+ Stopped ./waiting
int main() { [fleury@hermes]$ ps a | grep waiting
pid t ; PID TTY STAT TIME CMD
24859 pts/3 T 0:01 ./waiting
switch(pid = fork()) 24860 pts/3 Z 0:00 [waiting] <defunct>

{
case -1: /* Failure */
perror ("waiting");

exit(1); /D Uninterruptible sleep (usually IO) h
case 0: /* Child code */ R Running or runnable (on run queue)

printf("Child is running\n"); 5 InTerruanble sleep

exit (0); (waiting for an event to complete)

T Stopped, either by a job control signal

defa‘flt; /* Parent Code */ . or because it is being traced.

5;?112({)1;“%1; R N (should never be seen)

exit (0); Z Defunct ("zombie") process,
} g terminated but not reaped by its paren‘r.j

36

wait()

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

#include <sys/types.h> The Child 25543 has returned the value 0
#include <sys/wait.h> [fleury@hermes]$

[fleury@hermes]$./waiting
Child is running
Parent is running

int main() {
pid t ;

switch(pid = fork())
{

case -1: /* Failure */ Note: We are waiting for a precise child (pid)
perror ("waiting");

exit(1l); but we have only one, this could be avoided.

case 0: /* Child code */
printf("Child is running\n");
exit (0);

default: /* Parent Code */
printf("Parent is running\n");
while (pid != wait(&status))
printf("The Child %i has returned the value %i\n", pid, status/256);
exit (0);

}

37

Process Tree

Note: init is a very special pr'ocessm »1init

even the root cannot kill it because ‘ \
it lies in kernel-space. J .
bash inetd klogd

startx

O\,

gnome-session

/\

terminal thunderbird

updatedb

38

Interlude:
Processes in (nut)Shell

39

Basic Commands

* bg ("Z or &):
Send the current job in the background

[fg:
Run the background job in the foreground
* jobs:
List all the jobs present on the shell
* kill ("C):
Terminate a job
* wait:
Wait for the termination of a job

40

Demonstration of bg, fg, jobs, Kkill

* bg: Put several jobs in the background
* jobs: List them all
* fg: Select one and run it in foreground

* kill: send termination sighals o some of
the background jobs

41

wait (Shell)

[fleury@hermes]$./test.sh

. test.sh
Job 1 exited with status O
total 16
drwxr-xr-x 2 fleury fleury :06 .
. drwxr-xr-x 74 fleury fleury :05 ..
! /bln/Sh —-YWXYr-Xr-x 1l fleury fleury :06 test.sh
Job 2 exited with status O
[fleury@hermes]$./test.sh
total 16
JOb g drwxr-xr-x 2 fleury fleury :06 .
ls —-a & drwxr-xr-x 74 fleury fleury :05 ..
—rWXr-Xr-XxX 1 fleury fleur :06 test.sh
PID of Job 1 U testeen
==$ Job 1 exited with status O
Job 2 exited with status O
Job 2 [fleury@hermes]$
ls -al &
Display status of Job 1
wait $
echo Job 1 exited with status $
Dlsplay status of Job 2 Note: The order of
wait 3 execution might change.)

echo Job 2 exited with status S

42

Process Management

43

The get*() Familly

getpid(): Get process ID

getppid(): Get parent process ID

getuid(): Get user ID

geteuid(): Get effective user ID (ignoring set ID calls)
getgid(): Get group ID

getegid(): Get effective group ID (ignoring set ID calls)
getresuid(): Get real, effective and saved user ID
getresgid(): Get real, effective and saved group ID

getgroups (): Get the list of groups to which belong the user

44

The command "id”

[fleury@hermes]$ id

uid=1000(fleury) gid=1000(fleury) groups=29(audio),1000(fleury)
[fleury@hermes]$ cp /bin/sh

[fleury@hermes]$ chmod +s sh

[fleury@hermes]$ su -

Password:

[root@hermes]$ id

uid=0(root) gid=0(root) groups=0(root)

[root@hermes]$ 1ls -1 ~fleury/sh

-rwsr-sr-x 1 fleury fleury 667180 Mar 26 17:26 /home/fleury/sh
[root@hermes]$ ~fleury/sh

[root@hermes]$ id

uid=0(root) gid=0(root) euid=1000(fleury) egid=1000(fleury) groups=0(root)
[root@hermes]$ exit

[root@hermes]$ id

uid=0(root) gid=0(root) groups=0(root)

[root@hermes]$ exit

[fleury@hermes]$

getgroups()

#include <stdio.h> [fleury@hermes]$ id
#include <unistd.h> uid=1000(fleury) gid=1000(fleury) groups=29(audio),1000(fleury)

SRR IR Ao M [f leury@hermes]$./get groups

group[0] = 29
int main() { group[l] = 1000

int , i

gid t * , [fleury@hermes]$

/* Get the size of the table */
if ((size = getgroups(0, NULL)) < 0) {
perror("get groups");
exit(1l);
}
/* Memory allocation of the table */
if ((gid _table = calloc(size, sizeof(gid t))) == NULL){
perror("get groups");
exit(l);
}
/* Get the group list */
if (!getgroups(size, gid table)) {
perror("get groups");
exit(1l);
}
/* Display the list */
for (i=0; i<size; i++)
printf("group[%i] = %ul\n", i, gid table[i]);
free(gid table);

exit(0);

46

The set™() Familly

* setuid()/setgid():

Sets the effective user/group ID of the current process

* setresuid()/setresgid():

Sets the real user ID, the effective user ID, and the saved
(effective) user ID of the current process.

* seteuid()/setegid():

Sets the effective user/group ID of the current process

* setreuid()/setregid():

Sets real and effective user IDs of the current process.

47

Process Tree

init

|\

bash inetd klogd

startx
User (effective & real)

gnome-session X

/\

terminal thunderbird

| setuid bit

updatedb |Ro0ot (effective & not real)

48

sleep()

®* sleep():
Sleep for the specified number of seconds

®* usleep():
Suspend execution for microsecond intervals

®* nanosleep():
Pause execution for a specified time

49

Process Scheduling

50

Getting & Setting Priority

®* nice():
Change the nice value of a process. Return the
new priority value or "-1" in case of failure

®* renice():
Alter priority of running processes

* getpriority():
Get program scheduling priority

* setpriority():
Set program scheduling priority

51

#include
#include
#include
#include

int main(

printf (

<sys/resource.h>

<stdlib.h>
<stdio.h>
<unistd.h>

) |

Note: Priority is a value
between -20 and 19.
Only root can go under O.

"process priority is

$i\n",

getpriority (PRIO_PROCESS, 0)
printf ("process group priority is %

) ;
i\n",

getpriority (PRIO_PGRP, 0));
printf("user priority is %i\n",
getpriority (PRIO USER, 0));
printf ("=====\n");
printf("new nice value: %i\n", nice(3));
printf("new nice value: %i\n", nice(3));
printf("new nice value: %i\n", nice(-9)
printf ("=====\n");
printf ("process priority is %i\n",
getpriority (PRIO_ PROCESS, 0));
printf ("process group priority is %i\n
getpriority (PRIO PGRP, 0));
printf("user priority is %i\n",
getpriority(PRIO USER, 0));
exit(0);

[fleury@hermes]$
process priority is 0
process group priority is 0
user priority is 0

new nice value: 3
new nice value: 6
new nice value: -1

process priority is 6
process group priority
user priority is 0
[fleury@hermes]$ su -c
Password:

process priority is 0
process group priority
user priority is -10

is 6

new nice value: 3
new nice value: 6
new nice value: -3

process priority is -3
process group priority
user priority is -10

./priority

./priority

52

See also ...

mlock() / munlock()

mlockall() / munlockall ()
sched_get_priority_max()//sched_get_priority_min()
sched getaffinity() / sched setaffinity()
sched_getparam()//sched_setparam()

sched_getscheduler()//sched_setscheduler()
sched rr get interval()
sched yield()

capabilities()

53

Questions ?

Next Week

* Signals in Unix
* Inter-process communication
- files
- pipes
- hamed pipes
- sharing memory chunks
- FIFO

- Semaphores

55

