Concurrency

4 - Shared Objects &
Mutual Exclusion

»a

Alexandre David

Credits for the slides: adavid@cs.aau.dk

Claus Braband
Jeff Magee & Jeff Kramer

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Repetition — “Concurrent Execution”

Concepts: pseudo- vs. real concurrent execution

concurrent execution and interleaving
process interaction

Models: parallel composition of asynchronous processes
- interleaving
interaction - shared actions
process labeling, action relabeling, and hiding
structure diagrams

Practice: Multithreaded Java programs

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Repetition (week 06) - Specifically

& FSP:
°P |l Q
®aP
®{ }:P
®P /{x/y}
oP\{.}
oP@{.}

@ Structure Diagrams:

// parallel composition

// action prefixing

// set prefixing

// action relabling

// hiding

// keeping (hide complement)

TWOBUFF

S in‘

a:.BUFF Gl b:BUFF out
2in outQ Qin outP— <

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

Shared Objects & Mutual Exclusion

& Concepts:
® Process interference

® Mutual exclusion

€ Models:

® Model-checking for interference

® Modelling mutual exclusion

@ Practice:
® Thread interference in shared objects in Java
® Mutual exclusion in Java

® synchronized objects, methods, and statements

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

4.1 Interference

The “Ornamental Garden Problem "

People enter an ornamental garden through either of two
turnstiles. Management wishes to know how many are in
the garden at any time. (Nobody can exit).

Garden

Turnstilé Turnstile

Counter

Exercise: variant with Entrance/Exit instead of West/East...

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

4.1 Ornamental Garden Problem (cont’d)

Garden

West East

Turnstile Turnstile

Counter

Java implementation:
The concurrent program consists of:
* two concurrent threads (west & east); and
* a shared counter object

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Class Diagram

Applet Thread
i east,west —— counter
Garden : >{Turnstile > Counter
init() run() increment()
go()
easiD; Wm
westD, || NumberCanvas [«
counterD
setvalue() |<

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Ornamental Garden Program

The go() method of the Garden applet...

class Garden extends Applet{
NumberCanvas counterD, westD, eastD;

private void go() {

counter = new Counter(counterD);
west = new Turnstile(westD,counter);
east= new Turnstile(eastD,counter);

west.start();
east.start();

}
..creates the shared Counter object & the Turnstile threads.

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

The Turnstile Class

class Turnstile extends Thread {
NumberCanvas display;

Counter counter; - : —
The Turnstile thread simulates periodic

arrival of visitors by invoking the counter

ublic void run
P 01 object’s increment() method every second

try {
display.setvalue(0);

for (int i=1; i<=Garden.MAX; i++) {
Thread.sleep(1000);
display.setvalue(i);
counter.increment();

}
} catch (InterruptedException) {}

}

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

The Shared Counter Class

The increment() method of the Counter class increments
its internal value and updates the display.

class Counter {
int value;
NumberCanvas display;

void increment() {
value = value + 1;
display.setvalue(value);

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Counter class — Well, Actually...

class Counter {
int value=0:
NumberCanvas display;

Counter(NumberCanvas n) {
display=n;
display.setvalue(value);

}

void increment() {
Int temp = value; /lread value
Simulate.HWinterrupt();
value=temp+1, [lwrite value
display.setvalue(value);

Hardware interrupts can occur
atarbitrary times.

Thecounter simulates a

hardware interrupt during an
increment() , between

reading and writing to the
shared countaralue .

Interrupt randomly calls
Thread.yield() to force

a thread switch.

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

Running the Applet

Go| !

After the East and West turnstile threads each have
incremented the counter 20 times, the garden people
counter is not the sum of the counts displayed.

Why?

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

The Shared Counter Class (cont’d)

class

Counter {

INt

NumberCanvas displ

void

value;

Thread switch!

Increme

value = value + 1;:

display.setvalue(value);

value
value + 1
value = value + 1

I/l 1) read value
// 2) add one
I/ 3) write result

Recall: thread switching (or hardware interrupts) can occur at any time

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

Concurrent Method Activation

Java method activation is not atomic!

Thus, threads east and west may be executing the
code for the increment method at the same time.

west Shared code: east
‘ PC |_ Increment.class _| PC ‘
program
counter // read value; Egﬁﬁ:;l?
| //add1;
// write value; D

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Counter Class: How to Exhibit this Behaviour?

class

Counter {

void

increment() {
value = value + 1;

display.setvalue(value);

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

Counter Class: How to Exhibit this Behaviour?

class Counter {
void increment() {

Int temp = value; /l read
Simulate.HWinterrupt();
value = temp + 1, Il write

display.setvalue(value);

}

The counter simulates a Aardware interrupt during an increment(),
between reading and writing to the shared counter value.

class Simulate { // randomly force thread switch!
public static void HWinterrupt() {
if (random()<0.5) Thread.yield();
}

}

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

Running the Applet

The erroneous behaviour occurs all the timel

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Ornamental Garden Model (Structure Diagram)

go
go GARDEN
end end
P, arrive value C
east: value VAR .
TURNSTILE display :
go
end
O armve \gjye C
west;
TURNSTILE
VAR: .
models read and write access to the shared counter value.
TURNSTILE:

Increment is modelled inside TURNSTILE since Java method activation
is not atomic (/.e., thread objects east and west may interleave their
read and write actions) .

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Ornamental Garden Model (FSP)

constN =4
range T = 0..N
set VarAlpha ={value.{read[T],write[T]}}

VAR =VAR][0],
VAR[uU:T] = (read[u] ->VAR]uU]
|write[v: T]->VAR[V]).

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT
lend ->TURNSTILE),
INCREMENT = (value.read[x:T]
-> value.write[x+1]->RUN
)+ VarAlpha .

|| GARDEN = (east: TURNSTILE || west: TURNSTILE
|| { east,west,display} ::value:VAR)
{ go /{ east,west} .go,
end/{ east,west} .end} .

|
The alphabet of
processVARIs
declared explicitly
as aset constant,
VarAlpha .

|

The alphabet of
TURNSTILEIs
extended with
VarAlpha to ensure
no unintended free
actions inVAR ie. all
actions inVARmust

be controlled by a

TURNSTILE
|

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

Ornamental Garden Model (Structure Diagram)

||GARDEN = (east: TURNSTILE || west: TURNSTILE
|| {east,west,display}::value:VAR)

{ go / {east,west}.go , end / {east,west}.end}.

L GARDEN

end end

7 amve value C

east. value VAR
TURNSTILE

display

TURNSTILE

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Checking for Errors - Animation

Eﬁf’,ﬁ'hnimatm !IEI -

go]"“

east.arre
east.value.read.0
east.value.write.1
west.arre
west.value.read.1
west.value.write.2
end
display.value.read.?

|_ east arrive

|_ westarrive

|_ end
[* oo

Scenario checking
- use animation to
produce a trace.

Is the mode/
correct?

"Never send a human to do a machine's job"

- Agent Smith (1999)

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

Checking for Errors - Compose with Error Detector

Exhaustive checking - compose the model with a TEST
process which sums the arrivals and checks against the
display value:

TEST = TESTIO],
TEST[V:T] =
(when (v<N){east.arrive,west.arrive}->TEST[v+1]
lend->CHECK]v]
),
CHECK]v:T] = Like STOP, ERROHS
(dlsplay.value.read[u:T_] -> a predefined FSP
(when (u==v) right ->TEST|[V] local process (state),
lwhen (ul=v) wrong -> ERROR numbered -1 in the

) equivalent LTS.
)+{display.VarAlpha}. |

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Checking for Errors - Exhaustive Analysis

ITESTGARDEN = (GARDEN || TEST).
Use LTSA to perform an exhaustive search for ERROR

go
east.arrive

Trace to property violation in TEST:

east.value.read.O
west.arrive
west.value.read.O
east.value.write.1
west.value.write.1

L TSA produces
the shortest
path to reach

the ERROFRstate.

end
display.value.read.1l
wrong

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

Interference and Mutual Exclusion

Destructive update, caused by the arbitrary interleaving
of read and write actions, is termed /interference.

Interference bugs are extremely difficult to locate.

The general solution is:

* Give methods mutually exclusive access to
shared objects.

Mutual exclusion can be modelled as atomic actions.

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

4.2 Mutual Exclusion in Java

Concurrent activations of a method in Java can be made

mutually exclusive by prefixing the method with the
keyword synchronized

We correct the Counter class by deriving a class from
it and making its increment method synchronized:

class SynchronizedCounter extends Counter {
SynchronizedCounter(NumberCanvas n) {
super (n);
}

synchronized void increment() {
super .increment();
}

}

Concurrency: shared objects & mutual exclusion

©Magee/Kramer

The Garden Class (revisited)

If the fixit checkbox is ticked, the go() method
creates a SynchronizedCounter:

class Garden extends Applet{
private void go() {
i (Mixit.getState())
counter = new Counter (counterD);
else
counter = new SynchCount er (counterD);
west = new Turnstile(westD,counter);
east= new Turnstile(eastD,counter);
west.start();
east.start();

}

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Mutual Exclusion - The Ornamental Garden

Counter

40
¥ Fis It

Java associates a /ock with every object.

The Java compiler inserts code to:
» acquire the lock before executing a synchronized method
* release the lock before the method returns.

Concurrent threads are blocked until the lock is released.

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Java synchronized Statement

Access to an object may also be made mutually exclusive by using the
synchronized statement:

synchronized (object){ statenents }

A less elegant way to correct the example would be to modify the
Turnstile.run() method:

synchronized (counter) {counter.increment();}

Why is this “less elegant™?

D

To ensure mutually exclusive access to an object,
all object methods should be synchronized.

—/

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Java synchronized Statement

Synchronized methods:

synchronized void increment() {
super .increment();

}

Variant - the synchronized statement :

object reference

void increment() {
synchronized (semaphore_object) {
value = value + 1;

} Use synch methods
display.setvalue(value); whenever pOSSib'Z.

}

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

4.3 Modeling Mutual Exclusion

Define a mutual exclusion LOCK process:

LOCK =(acq -> rel -> LOCK).

..and compose it with the shared VAR in the Garden:

ILOCKVAR = (LOCK || VAR).

Update the alphabet set:

set VarAlpha = {value.{read[T],write[T], acq, rel }}.

Modify TURNSTILE to acquire and release the lock:

TURNSTILE = (go -> RUN),
RUN = (arrive -> INCREMENT | end -> TURNSTILE),
INCREMENT = (value. acq
-> value.read[x:T]
-> value.write[x+1]
(->value. rel ->RUN)+VarAlpha.

er

Revised Ornamental Garden Model - Checking for Error s

A sample trace:

go
east.arrive
east.value. acq

east.value.read.O

east.value.write.1

east.value. rel Use LTSA TO perform
west.arrive an| gxhaus’nve ghgck:
west.value. acq /s TEST satisfied”?

west.value.read.1
west.value.write.?
west.value. rel
end
display.value.read.2
right

Yes!/ No error found/

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

COUNTER: Abstraction Using Action Hiding

To model shared objects
directly in ferms of their
synchronized methods, we
can abstract the details by
VAR = VARJ[0], hiding.
VARJ[u:T] = (read[u]->VAR][U]

| write[v:T]->VAR[V]).

constN =4
range T = 0..N

For SynchronizedCounter

we hide read , write
LOCK = (acquire->release->LOCK). acquire ,release actions.

INCREMENT = (acquire->read[x:T]
-> (when (x<N) write[x+1]
->release->increment->INCREMENT

)
)+{read[T],write[T]}.

ICOUNTER = (INCREMENT||LOCK||VAR) @{increment}

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

COUNTER: Abstraction Using Action Hiding

Minimized

LTS: increment increment increment increment

We can give a more abstract, simpler description of a
COUNTERvhich generates the same LTS:

COUNTER = COUNTER]0]
COUNTER][v:T] = (when (v<N) increment -> COUNTER]|v+1 D).

This therefore exhibits “"equivalent” behavior i.e. has the
same observable behavior.

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

Summary

® Concepts
® process interference

® mutual exclusion

® Models

® model checking for interference

® modeling mutual exclusion

® Practice

® thread interference in shared Java objects

® mutual exclusion in Java (synchronized objects/methods).

Concurrency: shared objects & mutual exclusion ©Magee/Kramer

