Concurrency

[/ - Safety & Liveness
Properties

? Alexandre David

/ adavid@cs.aau.dk
ol 1V,)

v

Concurrency: safety & liveness properties Jeff Magee f“ﬁf%é??aﬁ?ﬂamer

Credits for the slides:
Claus Braband

Repetition - Deadlock

@ Concepts

® deadlock (no further progress)

® 4x necessary and sufficient conditions

€ Models
® no eligible actions (analysis gives shortest path trace)
(9
® Practice - Aim - deadlock avoidance:
® blocked threads “Design systems where
deadlock cannot occur”.)
—/

Concurrency: safety & liveness properties ©Magee/Kramer

Repetition - Necessary and Sufficient Conditions

1. Serially reusable resources:

the processes involved share resources which they use under mutual
exclusion.

2. Incremental acquisition:

processes hold on to resources already allocated to them while waiting
to acquire additional resources.

3. No pre-emption:

once acquired by a process, resources cannot be pre-empted (forcibly
withdrawn) but are only released voluntarily.

4. Wait-for cycle:

a circular chain (or cycle) of processes exists such that each process
holds a resource which its successor in the cycle is waiting to acquire.

Concurrency: safety & liveness properties ©Magee/Kramer

Repetition - Dining Philosophers

® Concepts ® Models

(e right J— eft o)
FORK phillo}: FORK
Ieftl J\right
U A\
phil[1]: phil[4]:
PHIL PHIL
right T Tleft
FORK FORK
left right
hil[2]: 419Nt et & phil[3]:
rF)) HI[L] FORK BHIL

@ Practice

/\ /\

1 n i
Diners Philosopher view
displa 1

co"trouer)'l PhilCanvas |e

Concurrency: safety & liveness properties ©Magee/Kramer

Safety & Liveness Properties

Concepts:
Properties: true for every possible execution
Safety: nothing bad happens
Liveness: something good eventually happens
Models:
Safety: no reachable ERROR/STOP state
Progress: an action is eventually executed
(fair choice and action priority)
. Aim: property satisfaction.
Practice: e SIS

Threads and monitors

Concurrency: safety & liveness properties ©Magee/Kramer

7.1 Safety

A safety property asserts that nothing bad happens.

¢ STOPor deadlocked state (no outgoing transitions)

¢+ ERROPprocess (-1) to detect erroneous behaviour

command

ACTUATOR
=(command->ACTION),
ACTION
respond =(respond->ACTUATOR

lcommand-> ERROIR

command
¢ Analysis using LTSA: Trace to ERROR:
(shortest trace) command

command

Concurrency: safety & liveness properties ©Magee/Kramer

Safety - Property Specification

¢+ ERRORconditions state what is not required (~ exceptions).

¢ In complex systems, it is usually better to specify
safety properties by stating directly what is required.

property SAFE_ACTUATOR =
(command ->
respond ->
SAFE_ACTUATOR).

ACTUATOR =
(command ->
(respond -> ACTUATOR
|command -> ERROIR
[respond -> ERROR

command
ond respon
command

Concurrency: safety & liveness properties

©Magee/Kramer

Safety Properties

Property that it is polite to knock before entering a room.

Traces:
knock->enter
enter
knock->knock

D ® ©

property POLITE
= (knock -> enter -> POLITE).

knock

Note: In all states, all the
actions in the alphabet of a
property are eligible choices.

©Magee/Kramer

Concurrency: safety & liveness properties

Safety Properties

Safety property P defines a deferministic process
that asserts that any trace including actions in the
alphabet of P, is accepted by P.

Thus, if P is composed with S, then traces of actions
in the alphabet a(S) n a(P) must also be valid
traces of P, otherwise ERROHSs reachable.

Transparency of safety properties:

Since all actions in the alphabet of a property are eligible choices
=> composition with S does not affect its correct behavior.

However, if a bad behavior can occur (violating the safety property),
then ERRCR /s reachable.

Concurrency: safety & liveness properties ©Magee/Kramer

Safety Properties

¢ How can we specify that some action, disaster

hever occurs?

disaster

property CALM = STOP +{ disaster }.

A safety property must be specified so as to include
all the acceptable, valid behaviors in its alphabet.

Concurrency: safety & liveness properties ©Magee/Kramer

Safety Property — How to See Them

® The model is for the implementation
® The property is for the specification
® The implementation must meet its specification

@ Inthe LTS tool both models and properties are described using
FSP.

@ They will be similar because they are using the same basic
language but they do not represent the same thing.

@ Inour simple examples, the specification is so simple that it may
be enough to describe the implementation - don't be fooled by
this.

€ Normally: model = implementation, formula = specification.
"Difference” here: you don't implement the specification!

Concurrency: safety & liveness properties ©Magee/Kramer

Safety - Mutual Exclusion

LOOP =
(mutex.down-> enter ->exit ->mutex.up->LOOP).

||ISEMADEMO = (p[1..3]:LOORP ||
{p[1..3]}.;:mutex:SEMAPHORE(1)).

How do we check that this does indeed ensure mutual
exclusion in the critical section?

property MUTEX =
(p[1:1..3]. enter ->p[1] exit ->MUTEX).

ICHECK = (SEMADEMO || MUTEX).

Check safety using LTSAI What if SEMAPHORE(2}

Concurrency: safety & liveness properties ©Magee/Kramer

7.2 Single Lane Bridge Problem

Freeze

| Hesztart | One Car | Twio Carz | Three Carz | W Safe [Fair

A bridge over a river is only wide enough to permit a single lane of
traffic. Consequently, cars can only move concurrently if they are
moving in the same direction. A safety violation occurs if fwo cars
moving in different directions enter the bridge at the same time.

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - Model

¢ Events or actions of interest?

enter and exit ,
Structure diagram:

¢ Identify processes?
. CARS property
cars and bridge
@ O 9

¢ Identify properties?

“OHZWC(Y" red[ID]. blue[ID].
{enter,exit} {enter,exit}

BRIDGE

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - CARSmodel

constN =3 // number of each type of car
range T = 0..N // type of car count
range ID=1..N // car identities

CAR = (enter ->exit ->CAR).

To model the fact that cars cannot pass each other
on the bridge, we model a CONVOYf cars in the
same direction. We will have a red and a blue convoy
of up to N cars for each direction:

ICARS = (red :CONVOY || blue :CONVOY).

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - CONVOYnodel

NOPASS1 = CJ[1], //preserves entry order

Cli:ID] = ([i]. enter -> C[i%N+1]).

NOPASS2 = C[1], //preserves exit order

C[i:1D] = ([i]. exit -> C[i%N+1]).

||CONVOY = ([ID]:CAR|INOPASS1||[NOPASS?2).

1.enter 2.enter 1.exit 2 exit
¢ © ee~ @ " ®

3.enter 3.exit

Permits l.enter = 2.enter - l.exit =2 2.exit
but not l.enter - 2.enter > 2.exit = 1l.exit
/e. no overtaking.

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - BRIDGEModel

Cars can move concurrently on bridge, but only in the
same direction.

The bridge maintains a count of blue and red cars on it.

Red cars are only allowed to enter when the blue count is O
(and vice-versa).

BRIDGE = BRIDGE[O][0], //initially empty bridge
BRIDGE[nr :T][nb:T]= I/ nr: #red; nb: #blue
(when (nb==0) red[ID]. enter ->BRIDGE[nr+1][nb]
red [ID]. exit -> BRIDGE[nr-1][nb]
when (nr==0) blue [ID]. enter ->BRIDGE[nr][nb+1]
blue [ID]. exit ->BRIDGE[nr][nb-1]

).

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - BRIDGEModel

Even when O, exit actions permit the car counts to be
decremented:

Warning - BRIDGE.-1.0 defined to be ERROR
Warning - BRIDGE.O.-1 defined to be ERROR
Warning - BRIDGE.-1.1 defined to be ERROR
Warning - BRIDGE.-1.2 defined to be ERROR
Warning - BRIDGE.-1.3 defined to be ERROR
Warning - BRIDGE.O0.4 defined to be ERROR
Warning - BRIDGE.1.-1 defined to be ERROR
Warning - BRIDGE.2.-1 defined to be ERROR
Warning - BRIDGE.4.0 defined to be ERROR
Warning - BRIDGE.3.-1 defined to be ERROR
Compiled: BRIDGE

Recall that LTSA maps such undefined states to ERROR

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - Safety Property

“ONEWAY”

We now specify a safety property to check that cars do

hot collide!:
property ONEWAY = (ed [ID]. enter -> RE[1]
| blue [ID]. enter -> BLUH1)),
REOEID] = (red [ID]. enter -> RE[Qi+1]
lwhen (i==1) red [ID]. exit -> ONEWAY
lwhen (i>1) red [ID]. exit -> REDI-1]),
BLUHj:ID]= (blue [ID]. enter -> BLUHj+1]
lwhen (j==1) Dblue [ID]. exit ->ONEWAY
lwhen (j>1) blue [ID]. exit -> BLUHj-1]).

When the bridge is empty, either a red or a blue car may
enter. While red cars are on the bridge only red cars

can enter; similarly for blue cars.

Concurrency: safety & liveness properties

©Magee/Kramer

Single Lane Bridge - Model Analysis

||SingleLaneBridge = (CARS||BRIDGE||ONEWAY).

Is the safety property

“ONEWAY” vio/ated? No deadlocks/errors

And without the BRIDGE:

||SingleLaneBridge = (CARS || ONEWAY).

Trace to property violation
Is the safety property in ONEWAY:
“ONEWAY"violated? red.1.enter
blue.l.enter

Concurrency: safety & liveness properties ©Magee/Kramer

Implementation/Property?

BRIDGE = BRIDGE[O][0], //initially empty bridge
BRIDGE[nr :T][nb:T] = /[l nr: #red; nb: #blue
(when (nb==0) red [ID]. enter ->BRIDGE[nr+1][O]
| red [ID]. exit -> BRIDGE[nr-1][nb]
lwhen (nr==0) blue [ID]. enter ->BRIDGE[O][nb+1]
| blue [ID]. exit ->BRIDGE[nr][nb-1]).
ONEWAY = (ed [ID]. enter -> RE[1]
| blue [ID]. enter -> BLUH1)),
REOLID] = (red [ID]. enter -> RE[Qi+1]
lwhen (i==1) red [ID]. exit -> ONEWAY
lwhen (i>1) red [ID]. exit -> REDI-1]),
BLUHj:ID]= (blue [ID]. enter -> BLUHj+1]
lwhen (j==1) Dblue [ID]. exit ->ONEWAY
lwhen (j>1) blue [ID]. exit -> BLUHj-1]).

Concurrency: safety & liveness properties

©Magee/Kramer

Implementation/Property?

@ Controller implementation: from one "state”, we allow
actions.

® Property observer: specify all the valid states and the
sequences of actions from them.

® Our controller meets its specification (although it is
sloppy).

® You cannot cheat here and use the controller as your
specification (add property) because it allows wrong
behaviours. The wrong behaviours do not occur because

we have good cars. The specification describes good
behaviours for the controller with the cars.

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - Implementation in Java (UML)

CAR (active => thread) ; BRIDGE (passive => monitor)

Applet Thread Runnable
4 blue, .. le :
req display ! . display

Single RedCar BlueCar
Lane control control
Bridge Bridge

Safe

Bridge

BridgeCanvas

BridgeCanvas enforces no overtaking (~ ENTER_SEQ).

Concurrency: safety & liveness properties

©Magee/Kramer

Single Lane Bridge - BridgeCanvas

An instance of BridgeCanvas

Singl

eLaneBridge applet.

class is created by the

class

}

BridgeCanvas extends Canvas {

public void init(int ncars) {...} /] set #cars

public boolean moveRed(int i) throws
// moves red car #i a step (if possible)
// returns true if on bridge

public boolean moveBlue(int i) throws
// moves blue car #i a step (if possible)
// returns true if on bridge

public synchronized void freeze() {...}
public synchronized void thaw() {...}

IntExc’{...}

Int'Exc{...}

Each Car object is passed a reference to the BridgeCanvas.

Concurrency: safety & liveness properties

©Magee/Kramer

Single Lane Bridge - RedCar

class RedCar implements Runnable {

Bridge control; BridgeCanvas display; int 1id;
RedCar(Bridge b, BridgeCanvas d, int 1) {
control = b; display = d; id =1i;
}
public void run(){ Similarly for the BlueCar ...
try {
while (true) {
while (!display.moveRed(id)) ; // not on br.
control.redEnter(); /[req access to br.
while (display.moveRed(id)) ; // move on br
control.redExit(); I/ release access to br.
}
} catch (InterruptedException) {}
}

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - Class Bridge

class Bridge {
synchronized void redEnter() throws IntExc’ {...}
synchronized void redExit() {...}
synchronized void blueEnter() throws IntExc’ {...}
synchronized void blueExit() {...}

Class Bridge provides a null implementation of the
access methods i.e. no constraints on the access to the
bridge.

Result........... 2

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge

_Fresze | _Restart | _One Car | _Two Cars | _Thiee Cars | 7 [Safe] 1™

To ensure safety, the "safe” check box must be chosen
in order to select the SafeBridge implementation.

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - SafeBridge

class SafeBridge extends Bridge {
protected int nred =0; // #red carson br.
protected iInt nblue =0; I/ #blue cars on br.

/[monitor invariant: nred 20 O nblue 20 [
/] - (nred>0 O nblue>0)

synchronized void redEnter() throws Int'Exc’ {
while (nblue>0) wait ();

++nred;

}

synchronized void redExit() { This is a direct
--nred; translation
If (nred==0) notifyAll 0; from the

} BRIDGE model.

Concurrency: safety & liveness properties ©Magee/Kramer

Single Lane Bridge - SafeBridge

synchronized void blueEnter() throws Int'Exc’ {
while (nred>0) wait 0;
++nblue;
}
synchronized void blueExit() {
--nblue;
if (nblue==0) notifyAll 0;
}

To avoid unnecessary thread switches, we use conditional
notification to wake up waiting threads only when the
number of cars on the bridge is zero (i.e., when the last
car leaves the bridge).

But does every car eventually get an opportunity to
cross the bridge? This is a liveness property.

Concurrency: safety & liveness properties ©Magee/Kramer

7.3 Liveness

A safety property asserts that nothing bad happens.

A liveness property asserts that something good
eventually happens.

Does every car eventually get an opportunity to cross
the bridge (i.e., make progress)?

A progress property asserts that it is a/ways the case
that an action is eventually executed.

Progress is the opposite of sfarvation = the name given
to a concurrent programming situation in which an action
iS never executed.

Concurrency: safety & liveness properties ©Magee/Kramer

Progress Properties - Fair Choice

Fair Choice: If a choice over a set of transitions is

executed infinitely often, then every transition in the
set will be executed infinitely often.

COIN = (toss->heads->COIN
[toss->tails->COIN).

How about if we chose
toss (1) 100.000x;then
toss (2) 1x; then
toss (1) 100.000x; then
toss (2) 1x; then ...

Fair?

Concurrency: safety & liveness properties

toss

heads

toss

tails

©Magee/Kramer

Progress Properties

progress P={a ;,a ,, ...,a .}

This defines a progress property, P, which asserts that
in an infinite execution, at least one of the actions
a,, a,, .., a, will be executed infinitely often.

COIN = (toss->heads->COIN | toss->tails->COIN).

progress HEADS = {heads} ? ©
progress TAILS = {tails} ? ©

L TSA check progress: | No progress violations detected

Concurrency: safety & liveness properties ©Magee/Kramer

Progress Properties

Suppose that there were two possible coins that could be
picked up: a regular coinand a trick coin

TWOCOIN = (pick->COIN | pick->TRICK),
COIN = (toss->heads->COIN | toss->tails->COIN).
TRICK = (toss->heads->TRICK),

pick

:mck toss

heads

heads

progress HEADS = {heads} ? ©
®

progress TAILS = {tails} ?

Concurrency: safety & liveness properties ©Magee/Kramer

Progress Properties

progress HEADS = {heads} Progress violation: TAILS
Path to terminal set of states:

pick

progress TAILS = {tails}

Actions in terminal set:
{toss, heads}

progress HEADSorTails = {heads,tails} ? ©

Concurrency: safety & liveness properties ©Magee/Kramer

Progress Analysis

A terminal set of states is one in which every state is
reachable from every other state in the set via one or
more transitions, and there is no transition from within
the set to any state outside the sef.

pick

Terminal sets for
TWOCOIN:

{1,2} and {3,4,5}

heads

Given fair choice, each terminal set represents an execution in which
each action used in a transition in the set is executed infinitely often.

Since there is no transition out of a ferminal set, any action that is not
used in the set cannot occur infinitely often in all executions of the
system - and hence represents a potential progress violation!

Concurrency: safety & liveness properties ©Magee/Kramer

Progress Analysis

A progress property is violated if analysis finds a
terminal set of states in which none of the progress set
actions appear.

progress TAILS
= {tails}
in {12} ®

Default progress: for everyaction in the alphabet, that
action will be executed infinitely often. This is equivalent to
specifying a separate progress property for every action.

Concurrency: safety & liveness properties ©Magee/Kramer

Progress Analysis — Default Progress

Default progress: m

heads

pick

heads

Progress violation for actions:

{pick}

Path to terminal set of states:
pick

Actions in terminal set:

{toss, heads, tails}

Progress violation for actions:

{pick, tails}

Path to terminal set of states:
pick

Actions in terminal set:

{toss, heads}

Note: default holds => every other progress property holds
(i.e., every action is executed infinitely often and the system
consists of a single terminal set of states).

Concurrency: safety & liveness properties

©Magee/Kramer

Progress — Return of the Single Lane Bridge

—’7
Implementation B

exhibits OET o=
progress violations: o e

progress BLUECROSS ={blue [ID]. enter }
progress REDCROSS ={red [ID]. enter }

No progress violations detected.

In fact, no violations of default progress!

Fair choice means that eventually every possible execution occurs,
including those in which cars do not starve. To detect progress
problems we must superimpose some scheduling policy for actions,
which models the situation in which the bridge is congested.

Concurrency: safety & liveness properties ©Magee/Kramer

Progress - Action Priority

Action priority expressions describe scheduling properties:

IIC = (P]|Q) <<{al,...,an} specifies a composition
High in which the actions al,...an have higher priority
Priorit than any other action in the alphabet of P||Q

N Y including the silent actiontau . In any choice in this
("<< system which has one or more of the actions
al, .., an /abeling a transition, the transitions
labeled with lower priority actions are discarded.

IC = (P||Q) >>{al,...,an} specifies a composition
Low in which the actions al,..,.an have lower priority
than any other action in the alphabet of P||Q
including the silent actiontau . In any choice in this
system which has one or more transitions not labeled
byal, .., an, the transitions labeled by al, . ., an
are discarded.

Priority
(\\>>Il

Concurrency: safety & liveness properties ©Magee/Kramer

Progress - action priority sleep

NORMAL =(work->play->NORMAL
|sleep->play->NORMAL).

Action priority simplifies the resulting LTS by

|
discarding lower priority actions from choices. ... P
||HIGH =(NORMAL)<<{work}.
play
sleep
ILOW =(NORMAL)>>{work}.
play

Concurrency: safety & liveness properties ©Magee/Kramer

7.4 Congested Single Lane Bridge

progress BLUECROSS ={blue [ID]. enter }
progress REDCROSS = {red [ID]. enter }

BLUECROSS eventually one of the blue cars will be able to enter
REDCROSS- eventually one of the red cars will be able to enter

Congestion using action priority?

Could give red cars priority over blue (or vice versa) ?
In practice neither has priority over the other.

Instead we merely encourage congestion by /owering the
priority of the exit actions of both cars from the bridge.

||CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

Concurrency: safety & liveness properties ©Magee/Kramer

Congested Single Lane Bridge Model

Progress violation: BLUECROSS
Path to terminal set of states:

red.1l.enter

red.2.enter
Actions in terminal set:
{red.1.enter, red.l.exit, red.2.enter,
red.2.exit, red.3.enter, red.3.exit}

Progress violation: REDCROSS
Path to terminal set of states:
blue.l.enter
blue.2.enter
Actions in terminal set:
{blue.1l.enter, blue.1l.exit, blue.2.enter,
blue.2.exit, blue.3.enter, blue.3.exit}

Concurrency: safety & liveness properties

This corresponds
with the
observation that,
with more than
one car, it is
possible that
whichever color
car enters the
bridge first will
continuously
occupy the bridge
preventing the
other color from
ever crossing.

©Magee/Kramer

Congested Single Lane Bridge Model

||CongestedBridge = (SingleLaneBridge)
>>{red[ID].exit,blue[ID].exit}.

red.l.enter

blue.1l.enterblue.2.enter blue.l.exit blue.1l.enter red.2.enter red.l.exit red.l.enter

blue.2.exit red.2.exit

Will the results be the same if we model congestion by giving car entry
to the bridge high priority?

can congestion occur if there is only one car moving in each direction?

Concurrency: safety & liveness properties ©Magee/Kramer

Progress - Revised Single Lane Bridge Model

The bridge needs to know whether or not cars are
waiting to cross.

Modify CAR
CAR = (request ->enter->exit->CAR).

Modify BRIDGE

Red cars are only allowed to enter the bridge if there
are no blue cars on the bridge and there are no blue
cars waiting to enter the bridge.

Blue cars are only allowed to enter the bridge if there
are no red cars on the bridge and there are no red
cars waiting o enter the bridge.

Concurrency: safety & liveness properties ©Magee/Kramer

Progress - Revised Single Lane Bridge Model

[/ nr: #red cars on br.; wr: #red cars waiting to enter
[/ nb: #blue cars on br.; wh: #blue cars waiting to enter

BRIDGE = BRIDGE[0][0][0][0], OK now?
BRIDGE[nr:T][nb:T][wr:T][wb:T] =(
red [ID]. request -> BRIDGE[nr][nb][wr+1][wb]
lwhen (nb==0&& whb==0)
red [ID]. enter -> BRIDGE[nr+1][nb][wr-1][wb]
| red [ID]. exit -> BRIDGE[nr-1][nb][wr][wb]
| blue [ID]. request -> BRIDGE[nr][nb][wr][wb+1]
lwhen (nr==0&& wr==0)
blue [ID]. enter ->BRIDGE[nr][nb+1] wr][wb-1]
| blue [ID]. exit -> BRIDGE[nr][nb-1][wr][wb]

Concurrency: safety & liveness properties ©Magee/Kramer

Progress - Analysis of Revised Single Lane Bridge Model

Trace to DEADLOCK: The trace is the scenario
red.1.request in which there are cars
red.2.request waiting at both ends, and
red.3.request consequently, the bridge
blue.1.request does not allow either red
blue.2.request or blue cars to enter.
blue.3.request

Solution?

Introduce some asymmetry in the problem (cf. Dining philosophers).

This takes the form of a boolean variable (bt) which breaks the
deadlock by indicating whether it is the turn of blue cars or red cars
to enter the bridge.

Arbitrarily initialize bt to true initially giving blue initial precedence.

Concurrency: safety & liveness properties ©Magee/Kramer

Progress - 2 "d Revision of Single Lane Bridge Model

const True=1 const False =0 range B = False..True

[/ Dbt: true ~ blue turn; false ~ red turn

BRIDGE = BRIDGE[OJ[0]] O][O][True], Analysis ?
BRIDGE[nr:T][nb:T][wr:T][wb:T][bt :B] =(
red [ID]. request -> BRIDGE][nr][nb][wr+1][wb][bt]

when (nb==0&& (wb==0]| bt))

red [ID]. enter -> BRIDGE[nr+1][nb][wr-1][wb][Dbt]
red [ID]. exit -> BRIDGE[nr-1][nb][wr][wb][True]
blue [ID]. request -> BRIDGE[nr][nb][wr][wb+1][bt]
when (nr==0&& (wr==0]| bt))

blue [ID]. enter ->BRIDGE[nr][nb+1] wr][wb-1][bt]
| blue [ID]. exit -> BRIDGE[nr][nb-1][wr][wb][False]

).

Concurrency: safety & liveness properties ©Magee/Kramer

Revised Single Lane Bridge Implementation - FairBridge

class FairBridge extends Bridge {
protected int nred, nblue, wblue, wred,;

protected boolean Dblueturn = true ;
synchronized void request() {
++wred,;
}
synchronized void redEnter() throws Int'Exc’ {
while (!(nblue==0 && (waitblue==0 || ! blueturn)))
wait ();
--wred,
++nred,;

This is a direct
} translation

from the model.

Concurrency: safety & liveness properties ©Magee/Kramer

Revised Single Lane Bridge Implementation - FairBridge

class FairBridge extends Bridge {

synchronized void redExit(){

--nred;
blueturn = true ;
if (nred==0) notifyAll 0;

This is a direct
translation
from the model.

Concurrency: safety & liveness properties ©Magee/Kramer

Revised single lane bridge implementation - FairBrid ge

Use
P FairBridge
- oy .~ monitor

Note: we did not need to introduce a new request monitor
method. The existing enter methods can be modified to
increment a wait count before testing whether or not the
caller can access the bridge.

Concurrency: safety & liveness properties ©Magee/Kramer

7.5 Readers and Writers

Light

| blue
indicates
database
access.

A shared database is accessed by two kinds of processes. Readers
execute transactions that examine the database while Writers both
examine and update the database. A Writer must have exclusive access
to the database; any number of Readers may concurrently access it.

Concurrency: safety & liveness properties ©Magee/Kramer

Readers and Writers Model

¢ Events or actions of interest?

acquireRead, releaseRead, acquireWrite, releaseWrite
¢ Identify processes.

Readers, Writers & the RW_Lock

¢ Identify properties.
der[1.. dl: writer[1..Nwrite]:
RW_Safe rFfEASrE[lRNrea ! WRITER

RW_Progress 2 =

READERS READWRITELOCK
_WRITERS [OacquireRead acquireWrite (J
O releaseRead releaseWrite()

¢ Structure diagram:

Concurrency: safety & liveness properties ©Magee/Kramer

Readers/Writers Model - READER WRITER

set Actions =
{acquireRead,releaseRead,acquireWrite,releaseWrite}

READER = (acquireRead ->examine-> releaseRead ->READER)
+ Actions
\ {examine}.

WRITER = (acquireWrite ->modify-> releaseWrite ->WRITER)
+ Actions

\ {modify}.

Alphabet extension is used to ensure that the other access
actions cannot occur freely for any prefixed instance of the
process (as before).

Action hiding is used as actions examine and modify are not
relevant for access synchronisation.

Concurrency: safety & liveness properties ©Magee/Kramer

Readers/Writers Model - RW_LOCK

const False=0 const True=1 range Bool = False..True
const Nread =2 /| #readers
const Nwrite= 2 [l #witers

RW_LOCK = RWp][False],
RWl[readers :0..Nread]| writing :Bool] = (
when (!writing) acquireRead -> RW]| readers+1][writing]
[releaseRead -> RW[readers-1][writing]
lwhen (readers==0 && 'writing)
acquireWrite -> RW| readers][True]
[releaseWrite -> RW[readers][False]

).

The lock maintains a count of the number of readers, and a
boolean for the writers.

Concurrency: safety & liveness properties ©Magee/Kramer

Readers/Writers Model - Safety

property SAFE_RW =
(acquireRead -> READING[1]
| acquireWrite -> WRITING),

READING]Ji:1..Nread] =
(acquireRead -> READING[i+1]
lwhen (i>1) releaseRead ->READING[I-1]
lwhen (i==1) releaseRead ->SAFE_RW

),

WRITING = (releaseWrite -> SAFE_RW).

IREADWRITELOCK = (RW_LOCK || SAFE_RW).

We can check that RW_LOCK satisfies the safety property......

Concurrency: safety & liveness properties ©Magee/Kramer

Readers/Writers Model

acquireRead

acquireWrite acquireRead

releaseRead releaseWrite

releaseWrite

releaseRead

releaseWrite

acquireRead
releaseWrite

An ERRORbccurs if a reader
or writer is badly behaved
(release before acquire

or more than two readers).

We can now compose the
READWRITELOCHKith
READERand WRITER
processes according to our
structure...

||READERS WRITERS
= (reader[1..Nread]:READER
|| writer[1..Nwrite].WRITER
|| {reader[l..Nread],

w=p Safety and
Progress
Analysis ?

writer[1..Nwrite]}:;: READWRITELOCK).

Concurrency: safety & liveness properties

©Magee/Kramer

Readers/Writers Model - Progress

progress WRITE = {writer[1..Nwrite].acquireWrite}
progress READ = {reader[l..Nread].acquireRead}

WRITE - eventually one of the writers will acquireWrite
READ - eventually one of the readers will acquireRead

w=p> Action priority (to simulate intensive use)?

we lower the priority of the release actions for both
readers and writers.

||IRW_PROGRESS = READERS WRITERS
>>{reader[1..Nread].releaseRead,
writer[1..Nread].releaseWrite}.

w=p Progress Analysis ? LTS?

Concurrency: safety & liveness properties ©Magee/Kramer

Readers/Writers Model - Progress

Progress violation: WRITE Writer
Path to terminal set of states: starvation:
reader.l.acquireRead The number
Actions in terminal set: of readers
{reader.1l.acquireRead, reader.1.releaseRead, never drops
reader.2.acquireRead, reader.2.releaseRead} to zero.
reader.ﬁ:quweRead > Tf'y fhe
Applet!

reader.2.acquireRead

writer.1.acquireWrite

/
writer.2.acquireWrite reader.l.acquireRead reader.2.releaseRead
writer.2.releaseWrite reader.l.releaseRead reader.2.acquireRead

writer.1.releaseWrite

CuUlIvulierivy. sdlcly & livelicss Plrupelilucs

Readers/Writers Implementation -

Monitor Interface

We focus on the monitor implementation:

Interface
void
void
void
void

}

ReadWrite {
acquireRead()
releaseRead();
acquireWrite()
releaseWrite();

throws

throws

Int'EXC’;

Int'EXC’;

We define an interface that identifies the monitor

methods that must be implemented, and develop a number
of alternative implementations of this interface.

Firstly, the safe READWRITELOCK

Concurrency: safety & liveness properties

©Magee/Kramer

Readers/Writers Implementation - ReadWriteSafe

class ReadWriteSafe implements ReadWrite {
protected Int readers = O;
protected boolean writing = false ;

synchronized void acquireRead() throws Int'Exc’ {

while (writing) wait 0;
++readers;

}

synchronized void releaseRead() {
--readers;
If (readers==0) notify 0;

- Ny

Unblock a single writer when no more readers.

Concurrency: safety & liveness properties ©Magee/Kramer

Readers/Writers Implementation - ReadWriteSafe
synchronized void acquireWrite() throws Int'Exc’ {
while (readers>0 || writing) walit 0;
writing = true ;
}
synchronized void releaseWrite() {
writing = false ;
notifyAll 0;

} \

Unblock all readers

However, this monitor implementation suffers from the WRITE
progress problem: possible writer starvation if the number of

readers never drops to zero. .
P wp Sofu/1ion?

Concurrency: safety & liveness properties ©Magee/Kramer

Readers/Writers - Writer Priority

ReadWriteSafe
readers=1 writing= false

4 B A4 H| 4 B4 k

start| Stop | start| Stop | start | Stop | start| Stop |

Strategy: Block readers if there is a writer warting.

set Actions = {acquireRead,releaseRead,acquireWrite
releaseWrite, requestWrite }

WRITER = (requestWrite ->
acquireWrite ->
modify ->
releaseWrite -> WRITER) +Actions

\{modify}.

CotT oo ooy T oncio opoaee

er

Readers/Writers Model - Writer Priority

RW_LOCK = RWI[O][False][0],
RW/[readers:0..Nread][writing:Bool][waitingW :0..Nwrite] = (

when (writing && waitingW==0)
acquireRead -> RW/[readers+1][writing][walitingW]
lreleaseRead -> RW][readers-1][writing][walitingW]

lwhen (readers==0 && !'writing)

acquireWrite -> RWI/readers][True][waitingW-1 |
[releaseWrite -> RW][readers][False][waitingW]
| requestWrite -> RW(readers][writing][waitingW+1 |
).
|| RW_P =R _W >>{*release*}. // simulate Intensive usage

w=p Safety and Progress Analysis ?

Concurrency: safety & liveness properties ©Magee/Kramer

Readers/Writers Model - Writer Priority

property RW_SAFE

No deadlocks/errors

progress READand WRITE

Progress violation: READ

: Reader
Path to terminal set of states: .
: : starvation:
writer.1.requestWrite /¥ always a

writer.2.requestWrite aiway

: : : _ writer
Actions in terminal set: -
waiting.

{writer.1.requestWrite, writer.1.acquireWrite,
writer.1.releaseWrite, writer.2.requestWrite,
writer.2.acquireWrite, writer.2.releaseWrite}

In practice: this may be satisfactory as is usually more read access
than write, and readers generally want the most up to date information.

Concurrency: safety & liveness properties ©Magee/Kramer

Readers/Writers Implementation -

ReadWritePriority

class ReadWritePriority Implements ReadWrite {
protected Int readers = O;
protected boolean writing = false ;
protected int waitingW =0 ; //#waiting writers
synchronized void acquireRead() throws Int'Exc’ {
while (writing || waitingW>0) wait ();
++readers;

}
synchronized void
--readers;

If (readers==0) notify

releaseRead() {

();

Concurrency: safety & liveness properties

©Magee/Kramer

Readers/Writers Implementation - ReadWritePriority

synchronized void acquireWrite() throws Int’Exc’ {
++waitingW
while (readers>0 || writing) walit I ¢
--waitingW
writing = true ;

}

synchronized void releaseWrite() {
writing = false ;
notifyAll 0;

}

Both READ and WRITE progress properties can be
satisfied by introducing a turn variable as in the Single
Lane Bridge.

Concurrency: safety & liveness properties ©Magee/Kramer

Summary

@ Concepts
® properties: true for every possible execution
® safety: nothing bad happens
® liveness: something good eventually happens
® Models
® safety: no reachable ERROR/STOP state

compose safety properties at appropriate stages
® progress: anaction is eventually executed
fair choice and action priority
apply progress check on the final target system mode/

® Practice
® threads and monitors U Aim: property satisfaction

Concurrency: safety & liveness properties ©Magee/Kramer

