Concurrency

10 - Message Passing

Alexandre David
adavid@cs.aau.dk

Concurrency: message passing Credits for the slided:

Jeff Magee & JEffKramer

Message Passing

Concepts: synchronous message passing (via channels)
asynchronous message passing (via ports)
- send and receive / selective receive
rendezvous bidirectional comms - entry
- call and accept ... reply

Models: channel : re-labelling, choice & guards

port . message queue, choice & guards
entry : port & channel

Practice: distributed computing (disjoint memory)
threads and monitors (shared memory)

Concurrency: message passing 2

©Magee/Kramer

10.1 Synchronous Message Passing - channel

Channe] c Receiver
= > v=receive(C)

one-to-one
¢+ send(e,c) - send the ¢ V=recelve(C) - receive
value of the expression e a value into local variable v
to channel ¢. The process from channel ¢. The
calling the send operation process calling the receive
is blocked until the operation is blocked
message is received from waiting until a message is
the channel. sent to the channel.

Concurrency: message passing ct. distributed 05'5'/_'9/7”76/77" v=e 3

©Magee/Kramer

Synchronous Message Passing - Applet

A sender
communicates
with a receiver
using a single
channel.

The sender
sends a
sequence of
integer values
from O to 9 and
then restarts at
O again.

Instances of ThreadPanel

Start| Stop |

/

Concurrency: message passing

Channel chan = new Channel();
tx.start(new Sender(chan,senddisp));
rx.start(new Receiver(chan,recvdisp));

Instances of SlotCanvas

4

©Magee/Kramer

Select (not described in the book)

class Select {
Vector list = new Vector(2);

public void add(Selectable s) {
/l add s to list, set s select to this

}

public synchronized Int choose() throws .. {
// block until one selectable is
I/ ready with a satisfied guard

}

Concurrency: message passing 5
©Magee/Kramer

Selectable (not described in the book)

class

Selectable {

private boolean open = false;

private int ready = 0;

private Select inchoice = null;

private boolean guard = true;

void setSelect(Select s) {inchoice =s;}
void guard(boolean g) {guard =g;}
void clearReady() { --ready; }

synchronized void block throws .. {
I/ set open, wait until ready, clear open

}

synchronized void signal() {

}

++ready; if (open) inchoice.notifyAll();

mer

Java Implementation - Channel

class Channel extends Selectable {
Object chann = null;

public synchronized void send(Object v)
throws InterruptedException {
chann =v;
signal ();
while (chann != null) wait ();
}
public synchronized Obiject receive()
throws InterruptedException {
block(); clearReady(); //part of Selectable
Object tmp = chann; chann = null;
notifyAll 0; //could be notify()
return(tmp);
}

|
The
implementation
of Channel is a
monitor that has
synchronized
access methods
for send and
receive.

mer

Java Implementation - Sender

class Sender implements Runnable {
private Channel chan;
private SlotCanvas display;
Sender(Channel c, SlotCanvas d)
{chan=c; display=d;}

public void run() {
try { intei=0;
while (true) {

display.enter(String.valueOf(el));
ThreadPanel.rotate(12);
chan.send(new Integer(el));
display.leave(String.valueOf(el));
ei=(ei+1)%10; ThreadPanel.rotate(348);

}
} catch (InterruptedException e){}

}

}

Java Implementation - Receiver

class Receiver implements Runnable {
private Channel chan;
private SlotCanvas display;
Receiver(Channel c, SlotCanvas d)
{chan=c; display=d;}

public void run() {
try { Integer v=null;
while (true) {

ThreadPanel.rotate(180);
if (v!=null) display.leave(v.toString());
v = (Integer)chan.receive();
display.enter(v.toString());
ThreadPanel.rotate(180);

}
} catch (InterruptedException e){}

}

}

Model

range M =0..9

How can this be
modelled directly
without the need
for relabeling?

Concurrency: message passing

SENDER = SENDER]O0],
SENDER[e:M] = (chan. send [e]-> SENDER[(e+1)%10]).

// messages with values up to 9

/] shared channel chan

RECEIVER = (chan. receive [v:M]-> RECEIVER).

I/ relabeling to model synchronization

||SyncMsg = (SENDER || RECEIVER)
{ chan/chan.{ send, receive }}.

]

LTS?

message operation FSP mode/
send(e,chan) ?
Vv = receive(chan) ?

10

©Magee/Kramer

Selective Recelve

Channels How
cl 00 | should we deal
cZ2 [0 . with multiple
Sender[n] e 00 A | P)
send(en,cn) channels:
sel ect
Select when G, and v,=receive(chan,) => S;;
statement... or _
when G, and v,=receive(chan,) =>S;;
or
How would we .
model this in FSP? when G, and v,=receive(chan,) => S
; end

Concurrency: message passing 11

©Magee/Kramer

Selective Recelve

ARRIVALS CARPARK DEPARTURES
o O CONTROL Q O

CARPARKCONTROL(N=4) = SPACESIN],
SPACESIi:0..N] =(when(i>0) arrive->SPACES]Ji-1]
| when(i<N) depart->SPACES[i+1]
).
ARRIVALS = (arrive->ARRIVALYS). Implementation
DEPARTURES = (depart->DEPARTUREYS). using message

ICARPARK = (ARRIVALS||CARPARKCONTROL(4) passing?

IDEPARTURES). I

Concurrency: message passing 12

©Magee/Kramer

Java Implementation - Selective Receive

class MsgCarPark implements Runnable {
private Channel arrive,depart;
private Int spaces,N;
private StringCanvas disp;

public MsgCarPark(Channel a, Channel |,

StringCanvas d,int capacity) {
depart=l; arrive=a; N=spaces=capacity; disp=d;

}

e | Implement

public void run() {...} CARPARKCONTRGis a
} thread MsgCarPark

from channels arrive
and depart

Concurrency: message passing 13

©Magee/Kramer

Java Implementation - Selective Receive

public void run() {
try {

Select sel = new Select();

sel.add(depart);

sel.add(arrive);

while (true) {
ThreadPanel.rotate(12);
arrive.guard(spaces=>0);
depart.guard(spaces<N);
switch (sel.choose()) {
case l:depart.receive();display(++spaces);

break ;
case Z2:arrive.receive();display(--spaces);
break ;
}
} See
} catch InterrruptedException{} Applet

B —

10.2 Asynchronous Message Passing - Port
Port p

Receiver
Sender[n] ”[ﬂ@ e
—— v=receive(p)

many-to-one

¢+ send(e,p) - send the ¢ V=recelve(p) - receive
value of the expression e to a value into local variable v
port p. The process calling from port p. The process
the send operation is not calling the receive
blocked. The message is operation is blocked if
queued at the port if the there are no messages

receiver is not waiting. queued to the port.

©Magee/Kramer

Asynchronous Message Passing - Applet

Two senders
communicate
with a receiver
via an
“unbounded”
port.

Each sender
sends a
sequence of

Runl Fausel Runl Pausel lm” Pausel

integer values Port port = new Port();
from O to 9 and txl.start(new Asender(port,sendldisp));
then restarts at ' tx2.start(new Asender(port,send2disp));
O again. %

Instances of ThreadPanel
Concurrency: message passing

/?x.start(

new Areceiver(port,recvdisp));

Instances of SlotCanvas .

©Magee/Kramer

Java Implementation - Port

class Port extends Selectable {
Vector queue = new Vector();

public synchronized void send(Object v){
gueue.addElement(v);
signal ();
}
public synchronized Obiject receive()
throws InterruptedException {
block(); clearReady();
Object tmp = queue.elementAt(0);
gueue.removeElementAt(0);
return(tmp);
}

}

|
The
implementation
of Port is a
monitor that has
synchronized
access methods
for send and
receive.

Concurrency: message passing

17

©Magee/Kramer

Port Model

range M =0..9 I/l messages with valuesupto 9

set S = {[M],[M][M]} /l queue of up to three messages

PORT /lempty state, only send permitted
= (send [x:M]->PORT][x]),

PORT[h:M] //one message queued to port

= (send [x:M]->PORT[x][N]
| receive [h]->PORT

)

PORTI[t:S][h:M] //two or more messages queued to port
= (send [x:M]->PORTI[X][t][h]
| receive [h]->PORTI{]

). L TSO?
I/ minimise to see result of abstracting from data values
||JAPORT = PORT/{ send/send][M], receive /[receive [M]}.

Concurrency: message passing 18

©Magee/Kramer

Model of Applet

S[1..2]:)
ort:PORT
ASENDER p X | ARECEIVER
port.receive

ASENDER = ASENDER]O],
ASENDER[e:M] =(port . send [e]->ASENDER[(e+1)%Z10]).

ARECEIVER = (port . receive [v:M]->ARECEIVER).

[|[AsyncMsg = (s[1..2]:ASENDER || ARECEIVER]|| port :PORT)
s[1..2]. port . send/ port . send}.

Safety?

Concurrency: message passing 19

©Magee/Kramer

10.3 Rendezvous - Entry

Rendezvous is a form of request-reply to support client
server communication. Many clients may request service,

but only one is serviced at a time.

Client

res=catl(entry,req)
|

suspended!
I

! Reply

message

r message

Server
|

|
r i:accept(entry)

perform service

replyl(entry,res)
|

Concurrency: message passing

20

©Magee/Kramer

Rendezvous

¢ res=call(ereq) - send the ¢ reg=accept(e) - receive

value req as a request —, the value of the request
message which is queued to message from the entry €
the entry €. into local variable req. The

calling process is blocked if
there are no messages
queued to the entry.

¢ The calling process is ¢+ reply(eres) - send the
blocked until a reply message |, 1.c resas g reply

IS received into the local —<—
: message to entfry €.
variable req.

Concurrency: message passing 21

©Magee/Kramer

Asynchronous Message Passing - Applet

Two clients call a
server which services a
request at a time.

Entry entry = new Entry();
clA.start(new Client(entry,clientAdisp,"A"));
clB.s new Client(entry,clientBdisp,"B"));

sv.star ew Server(entry,serverdisp));

Instances of ThreadPanel
Concurrency: message passing Instances Of SlotCanvas 22

©Magee/Kramer

Java Implementation - Entry

Entries are implemented as select —2 pl cciectable
extensions of ports, add(guard(
thereby supporting queuing ehoosel PN
and selective receipt.
Channel Port
send() < send()
The call method creates a e oo
channel object on which to 4
receive the reply message. Entry
It constructs and sends to clientChan ¢y
the entry a message o0

consisting of a reference

to this channel and a
reference to the req

The accept method keeps a copy of
the channel reference; the reply
object. It then awaits the = method sends the reply message to

reply on the channel. this channel.
Concurrency: message passing 23

©Magee/Kramer

Java Implementation - Entry

public class Entry extends Port{
private CallMsg cm;

public Object call(Object req) throws InterruptedException {
Channel clientChan = new Channel();
send(new CallMsg(req,clientChan));
return clientChan.receive();

}

public Object accept() throws InterruptedException {
cm = (CallMsg) receive();
return cm.request;

}

public void reply(Object res) throws InterruptedException {
cm.replychan.send(res);

}

private class CallMsg {
Object request; Channel replychan;

CallMsg(Object m, Channel c) Do call accept and
{request=m; replychan=c;} ;

) reply need to be

} synchronized methods?
-—

Model of Entry and Applet

We reuse the models for ports and channels ...

() entry:ENTRY SERVER
CLIENT() A A o N
. entry.accept

set M = {replyA,replyB} I/ reply channels

IENTRY = PORT/H call /send, accept /receive}.

CLIENT(CH='reply) = (entry. call [CH]->[CH->CLIENT).

SERVER = (entry. accept [ch:M]->[ch]->SERVER). Action labels

||EntryDemo = (CLIENT('replyA)||CLIENT('replyB) Zi:c:e?sia < op
|| entry:ENTRY || SERVER). as parameter

values must be
prefixed with
a single guote.

Concurrency: message passing

Rendezvous Vs Monitor Method Invocation

What is the difference?
.. from the point of view of the client?
.. from the point of view of the server?

... mutual exclusion?

Which implementation is more efficient?
.. in a local context (client and server in same computer)?

.. In a distributed context (in different computers)?

Concurrency: message passing 26
©Magee/Kramer

Summary

® Concepts
® synchronous message passing - channel
® asynchronous message passing - port
- send and receive / selective receive

® rendezvous bidirectional comms - entry
- call and accept ... reply

® Models
® channel : re-labelling, choice & guards
® port : message queue, choice & guards
® entry : port & channel

@ Practice

® distributed computing (disjoint memory)
® threads and monitors (shared memory)

Concurrency: message passing

27

©Magee/Kramer

