Concurrency

3 — Concurrent Execution

HH

Alexandre David
adavid@cs.aau.dk

Credits for the slides:
Claus Brabrand
Jeff Magee & Jeff Kramer

i Repetition

> Concepts: We adopt a model-based approach
for the design and construction of
concurrent programs.

> Models: We use finite state models to
represent concurrent behaviour (Finite
State Processes and Labelled Transition

Systems).

> Practice: We use Java for constructing
concurrent programs (and later C).

Repetition

Model = simplified representation of the real world.

> Based on Labelled Transition Systems (LTS)

Focuses on concurrency aspects (of the program)

- everything else abstracted away engineOn speed
aka. Finite State m
Machine (7521) engineOff

> Described textually as Finite State Processes
(F'SP)

Engi neO f
Engi neOn

(engi neOn-> Engi neOn),
(engi neO f-> Engi neO f
| speed- >Engi ne(On) .

Repetition

> Finite State Processes (FSP):

P : STO0P // termination

| (x -> P) // action prefix.
| (when (...)x -> P) /) quard
| P|p // choice
| P+{...} // alphabet extension
| X // process variable

¢ action indexing x(i:1.N[->P or xfi]->P

¢ process parameters Pli:1. N =...

¢ constant definitions const N = 3

¢ range definitions range R = 0.\

Repetition

> Subclassing | ava. | ang. Thr ead:

}

class MyThread extends Thread {

public void run() {
...

Thread t = new MyThread();
t.start();
Il ...

> Implementing | ava. | ang. Runnabl e:

}

class MyRun i npl enents Runnabl e {
public void run() {
Il ...

Thread t = new Thread(new MyRun());
t.start();
[l ...

“|' Concurrent Execution

Concepts: processes - concurrent execution and interleaving.

process interaction.

Models: parallel composition
of asynchronous processes - interleaving

Interaction
shared actions, process labelling, and action relabelling and hiding

structure diagrams

Practice: multi-threaded Java programs

Definition: Parallelism

> Parallelism (aka. “Real” Concurrent Execution)
* Physically ssmultaneous processing

* Involves multiple processing elements (PEs)

and/or independent device operations

w
\/

Definition: Concurrency

> Concurr eNCY (aka. Pseudo-Concurrent Execution)
* Logically simultaneous processing
* Does not imply multiple processing elements (PEs)

* Requires interleaved execution on a single PE

- - - - - >
B - - --—-—------- .- >
ol .- -

Parallelism vs. Concurrency

% Parallelism % Concurrency
I — - - - — - > _—— - N >
B [- - > B |- -—-— - - - >
- I - - - - > cr—" - - - - -
> >
Time Time

Both CONCUITeNcy and parallelism require controlled access to shared
resources.
We use the terms parallel and concurrent interchangeably (and generally

do not distinguish between real and pseudo-concurrent execution).

Modeling Concurrency

> How do we model concurrency?

Possible execution sequences?
[J 7(; y
[J y /' ?("

i ——

Asynchronous

model of execution

> Arbitrary relative order of actions from
different processes — interleaving but

preservation of each process order.

10

Modeling Concurrency

> How should we model process execution speed?

7

b y

> We abstract away time: arbitrary speed!

-: we can say nothing of real-time properties

+: independent of architecture, processor speed,

scheduling policies, ...

11

Parallel Composition —

Action Interleaving

If P and Q are processes then (P[|Q) represents the concurrent
execution of P and Q, The operator ‘|| is the parallel composition

opemtor.

| TCH = (scratch->STOP).
CONVERSE = ('t hi nk->tal k->STOP) .

| | CONVERSE | TCH = (I TCH || CONVERSE).

Possible traces as a result escr at ch->t hi nk->t al k
of action interleaving? *t hi nk->scr at ch->t al k
et hi nk->t al k->scrat ch

12

Parallel Composition —

Action Interleaving

Parallel composition =
HCH m CONVERSE " “hink " talk
2 states 3 states
Cartesian product =

scratch

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

/ \
ﬁ om I'TCH ﬁom CONVERSE 2 x 3 states

13

Parallel Composition —

Algebraic Laws

Commutative: (P||Q = (Q|P)
Associative: (P |(Q|R)) = ((P[|Q|[R)
= (PI1Q|R.

ClocK radio example:

CLOCK = (tick->CLOCK) .
RADI O = (on->of f->RADI O .

|| CLOCK_RADI O = (CLOCK || RADIO).

LTS? Traces? Number of states?

14

Modeling Interaction — Shared Action

MAKEL1 = (nake->ready->STOP). MAKE1

USE1 = (ready->use->STCP). synchronizes with
USEL when

| | MAKEL USE1 = (MAKEl1l || USE1). r eady.

LTS? Traces? Number of states?

Shared Action:

If processes in a composition have actions in common, these actions are
said to be shared. Shared actions are the way that process interaction is
modeled. While unshared actions may be arbitrarily interleaved, a shared
action must be executed at the same time by all processes that participate

in the shared action.

15

i Modeling Interaction - Example

MAKEL
USE1L

(make- >r eady- >STOP) .
(ready->use- >STOP) .

|| MAKEL USE1 = (MAKELl || USE1).

make ready
= @ @

ready l ready ready l

make ready
=@~ @

-]

make ready

. @ @

3 states
3 states

3 x 3 states?

16

i Modeling Interaction - Example

MAKEL
USE1L

(make- >r eady- >STOP) .
(ready->use- >STOP) .

|| MAKEL USE1 = (MAKELl || USE1).

make ready
- @ @

ready l ready ready l

make ready
S EX

]

maKke ready

. @ @

3 states
3 states

3 x 3 states?

17

i Modeling Interaction - Example

MAKEL
USE1L

| | MAKEL

(make- >r eady- >STOP) .
(ready->use- >STOP) .

_USE1

(MAKEL | |

USE1) .

3 states
3 states

4 states!

Interaction constrains

the overall behaviour.

18

Modeling Interaction - Example

MAKER
USER

| | MAKER USER = (MAKER | |

(make- >r eady- >MAKER) .
(ready- >use- >USER) .

USER) .

make

o

19

Modeling Interaction - Example

MAKER
USER

| | MAKER USER = (MAKER || USER).

(make- >r eady- >MAKER) .
(ready- >use- >USER) .

20

Modeling Interaction - Example

MAKER
USER

(make- >r eady- >MAKER) .
(ready->use- >USER) .

| | MAKER USER = (MAKER || USER).

make ready make

use

21

Modeling Interaction - Example

MAKER
USER

(make- >r eady- >MAKER) .
(ready->use- >USER) .

| | MAKER USER = (MAKER || USER).

make ready make

use use

22

Modeling Interaction - Example

MAKER
USER

(make- >r eady- >MAKER) .
(ready- >use- >USER) .

| | MAKER USER = (MAKER || USER).

mak‘e ‘ Q
)::OQ

\ B

OO0 -0

“|
O—~0C

23

Modeling Interaction - Example

VAKER
USER

| | MAKER USER = (MAKER | |

(make- >r eady- >MAKER) .
(ready->use- >USER) .

USER) .

make
— QO

&%ﬁ\”&})

24

Modeling Interaction - Example

VAKER
USER

(make- >r eady- >MAKER) .
(ready->use- >USER) .

| | MAKER USER = (MAKER || USER).

make
— (1)

use T &‘b@m Tuse
make ‘
—

25

Modeling Interaction - Handshake

A handshake is an action acknowledged by another:

MAKERV 2 (make- >r eady- >used- >MAKERv?2) .
USERVv 2 (ready->use- >used- >USERv2) .

| | MAKER USERv2 = (MAKERv2 || USERv2).

make ready use

used

26

Modeling Interaction —
Multiple Processes

Multi-party synchronization:

MAKE A = (nmakeA->ready->used- >MAKE_A) .
MAKE B = (nmakeB->ready->used- >MAKE_B) .
ASSEMBLE = (ready->assenbl e- >used- >ASSEMBLE) .

|| FACTORY = (MAKE A || MAKE B || ASSEMBLE).

makeB makeA

ready assemble

27

Composite Processes

A composite process is a parallel composition of primitive processes. These

composite processes can be used in the definition of further compositions.

|| MAKERS = (MAKE A || MAKE B).
| | FACTORY = (MAKERS || ASSEMBLE).

@ substitution of
def'n of MAKERS

|| FACTORY = ((MAKE A || MAKE B)|| ASSEMBLE).

28

Composite Processes

A composite process is a parallel composition of primitive processes. These

composite processes can be used in the definition of further compositions.

|| MAKERS = (MAKE A || MAKE B).
| | FACTORY = (MAKERS || ASSEMBLE).

@ substitution of
def'n of MAKERS

|| FACTORY = ((MAKE A || MAKE B)|| ASSEMBLE).

Further simplification? @ associativity!

|| FACTORY = (MAKE A || MAKE B || ASSEMBLE).

29

Process Labeling

‘ a:P prefixes each action label in the alphabet of P with a. I

Two INSTANCES of a switch process:
SWTCH = (on->of f->SWTCH).
|| TWO_SWTCH = (a: SWTCH || b: SWTCH).

LTS? (a:SWITCH)

30

Process Labeling

a:P prefixes each action label in the alphabet of P with a.

Two INSTANCES of a switch process:
SWTCH = (on->of f->SWTCH).
|| TWO_ SWTCH = (a: SWTCH || b: SWTCH).

a.on S on
a2:SWITCH a b
£ : ; ‘ 0: off off
-0 1: off on
b.on 2:0n on
3: on off
b:SWITCH c
b.off

31

Process Labeling

a:P prefixes each action label in the alphabet of P with a.

Two INSTANCES of a switch process:
SWTCH = (on->of f->SWTCH).
|| TWO_ SWTCH = (a: SWTCH || b: SWTCH).

An array of INSIANCES of the switch process:
SWTCHES(N=3) = (forall[i1:1..N s[i]:SWTCH).

SW TCHES(N=3) = (s[i:1..N :SWTCH).

32

Process Labeling

by a Set of Prefix Labels

{a S - J:2:P replaces every action label x in the alphabet of P
with the labels a .x,...,a .x. Further, every transition (x->X)in the
definition of P is replaced with the transitions ({a .x...,a .xf ->X).

Process prefixing is useful for modeling Shared resources:

USER = (acquil re->use->rel ease- >USER) .

RESOURCE = (acqui re->rel ease- >RESOURCE) .

| | RESOURCE_SHARE = (a: USER || b:USER | |
{a, b}:: RESOURCE) .

33

Process Prefix Labels for Shared
Resources

RESOURCE = (acquire->rel ease- >RESOURCE) .

USER = (acqui re->use->r el ease- >USER) .

| | RESOURCE_SHARE = (a: USER || b: USER || {a, b}:: RESOURCE).

a.acquire

aUSER a.acquire a.use b:USER b.acquire b.use {ab}::RESOURCE b acquire

a.release b.release b.release

a.acquire a.release

How does the model ensure
that the user who acquires
the resource is the one to
a.release release it?

b.release

RESOURCE_SHARE

34

Action Relabeling

Relabeling functions are applied to processes to change the names of action
labels. The general form of the relabeling function is:

/{newlabel /oldlabel.,... newlabel /oldlabel }.

Relabeling to ensure that composed processes synchronize

on particular actions:

CLIENT = (call->walt->continue->CLI ENT).

SERVER = (request->servi ce->repl y- >SERVER) .

35

Action Relabeling

CLIENT = (cal |l ->wait->conti nue->CLI ENT).

SERVER = (request->service->repl y->SERVER) .

C = (CLIENT /{reply/wait}).

S = (SERVER /{cal | /request}).

[1c.s=(C|] 9.

call reply S call service
Q@ O & QO &
continue reply
call service reply

C_S

continue

36

Action Relabeling — Prefix Labels

An alternative formulation of the client server system is described below

using qualified or prefixed labels:

CLI ENTv2

(cal | . request
->cal | . repl y->conti nue->CLI ENTV2) .

SERVERvZ2 = (accept.request
- >servi ce->accept. repl y- >SERVERv?2) .

| | CLI ENT_SERVERv2 = (CLI ENTV2 || SERVERv2)
[{call/accept}.

37

Action Hiding — Abstraction to

Reduce Complexity

When applied to a process P, the hiding operator \{@1..@X} removes the
action names al..ax from the alphabet of P and maKes these concealed
actions 'silent’. These silent actions are labeled tau. Silent actions in

different processes are not shared.

USER = (acqui re->use- >r el ease- >USER)
\{use}.

acquire

release

38

Reduce Complexity

Action Hiding — Abstraction to

Sometimes it is more convenient to specify the set of labels to be exposed....

When applied to a process P, the interface operator (@

{al..ax)} fides all actions in the alphabet of P not
labeled in the set al..ax.

USER = (acqui r e->use- >r el ease- >USER)
@ acqui re, rel ease}.

acquire

release

39

Action Hiding

The following definitions are equivalent:

USER = (acqui re->use->rel ease- >USER)
\{use}.

USER = (acqui r e->use- >r el ease- >USER)
@ acquire, rel ease}.

Minimization removes hidden 1 @U actions to
produce an LTS with equivalent observable

behaviour.

acquire tau

release

40

Action Hiding

The following definitions are equivalent:

USER = (acqui re->use->rel ease- >USER)
\{use}.

USER = (acqui r e->use- >r el ease- >USER)

@ acquire, rel ease}.

Minimization removes hidden 1 @U actions to
produce an LTS with equivalent observable

behaviour.

acquire tau acquire

release release

41

Structure Diagrams

T a Process ‘T with
° alphabet {a,b}.

42

Structure Diagrams

P

a O———Ob Q

D
(X)

X O—2—OX

! Z Process ‘T with
alphabet {a,b}.

Parallel Composition

(P 1Q)/ fm/am/b,c/df

43

Structure Diagrams

! Z Process ‘T with
alphabet {a,b}.
Q Parallel Composition
(P 1Q)/ fm/a,m/b,c/d}
Composite process
—0 B O_yo [1S=Al|B)@ {xy}

a4

Structure Diagrams

range T = 0..3

BUFF = (in[i:T]->out[i]->BUFF).

We use structure diagrams to
capture the structure of a model
expressed by the static combinators: |_in

parallel composition, relabeling and

hiding.

TWOBUFF

a:BUFF

a.out

b:BUFF

out

O——0in outO——0 in out O—=C

| | TWOBUF = (a: BUFF || Db:
[{i1n/a.ln,

BUFF)

a.out/b.in,

@1 n, out}.

out/ b. out}

45

Structure Diagrams

Structure diagram for CLI ENT _SERVER ?

) continue wait reply

)

reply service O

CLIENT Ca”i cal irequest SERVER

Structure diagram for CLI ENT_SERVERv2 »

CLIENTV2 call O

N

O continue

call T accept SERVERv2

service O

Structure Diagrams —
Resource Sharing

RESOURCE

USER

= (acqui re->rel ease- >RESOURCE) .
= (printer.acquire->use->printer.rel ease->USER).

| | PRI NTER_SHARE =
(a: USER || b: USER ||

{a, b}::printer: RESOURCE) .

a:USER
printer (

b:USER
printer ¢

PRINTER_SHARE

printer:

RESOURCE
fHacquire
Pyrelease

47

Ay

ThreadDemo Model

THREAD = OFF,

OFF = (toggl e->ON
| abor t - >STOP) ,
ON = (toggl e->CFF
| out put - >ON ~
| abort - >STOP) .
| | THREAD_DEMO = (a: THREAD || b: THREAD)
/ {stop/{a,b}.abort}. Interpret:
t oggl e,
THREAD_DEMO abor t
stop - as lnputs
aT Q O 6T
> out put
a.output ﬁoutput
O as output
A

48

ThreadDemo Code: MyThread

class MyThread extends Thread {
private bool ean on;
MyThread() {
on = fal se;
}
void toggle() { on = !on; }
void abort() { interrupt(); }
private void output() { Systemout.println(“output”); }
public void run() {
try {
while (true) {
I f (on) output();
sl eep(1000);
}
} catch(lnterruptedException) {
System out. println(“Done!”);

}

49

ThreadDemo Code: MyThread

class MyThread extends Thread {

private bool ean on;
MyThread() {
on = fal se;
}
void toggle() { on = !lon; }
void abort() { interrupt(); }
private void output() { Systemout.println(“output”); }
public void run() {

try {
while (true) { Interpret:
I f (on) output(); el &
sl eep(1000) ; 99" €,
) abort
} catch(lnterruptedException _) { as inputs
. y LT
: System out. println(“Done!”); out put
} as output

50

ThreadDemo Code: ThreadDemo

cl ass ThreadDeno {
private stop(MyThread a, MyThread b) {
a.abort () ;
b. abort ();
}
public static void main(String[] args) {
MyThread a = new MyThread();
MyThread b = new MyThread();
a.start(); b.start();
while (true) {
switch (readChar()) {
case ‘a’: a.toogle(); break;
case ‘b’: b.toogle(); break;
case ‘i1’': stop(a,b); return;

51

il Summary

> Concepts: concurrent processes and process
Interaction.

> Models:

asynchronous (arbitrary speed) & interleaving (arbitrary
order)

parallel composition (finite state process with action
interleaving)

process interaction (shared actions)
process labeling, action relabeling, and hiding

structure diagrams

> Practice: multiple threads in Java.

52

