Concurrency

6 - Deadlock

Credits for the slides: Alexandre David

Claus Braband adavid@cs.aau.dk
Jeff Magee & Jeff Kramer

Concurrency: Deadlock ©Magee/Kramer

Monitors & Condition Synchronization - Repetition

Concepts: monitors:
encapsulated data + access procedures
mutual exclusion + condition synchronization
single access procedure active in the monitor
nested monitors

Models: guarded actions

Practice: private data and synchronized methods (exclusion).
wait(), notify() and notifyAll() for condition synch.
single thread active in the monitor at a time

Concurrency: Deadlock ©Magee/Kramer

wait() , notify() , and notifyAll() - Repetition

public final void wait() throws InterruptedException;

Wait() causes the thread to exit the monitor,
permitting other threads to enter the monitor

' Thread A Thread B \

Monitor

wait()

public final void notify();

public final void notify All();

Concurrency: Deadlock

©Magee/Kramer

The Car Park Example - Repetition

CarPark

Run | Pause | Run | Pause |

A controller is required to ensure:
e cars can only enter when not full

* cars can only leave when not empty (duhl)

Concurrency: Deadlock ©Magee/Kramer

Condition Synchronization (in Java) - Repetition

}

throws Int'Exc’ {

while (spaces==capacity)
++spaces;
notify ();

class CarParkControl {
protected int spaces, capacity; Runnable
JAN
synchronized void arrive() o
throws Int'Exc’ { Arrivals Departures
while (spaces==0) wait ();
--spaces; car‘parlsl/ lcar‘par‘k
nOtify (), CarParkControl
} arrive()
depart()
synchronized void depart()

wait ();

Concurrency: Deadlock

©Magee/Kramer

Semaphores - Repetition

Semaphores are widely used for dealing with inter-process
synchronization in operating systems.

Semaphore s: integer var that can take only non-neg. values.

il i

down(s): if (s>0) then decrement(s); Aka. 'P” ~ Passern
else block execution of calling process

up(s): if (processes blocked on s) then awake one of them
else increment(s):. Aka. "V“ ~ Vrijgeven

Concurrency: Deadlock ©Magee/Kramer

Nested Monitors - Bounded Buffer Model - Repetition

Buiffer

b

C

Run | Pause |

Wl Pause |

LTSA's (analyse safety) predicts a possible(DEA DLO@

Composing
potential DEADLOCK

Trace to DEADLOCK:
get

States Composed: 28 Transitions: 32 in 60ms

This situation is known as the nested monitor problem.

Concurrency: Deadlock

©Magee/Kramer

Deadlock

Concepts:

Models:

Practice:

system deadlock (no further progress)

4 necessary & sufficient conditions
deadlock - no eligible actions

blocked threads

Aim: deadlock avoidance - to design
systems where deadlock cannot occur.

Concurrency: Deadlock

©Magee/Kramer

Deadlock: 4 Necessary and Sufficient Conditions

1. Serially reusable resources:

the processes involved share resources which they use under mutual
exclusion.

2. Incremental acquisition:

processes hold on to resources already allocated to them while waiting
to acquire additional resources.

3. No pre-emption:

once acquired by a process, resources cannot be ‘pre-empted” (forcibly
withdrawn) but are only released voluntarily.

4. Wait-for cycle:

a circular chain (or cycle) of processes exists such that each process
holds a resource which its successor in the cycle is waiting to acquire.

Concurrency: Deadlock ©Magee/Kramer

Wait-For Cycle

Has A awaits B

Has E awaits A o
o Has B awaits C

Has C awaits D

Has D awaits E

Concurrency: Deadlock ©Magee/Kramer

6.1 Deadlock Analysis - Primitive Processes

¢+ Deadlocked state has no outgoing transition
¢ In FSP: (modelled by) the STOPstate

MOVE = (north->(south->MOVE|north-> STOB).

north north

MOVE : >

south

Shortest path to DEADLOCK:
¢ Analysis using LTSA: Trace to DEADLOCK:

north
north

Concurrency: Deadlock ©Magee/Kramer

Deadlock Analysis - Parallel Composition

¢ In practise, deadlock arises from
parallel composition of interacting

printer:
RESOURCE

processes.

P=(x -> vy ->P).
Q=(y > x ->Q).
IID = (P || Q).

scanner:
RESOURCE
Dget
O put

RESOURCE = (get-> put-> RESOURCE).

P =(printer.get ->

scanner.get

Q =(scanner.get ->
printer.get

ISYS = (p:P |[9:Q ||
{p,q}:: printer

‘RESOURCE || {p,q}::

-> copy-> printer.put-> scanner.put-> P).

-> COpy-> scanner.put-> printer.put-> Q).

scanner :RESOURCE).

Deadlock trace?

Concurrency: Deadlock

Avoidance...

©Magee/Kramer

Recall the 4 Conditions...

1. Serially reusable resources:

the processes involved share resources which they use under mutual
exclusion.

2. Incremental acquisition:

processes hold on to resources already allocated to them while waiting
to acquire additional resources.

3. No pre-emption:

once acquired by a process, resources cannot be pre-empted (forcibly
withdrawn) but are only released voluntarily.

4. Wait-for cycle:

a circular chain (or cycle) of processes exists such that each process
holds a resource which its successor in the cycle is waiting to acquire.

Concurrency: Deadlock ©Magee/Kramer

Deadlock Analysis — Avoidance (#1 ?)

1. Serially reusable resources:
the processes involved share resources which they use under mutual
exclusion.

¢ Inherent in “copy using shared scanner/printer” problem.

Concurrency: Deadlock ©Magee/Kramer

Deadlock Analysis — Avoidance (#2 ?)

2. Incremental acquisition:
processes hold on to resources already allocated to them while
waiting to acquire additional resources.

¢ A "mutex” lock (for both scanner and printer):
LOCK = (acquire -> release -> LOCK.

P =(scanner_printer . acquire ->
printer.get->
scanner.get->
copy->
scanner.put->
printer.put->
scanner_printer . release -> P).

Deadlock? © Efficiency/Scalability? @

Concurrency: Deadlock

©Magee/Kramer

Deadlock Analysis — Avoidance (#3 ?)

3. No pre-emption:
once acquired by a process, resources cannot be pre-empted
(forcibly withdrawn) but are only released voluntarily.

¢ Force release (e.g., through timeout):

P = (printer.get-> GETSCANNBR

GETSCANNER= (scanner.get-> copy-> printer.put
-> scanner.put-> P

| timeout -> printer.put-> P).

Q = (scanner.get-> GETPRINTER,

GETPRINTER = (printer.get-> copy-> printer.put
-> scanner.put-> Q

| timeout -> scanner.put-> Q).

Deadlock? © Progress? @

Concurrency: Deadlock ©Magee/Kramer

Deadlock Analysis — Avoidance (#4 ?)

4. Wait-for cycle:
a circular chain (or cycle) of processes exists such that each process
holds a resource which its successor in the cycle is waiting to acquire.

¢ Acquire resources in the same order:

P =(printer.get ->
scanner.get ->
copy->
printer.put-> scanner.put-> P).

Q = (printer.get ->
scanner.get ->
copy->
printer.put-> scanner.put-> Q).

Deadlock? © Scalability/Progress/..? ©

Concurrency: Deadlock

©Magee/Kramer

6.2 Dining Philosophers

Five philosophers sit around a
circular table. Each philosopher
spends his life alternately
thinking and eating. In the centre
of the table is a large bowl of
spaghetti. A philosopher needs
two forks to eat a helping of
spaghetti.

One fork is placed between each
pair of philosophers and they agree
that each will only use the fork to his
immediate right and left.

Concurrency: Deadlock ©Magee/Kramer

Dining Philosophers - Model Structure Diagram

Each FORK is a
shared resource
with actions get
and put.

When hungry,
each PHIL must
first get his
right and left
forks before he

can start eating.

Concurrency: Deadlock

) phil[0]:
PHIL

O

right left
FORK

S phil[3]
PHIL

©Magee/Kramer

Dining Philosophers - Model

const N=5

FORK = (get -> put -> FORK).

PHIL = (sitdown->
right. get -> left. get ->
eat->
right. put -> left. put ->
arise-> PHIL).

Can this system deadlock?

IDINING_PHILOSOPHERS =
forall [i:0..N-1] (phil[i]:PHIL ||
{phil[i].left, phil[((i-1)+N)%N].right}::FORK).

Concurrency: Deadlock ©Magee/Kramer

Dining Philosophers - Model Analysis

Trace to DEADLOCK:
phil.0.sitdown
phil.0.right.get
phil.1.sitdown
phil.1.right.get
phil.2.sitdown
phil.2.right.get
phil.3.sitdown
phil.3.right.get
phil.4.sitdown
phil.4.right.get

Concurrency: Deadlock

This is the situation where all
the philosophers become
hungry at the same time, sit
down at the table and each
philosopher picks up the fork
to his right.

The system can make no
further progress since each
philosopher is waiting for a
left fork held by his
neighbour (i.e., a wait-for
cycle exists)

©Magee/Kramer

Dining Philosophers

Deadlock is easily
detected in our
model.

How easy is it to @ @
-~ - -~ -,

detect a potential
deadlock in an
implementation?

1 | l*l F!estartl

Concurrency: Deadlock ©Magee/Kramer

Dining Philosophers - Implementation in Java

¢ Philosophers:
active entities
(implement as

¢ Forks: shared
passive entities
(implement as

P threads) monitors)
Applet Thread
JAN JAN
1 n :
Diners Philosopher view
displa 1
n Fork display
controller " philcanvas

Concurrency: Deadlock

©Magee/Kramer

Dining Philosophers — Fork (Monitor)

class Fork{
private boolean taken = false
private PhilCanvas display;
private int identity;

Fork(PhilCanvas disp, int id)
{ display = disp; identity = id;}

synchronized void get () throws
while (taken)wait ();
t aken = true ;
display.setFork(identity,

}

synchronized void put () {
t aken = false ;
display.setFork(identity,

notify ();

}
}

INExc’ {

t aken);

t aken);

t aken

encodes the
state of the

fork

Concurrency: Deadlock

©Magee/Kramer

Dining Philosophers — Philosopher (Thread)

class Philosopher
public void

try {

while

Sitting down
and leaving the
table has been
omitted.

}
} catch

}

extends Thread {

run() {

(true){
view.setPhil(identity,view. THINKING);
sleep(controller.thinkTime());
view.setPhil(identity,view.HUNGRY);
right. get ();
view.setPhil(identity,view.GOTRIGHT);
sleep(500);
left. get ();
view.setPhil(identity,view.EATING);
sleep(controller.eatTime());
right. put (); left. put ();

(InterruptedException _) {}

Concurrency: Deadlock

©Magee/Kramer

Dining Philosophers — Main Applet

The Applet's start() method creates (an array of) shared
Fork monitors...:

for (int i=0;i<N; i++) {
forkli] = new Fork (display, i);
}

..and (an array of) Philosopher threads each of which is
start()'ed:

for (int i=0;i<N; i++) { eft right
phil[i] = e A ~ —A
new Philosopher (this , i1, fork[(i-1+N)%N], fork([i]);
phil[i].start();

\

Concurrency: Deadlock ©Magee/Kramer

Dining Philosophers

To ensure deadlock
occurs eventually,
the slider control
may be moved to the
left. This reduces
the time each
philosopher spends
thinking and eating.

This "speedup”
increases the
probability of
deadlock occurring.

Freeze "l | ¥ | Restart

Concurrency: Deadlock ©Magee/Kramer

Deadlock-free Philosophers

Deadlock can be avoided by ensuring that a wait-for cycle
cannot exist. How?

Introduce an asymmeftry into definition of philosophers.

Use the identity i’ of a philosopher to make even
numbered philosophers get their left forks first, odd
their right first.

PHIL[i:0..N-1] =
(when (1%2==0) sitdown-> left .get-> ...-> PHIL
lwhen (1%2==1) sitdown-> right .get->...-> PHIL).

Other strategies?

Concurrency: Deadlock ©Magee/Kramer

Maze Example - Shortest Path to STOP (Goal State)

We can exploit the shortest path trace produced by the
deadlock detection mechanism of LT7SA4 to find the
shortest path out of a maze to the STOPprocess!

?STOP We must first

model the MAZE
0 1 2 north -
N Each position can
3 A ‘ 5 west east be modelled by the
moves that it
6 7 3 south permits. The MAZE
parameter gives the

starti sition.
eg. MAZE(Start=8) = P[Start], arting position

P[0] = (north-> STOReast->P[1]),...

Concurrency: Deadlock ©Magee/Kramer

Maze Example - Shortest Path to STOP (Goal State)

IGETOUT = MAZE(7).

0 1 2
3 4 ‘ 5 west
6 | 7 8

Concurrency: Deadlock

north

south

east

Shortest path
escape trace from
position 7 ?

Trace to
DEADLOCK:
east
north
north
west
west
north

©Magee/Kramer

Summary

@ Concepts

® deadlock (no further progress)

® 4x necessary and sufficient conditions:

1. Serially reusable resources
2. Incremental acquisition

3. No preemption

4. Wait-for cycle

® Models

J

) D
0 .. .
Aim - deadlock avoidance:
“Design systems where
deadlock cannot occur”.
_/

® no eligible actions (analysis gives shortest path trace)

@ Practice
® blocked threads

Concurrency: Deadlock

©Magee/Kramer

