!'_ Concurrency - Complements

Alexandre David
adavid@cs.aau.dk

i 1 - Dynamic Systems

= So far, threads
= are created at initialization
= run until termination
= are statically organized (like monitors)

= Now, threads

= are created and terminate dynamically
= number of active threads varies
(common situation in OS)

i Problems

= How to model and program such
systems?

= Resource allocation problem: variable
amount of resource needed to proceed.

= Modeling problem: What is the relevance
of finite state models to model dynamic
systems?
= Hint: Computers have limited resources...

i Problems

= Processes are static in FSP (dynamic in
Promela) in structure and number of
processes — limits of tools for analysis.

i Program vs. Model

= How much of behaviour of the dynamic
system is captured in the static model?

= [s the static model helpful in analysing
the behaviour of the dynamic system?

= Let's answer these questions.
Golf club example in the book.

i Golf Club Example

= Players come to a golf club, hire golf
balls, play, and return them.

= Infinite stream of players, limited
number of balls.

s Model: limited number players.

= Implementation: players are threads
that are created dynamically.

i Golf Player

Inrt Start

Q new =K

less than n balls available
End

@) finish O
Waiting take n balls k/P/ayin "

take n balls

= This corresponds to the implementation.
= Starvation problem in Waiting.

i Allocation of Balls

synchroni zed public void get(int n)

t hrows ... // needs n balls
{
whi | e (n > available) wait();
available -= n;
}

synchroni zed public void put(int n)
{

available +=n;

notifyAll(); // several blocked players

const N=5H

ALLOCATOR = BALL[N],

BALL[b:0..N] = when (b > 0) get[i:1..b]->BALL[b-i] |
put[j:1.N]J->BALL[b+j]).

i Players

= Player thread as usual: while loop with
= get balls
= Sleep
= give back balls

= Model: how to model the infinite stream
of players? We cannot represent an
infinite state space in this case but it’s
fine with infinite behaviours that are
repetitive.

i Solution for Modeling

= We don't need distinct players. It's fine
with a fixed population of players.

= Model: infinite stream of requests from
finite set of golfers (~ real implementation
since threads are recycled).

= System: finite stream of requests from
infinite number of players.

= This Is a very common general
technique.

i Player Model

range R = 1.N

PLAYER = (need[b:R]->PLAYER[b]),

PLAYER[b:R] = (get[b]->put[b]->PLAYER[b]).

set Experts = {Alice, Bob, Chris}

set Novices = {Dave, Eve}

set Players = {Experts, Novices}

HANDICAP = ({Novices.need[3..N], Experts.need[1..2]}
->SHANDICAP)+{Players.need[R]}.

= Different kinds of players, modeled by the
HANDICAP process.

= Progress check: put low priority on put
action.

i Solving Starvation

= Ticket protocol: tickets in ascending
order (like post office).
Model: round number % # players.

= But: increase size of the model... may
need to simplify.

= Not very efficient in the sense that
novices may block many experts
unnecessarily.

i Fair Allocator

private | ong turn=0; Il next ticket to be dispensed
private | ong next=0; I/ next ticket to be served
synchroni zed public void get(int n)

throws ... // needs n balls

{

| ong myturn = turn; ++turn;

whi | e (n > available || myturn !'= next) wait();
++next; available -=n;
notifyAll();

No starvation but resources
} are not used efficiently:
synchroni zed public voi ¢ Y
{ expert players are kept
available += n; by novices although the balls
notifyAll(); // several blo| they require are available. y

) N

i Bounded Overtaking

= We allow experts to overtake novices
and we prevent starvation by setting an
upper bound on the number of times a
novice can be overtaken.

= Idea: a thread has been overtaken if
next>=(myturn+bound), in which case
a variable overtaken is incremented and
all other threads are blocked.

i Master-Slave

= In some situations a masterthread may
ask to a (dynamically created) s/iave
thread to compute something.

o {
o {
s {

ne master continues with some activity
ne slave terminates

ne master collects the result later
= can poll with isAlive()
= better: can synchronized with join()

i 2 — Concurrent Architectures

= Filters: component that processes
incoming stream(s) of data and output
results.

= Filters can be implemented as
processes, e.g., pipes in UNIX.

= Very convenient and powerful to
implement complex computations from
simple operations.

i Primes Sieve Example

GEN |- Pipe [[[| - Filter —Pipe [[[} Filter -

Pipeline

More efficient with buffered pipes (reduces context
switches). Pipes in UNIX are buffered.

i Supervisor-Worker

= Good to speed up execution of
computational problems where it is
possible to split the main problem into

independent sub-problems to be solved
in parallel,

= Supervisor manages a set of fasks to be
handled by the workers.

= Workers can generate new tasks as
results.

i Linda Tuple Space

= Name of a distributed shared memory
system. Data is organized as tup/es of the
form (“tag”, value, value, ...).

= Can be used to implement the set of
tasks.

out L N\

%TT uple space
rd

i Speedup & Efficiency

s Speedup = time(1)/time(N)
where &ime(n) is the time used to solve
a problem on n processors.

s Efficiency = Speedup/N
measures how efficiently the problem is
divided. Ideally, the speedup is N,
which corresponds to 100%.

‘L Speedup & Efficiency

ideal: 100% efficiency
speedup

typical curve in practice

execution
time

typical curve in practice

ideal: 100% efficiency
> N

i Patterns

= Many examples that we have seen in
this course follow programming
pattems.

= Chapter 11 gives some basic patterns.

= If you want to know more, check books
on programming patterns.

i 3 — Timed Systems

= In fact Real-time systems: correctness
of the systems is defined as the correct
output must be delivered /in due time.

= Time often discretized as ticks in
practice. Even if ticks are not used the
implementation of time is always
discrete (discrete clocks).

i Timed Systems

= Chapter 12 is about modeling time with
an un-timed tool, which means using a
number of hacked models with a
particular interpretation.

= Better tools exist specifically to handle
time, e.q., UPPAAL.

= Examples of chapter 12 are interesting
since they provide an analysis with
models, followed by an implementation.

i 4 — Operational Semantics

= Appendix C gives the semantics of FSP
in terms of ru/es.

= How to read them:
expression before

. condition
result expression

i 5 - Equivalence

= You noticed the functionality of the tool
to minimize automata. What it means:
it computes a smaller automaton (if
possible) that exhibit exactly the same
behaviour of the original automaton.

= Important point in the definition
(C.6.1): whatever P does something, Q
can do the same, and vice-versa.

= Weak equivalence: ignore {gu actions.

