Concurrency

8 - Model-Based Design

Alexandre David
adavid@cs.aau.dk

Credits for the slides:

| Claus Braband
C - model-based d
oncurrency: model-based design Jeff Magee &' TEFFRramer

Repetition - Safety & Liveness Properties

Concepts:
Properties: true for every possible execution
Safety: nothing bad happens
Liveness: something good eventually happens
Models:
Safety: no reachable ERROR/STOP state
Progress: an action is eventually executed
(fair choice and action priority)
. Aim: property satisfaction.
Practice: e SIS

Threads and monitors

Concurrency: model-based design ©Magee/Kramer

Repetition - Safety

A safety property asserts that nothing bad happens.

¢+ ERRORconditions state what is not required (~ exceptions).

¢ In complex systems, it is usually better to specify
safety properties by stating directly what is required.

property SAFE_ACTUATOR =
(command ->
respond ->
SAFE_ACTUATOR).

ACTUATOR =
(command ->
(respond -> ACTUATOR
lcommand -> ERROR
[respond -> ERROR

command
ond respon
command

Concurrency: model-based design

©Magee/Kramer

Repetition - Single Lane Bridge Problem

Concurrency: model-based design ©Magee/Kramer

Repetition - Safety Property “ONEWAY”

We now specify a safety property to check that cars do
not collide!:

property ONEWAY = (ed [ID]. enter -> RE[1]
| blue [ID]. enter -> BLUH1)),

REOEID] = (red [ID]. enter -> RE[Qi+1]
lwhen (i==1) red [ID]. exit -> ONEWAY
lwhen (i>1) red [ID]. exit -> REDI-1]),

BLUHj:ID]= (blue [ID]. enter -> BLUHj+1]
lwhen (j==1) Dblue [ID]. exit ->ONEWAY
lwhen (j>1) blue [ID]. exit -> BLUHj-1]).

When the bridge is empty, either a red or a blue car may
enter. While red cars are on the bridge only red cars
can enter; similarly for blue cars.

Concurrency: model-based design

©Magee/Kramer

Repetition - Single Lane Bridge

Without Trace to property violation in ONEWAY:
bridge => red.l.enter
conhtroller blue.1.enter

Freeze | Hestart | Ore Car | TwoCarz | Three Cars

Concurrency: model-based design ©Magee/Kramer

Repetition - Liveness

A safety property asserts that nothing bad happens.

A liveness property asserts that something good
eventually happens.

Does every car eventually get an opportunity to cross
the bridge (i.e., make progress)?

A progress property asserts that it is a/ways the case
that an action is eventually executed.

Progress is the opposite of sfarvation = the name given
to a concurrent programming situation in which an action
iS never executed.

Concurrency: model-based design ©Magee/Kramer

Repetition - Progress Properties

Suppose that there were two possible coins that could be
picked up: a regular coinand a trick coin

TWOCOIN = (pick->COIN | pick->TRICK),
COIN = (toss->heads->COIN | toss->tails->COIN).
TRICK = (toss->heads->TRICK),

pick

pick toss «— Terminal
Transition
Set

heads

heads

progress HEADS = {heads} ? ©
®

progress TAILS = {tails} ?

Concurrency: model-based design

©Magee/Kramer

Repetition - FairBridge

P>>{low ,,...,low }

Low/high action priorities: P <<{high , ..., high

||CongestedBridge = (SingleLaneBridge)
>> {red[ID].exit,blue[ID].exit}.

Three Cars | v SEV Fair
Concurrency: model-based design ©Magee/Kramer

Repetition - Readers and Writers

Concurrency: model-based design ©Magee/Kramer

Model-Based Design

Concepts:
design process:
- from requirements to models
- from models to implementations
Models:
check properties of interest:
- safety of the appropriate (sub-)system
- progress of the overall system
Practice:

model “interpretation”:
- fo infer actual system behaviour
active threads and passive monitors

Aim: rigorous designh process.

Concurrency: model-based desig ©Magee/Kramer

8.1 From Requirements to Models

¢ goals of the system
¢ scenarios (Use-Case models) useful for testing
¢ properties of interest

Requirements

—
[]
Any 1. identify the main events, actions, and interactions
appropriate 2. identify and define the main processes
design dentify and define th : :
approach 3. identify and define the properties of interest
can be used\/ 4. structure the processes into an architecture
¢ check traces of interest
Model .f :
¢ check properties of interest

Concurrency: model-based design ©Magee/Kramer

Example: A Cruise Control System - Requirements

Cruise Control

Cruise Speed

Ignition @ Throttie [l | Enabled
Brake [|

engine[ln| EnginEfo| an:n:elerate| I:urake| o |ﬂ TEELIME

Cruise control buttons
Cruise control display

Concurrency: model-based design

Requirements:

When the car ignition is
switched on and the ‘on’
button is pressed, the
current speed is recorded
and the system is enabled:

It maintains the speed of
the car at the recorded
setting.

Pressing the ‘brake’
‘accelerator’ or ‘off’
button disables the system.

Pressing ‘resume’ or ‘on’
re-enables the system.

A Cruise Control System - Hardware

Parallel Interface Adapter (PIA) is polled every 100msec. It
ions of the sensors:

buttons (on, off , resume)

buttons

> * brake (pressed)
brake | BIA - accelerator (pressed)
acceler.ator’ CPU - engine (on, off).
engine
> /
_ w \(i/A —» throttle

Wheel revolution sensor generates interrupts to enable the car
speed to be calculated.

Output: The cruise control system controls the car speed by setting
the throttle via the digital-to-analogue (D/A) converter.

Concurrency: model-based design ©Magee/Kramer

Model - Design

buttons

Cruise Control —P>

brake
» PIA

accelerator

— CPU
ool 120 engine

"'--..,_____.__-_-_-_______-_-__________..- 4»
ignition @ Throttie [|
Brake [| Wheel interrupt DIA 1 throtile

——»
engineln | _enginelif | accelerate | brake | lonl| of | resume |
1. Identify the main events, actions, and interactions:

polled

_I"q 100 Cruise Speed

engineOn , engineOff , accelerator , brake
Sensors
on, off , resume,
speed, setThrottle, zoom
clearSpeed,recordSpeed,
enableControl,disableControl. Prompts

Concurrency: model-based design ©Magee/Kramer

Model - Design

1. Identify the main events, actions, and interactions:

engineOn , engineOff , accelerator , brake ,
Sensors
on, off , resume,
speed, setThrottle, zoom
clearSpeed,recordSpeed,
enableControl,disableControl. PIONIPLE

set Sensors ={engineOn, engineOff, accelerator, brake,
on, off, resume}

set Engine = {engineOn, engineOff}

set Prompts = {enableControl, disableControl,
clearSpeed, recordSpeed}

Concurrency: model-based design ©Magee/Kramer

Model - Outline Design

2. Identify and define the main processes:

Sensor Scan
monitors the buttons,

——
brake, accelerator <gfsors
and engine events

l Engine

controlling
the state
(of the controller)

Cruise State Controller
triggers clearSpeed and
recordSpeed , and
enables-/disables the
speed control |

1 Prompts

Input Speed monitors Speed Control clears and Throttle
the speed (when the records the speed, and sets the
engine is on), and sets the throttle actual

. S)
provides the current speed|| accordingly when enabled || throttle
speed readings to Controlling setThrottle
speed control the throttle
set Sensors = {engineOn, engineOff, accelerator, brake, on, off , resume}

set Engine ={engineOn, engineOff}

set Prompts = {enableControl, disableControl, clearSpeed, recor

dSpeed}

Model — Design (Step 1+2+3)

—

. Identify the main events, actions, and interactions:

on, off , resume , brake , accelerator
engineOn , engineOff
speed, setThrottle
clearSpeed,recordSpeed, } Prompts
enableControl,disableControl

2. Identify and define the main processes:

Sensor Scan, Input Speed,
Cruise Controller, Speed Control and
Throttle

3. Identify and define the main properties of interest:
safety - disabled when off , brake or accelerator pressed.

} Sensors

’

Concurrency: model-based design ©Magee/Kramer

Model - Design (Step

4)

4. Structure the processes into an architecture:

SENSOR |Sensors
scan ¢
'@

IEngine

INPUT Speed
SPEED (

CONTROL

—

CRUISE

CONTROLLER

IPrompts

=0

(Y

SPEED
CONTROL

CRUISE
CONTROL
SYSTEM

set THROTTLE
rottle

The CONTROL system is structured as two processes:
- CRUISECONTROLLERo ontrolling the state); and
- SPEEDCONTRQontrolling the throttle)

Concurrency: model-based design

©Magee/Kramer

Model Elaboration - Process Definitions

SENSORSCAN = ({Sensors} -> SENSORSCAN).

// nonitor speed when engi ne on
INPUTSPEED = (engineOn -> CHECKSPEED),
CHECKSPEED = (speed -> CHECKSPEED // monitor speed
lengineOff -> INPUTSPEED).

[/ zoom when throttl e set
THROTTLE =(setThrottle ->zoom -> THROTTLE).

[/ perform speed control when enabl ed
SPEEDCONTROL = DISABLED,

DISABLED =({speed,clearSpeed,recordSpeed} -> DISABL ED
enableControl -> ENABLED),

ENABLED = (speed -> setThrottle -> ENABLED
{recordSpeed,enableControl} ->ENABLED
disableControl -> DISABLED).

Concurrency: model-based design ©Magee/Kramer

Model Elaboration - Process Definitions

CRUISECONTROLLER = INACTIVE,
INACTIVE =(engineOn -> clearSpeed -> ACTIVE),

ACTIVE =(engineOff -> INACTIVE
|on-> recordSpeed-> enableControl-> CRUISING),

/'l enabl e speed control when crui sing,
/] disable when off, brake, or accel erator pressed

CRUISING =(engineOff -> INACTIVE
|{off,brake,accelerator}
->disableControl-> STANDBY
|lon-> recordSpeed-> enableControl-> CRUISING),

STANDBY =(engineOff -> INACTIVE
[resume -> enableControl-> CRUISING
|lon-> recordSpeed-> enableControl-> CRUISING).

Concurrency: model-based design ©Magee/Kramer

Model - CONTROISub-System

||CONTROL =(CRUISECONTROLLER |[SPEEDCONTROL).

Animate will check particular traces:

- Is control enabled after the engine is switched on
and the ‘on’ button is pressed?

- Is control disabled when the brake is then pressed?

- Is control re-enabled when resume is then pressed?

Analysis (a.k.a. verification/model-checking) will
exhaustively check a// possible traces:

Safety: Is the control always disabled when
off , brake , or accelerator is pressed?
Progress: Can every action eventually be selected?

Concurrency: model-based design ©Magee/Kramer

Model - Safety Properties

Safety checks are compositional |

If there is no violation at a sub-system level, then there
cannot be a violation when the sub-system is composed
with other sub-systems.

This is because, if the ERRORstate of a particular safety
property is unreachable in the LTS of the sub-system, it
remains unreachable in any subsequent parallel
composition which includes the sub-system.

Thus: Safety properties should be composed with the
appropriate (sub-)system to which the property refers.
In order for the property to be able to check the
actions in its alphabet, the actions must not be hidden in
the system.

Concurrency: model-based design ©Magee/Kramer

Model - Safety Properties

Is the control always disabled when off /brake /acc pressed?

property CRUISESAFETY =
({off,accelerator,brake,disableControl} -> CRUISESAF ETY
l{ on,resume }->SAFETYCHECK),

SAFETYCHECK = ({on,resume} -> SAFETYCHECK
|{ off,accelerator,brake }-> SAFETYACTION
|disableControl -> CRUISESAFETY),

SAFETYACTION= (disableControl ->CRUISESAFETY).

Composition with CONTROL processes:

ICONTROL = (CRUISECONTROLLER||SPEEDCONTROL|| CRUISESAFETY.

Verify CRUISESAFET? ©

Concurrency: model-based design ©Magee/Kramer

Model Analysis

We can now compose the whole system:

||CONTROL =
(CRUISECONTROLLER||SPEEDCONTROL||CRUISESAFETY)
@ {Sensors,speed,setThrottle}.

ICRUISECONTROLSYSTEM =
(CONTROL||SENSORSCAN||INPUTSPEED||THROTTLE).

We know there can be no safety violations due to composition

What about deadlocks? No deadlocks/errors

What about progress...?

Concurrency: model-based design ©Magee/Kramer

Model - Progress Properties

Progress checks are not compositional |

Even if there is no progress violation at a sub-system
level, a progress violation may “appear” when the sub-
system is composed with other sub-systems.

This is because an action in the sub-system may satisfy
progress yet be unreachable when the sub-system is
composed with other sub-systems which constrain system
behaviour.

Thus: Progress checks should be conducted on the
complete target system after satisfactory completion
of the safety checks.

Concurrency: model-based design ©Magee/Kramer

Model - Progress Properties

Progress check (with hidden actions):

Progress violation for actions:
{engineOn, clearSpeed, engineOff, on, recordSpeed,
enableControl, off, disableControl, brake,
accelerator........... }
Path to terminal set of states:

engineOn

tau

on

tau

tau

engineOff

engineOn
Actions in terminal set:
{speed, setThrottle, zoom}

Concurrency: model-based design ©Magee/Kramer

Model - Progress Properties

Progress check (without hidden actions):

Progress violation for actions:
{engineOn, clearSpeed, engineOff, on, recordSpeed,
enableControl, off, disableControl, brake,
accelerator........... }
Path to terminal set of states:
engineOn — :
clearSpeed When the engine is switched off:
on :
e - CruiseController becomes
enableControl inactive, whereas
engineOff . :
engineOn - SpeedControl is not disabled!
Actions in terminal set:
{speed, setThrottle, zoom}

Concurrency: model-based design ©Magee/Kramer

Cruise Control Model - Minimized LTS

Progress violation trace: engineOn -> clearSpeed -> o0 n->
recordSpeed -> enableControl -> engineOff -> engineOn.

||CRUISEMINIMIZED = (CRUISECONTROLSYSTEM)
@ {Sensors,speed}.

engineOff

accelerata

engineOn

engineOn

speed

Action hiding and minimization
can help to reduce the size of
the LTS diagram and make it
easier to interpret.

engineOff

engineOff
Concurrency: model-based design ©Magee/Kramer

Model — Revised Cruise Control System

Fix CRUISECONTROLLEBY that it disables the
SPEEDCONTROLLB#khen the engine is switched off:

/| enabl e speed control when crui sing,
/| di sabl e when off, brake, or accel erator pressed
[/ or when the engine is turned off!!!

CRUISING =(engineOff -> disableControl -> INACTIVE
|{off,brake,accelerator}
->disableControl-> STANDBY
|on-> recordSpeed-> enableControl-> CRUISING),

OK now?

Concurrency: model-based design ©Magee/Kramer

Model — Revised Cruise Control System (Properties)

property CRUISESAFETY?Z2 =

({off,accelerator,..., ehgERUWISESAFETY v2
l{on,resume} -> SAFETYCHECK),
SAFETYCHECK = ({on,resume} -> SAFETYCHECK
[{off,..., engingO% SAFETYACTION
|disableControl -> CRUISESAFETY v2),
SAFETYACTION = (disableControl -> CRUISESAFETY v2).

accelerator
brake
engineOn on off

No deadlocks/errors

NoO progress
violations detected

on
resume

engineOff

Concurrency: model-based design

engineOff

speed

©Magee/Kramer

Model - System Sensitivities (under Adverse Conditions)

ISPEEDHIGH = CRUISECONTROLSYSTEM << {speed}.

Progress violation for actions:
{engineOn, engineOff, on, off, brake, accelerator,
resume, setThrottle, zoom}
Path to terminal set of states:
engineOn
tau
Actions in terminal set:
{speed}

Indicates that the system may be sensitive to the
priority of the action “speed” .

Concurrency: model-based design ©Magee/Kramer

Model Interpretation

Models can be used to indicate system sensitivities!

If it is possible that erroneous situations detected in the
model may occur in the implemented system, then the
model should be revised to find a desigh which ensures
that those violations are avoided.

However, if it is considered that the real system will not
exhibit this behaviour, then no further model revisions are
necessary.

Model interpretation and correspondence to the
implementation are important in determining the relevance
and adequacy of the model design and its analysis.

Concurrency: model-based design ©Magee/Kramer

The Central Role of Design Architecture

Design architecture describes the gross organization and
global structure of the system in terms of its
constituent components. See UML.

Architecture

BN

Behavioural View |mplementation View
Analysis Program Construction

We consider that the implementation should be considered
as an elaborated view of the basic design architecture.

Concurrency: model-based design ©Magee/Kramer

8.2 From Models to Implementations

Model
¢+ identify the main active entities
B - to be implemented as threads

¢+ identify the main (shared) passive entities
- Yo be implemented as monitors

¢+ (identify the interactive display environment
- o be implemented as associated classes)

\/ ¢ structure the classes as a (UML) class diagram
Java - o be implemented

Concurrency: model-based design ©Magee/Kramer

Cruise Control System - Class Diagram

disp

Applet

T

CruiseControl

car

control

CarSimulator

CarSpeed

getSpeed()

setThrottle()

________ o

Concurrency: model-based desigr CRUISECONTROLLER

CruiseDisplay

>t Controller Runnable
JAN

brake() |
accelerator() sc cs
engineOff() SpeedControl
engineOn() enableControl()
on() disableControl()
off() recordSpeed|)
resume() clearSpeed)

< \ disp

S

\

SpeedControl
interacts with
the car
simulation via
interface
CarSpeed .

SPEEDCONTROL gyageeiramer

Cruise Control System - Class Controller

class Controller {
/] cruise controller states

[/ Tnitial state

Controller
synchronized void brake () { = a.pa.s:.S'/ve
if (state == CRUISING) entity (it
\ { sc.disableControl(); state = STANDBY; } reacts to
synchronized void accelerator () { events) and
if (state == CRUISING) thus
{ sc.disableControl(); state = STANDBY; } implemented
synchronized void engineOff () { as a monitor

if (state !'= INACTIVE) {
if (state == CRUISING) sc.disableControl();
state = INACTIVE;

}
}

Concurrency: model-based design ©Magee/Kramer

Cruise Control System - Class Controller

éynchronized void engineOn () {

if (state == INACTIVE) {

\ sc.clearSpeed(); state = ACTIVE;
}

synchronized void on() {
if (state != INACTIVE) {
sc.recordSpeed();

sc.enableControl(); state = CRUISING; Direct
) } translation
synchronized void off () { from the
if (state == CRUISING) { model.

sc.disableControl(); state = STANDBY;
}

synchronized void resume () {
If (state == STANDBY) {
\ sc.enableControl(); state = CRUISING;

}

Concurrency: model-based design ©Magee/Kramer

Cruise Control System - Class SpeedControl

class SpeedControl implements Runnable {
/| speed control states

nitial state

[]
/| target speed

/[l interface to control the speed

d.disable(); d.record(0);

}
synchronized void recordSpeed () { SpegdControI is an
set_speed = cs.getSpeed(); active entity; when
disp.record(set_speed); enabled a new
} thread is created
synchronized void clearSpeed () { (which periodicall
if (state == DISABLED) { obtainspcar's eedy
set_speed = O; P
disp.record(set_speed); and sets the
\ J throttle).

TG C CT TXT X T T T

Cruise Control System - Class SpeedControl

synchronized void enableControl () {
If (state == DISABLED) {

disp.enable();
sc = new Thread(this);
sc.start();
state = ENABLED;
}
}
synchronized void disableControl 0O {
if (state == ENABLED) {
disp.disable();
} state = DISABLED;
}

Concurrency: model-based design ©Magee/Kramer

Cruise Control System - Class SpeedControl

public void run(){ //the speed controller thread
try
while (state == ENABLED) {
synchronized (this){
// calculate and set new throttle speed
double throttle = ...cs.getSpeed()...;
cs.setThrottle(throttle);

}
Thread.sleep(500);

} catch (InterruptedException) {}
sc= null ; //throw away SpeedController thread

SpeedControl is an example of a class that combines both
- synchronized methods (to update local vars); and
- a thread.

Concurrency: model-based design ©Magee/Kramer

Summary: Model-Based Design

Concepts:
design process:
- from requirements to models
- from models to implementations
Models:
check properties of interest:
- safety on the appropriate (sub)system
- progress on the overall system
Practice:

model “interpretation”:
- fo infer actual system behavior
active threads and passive monitors

Aim: rigorous designh process.

Concurrency: model-based desig ©Magee/Kramer

