Concurrency

2 — Processes and Threads

Alexandre David
adavid@cs.aau.dk

Credits for the slides:
Claus Brabrand
Jeff Magee & Jeff Kramer

Concurrent Processes

We structure complex systems as sets of simpler activities,

each represented as o S@quential process

Processes can be CONCUrKrent

Designing concurrent software:

-.complex anterror prone

‘We need rigorous engineering approach!

Concept: process ~
sequence of actions

:]

Model: process ~
Finite State
Processes (FSP)

Practice: process ~
Java thread

il Processes and Threads

Concepts: Processes - units of sequential execution

Models: Finite State Processes (FSP)

to model processes as sequences of actions

Labelled Transition Systems (LTS)

to analyse, display, and animate behaviour

ADbstract model of execution

Practice: Java threads

Modeling Processes

Models are described using state machines, known as Labelled
Transition Systems (LTS)

These are described textually as Finite State Processes (FSP)

Analysed/Displayed by the LTS Analyser (LTSA)

& LTS - graphical form
& FSP - algebraic form

5 FSP - STOP

| STOP is the inactive process, doing absolutely nothing. |

FSP:

I NACTIVE = STCP. INACTIVE state machine

(terminating process)

LTS:

FSP — Action Prefix

If X is an action and P a process then (X=> P) describes a process that

initially engages in the action X and then befaves exactly as described by P.

FSP: ONESHOT = (once -> STOP).

Convention: actions begin with lowercase letters

PROCESSES begin with uppercase letters

Modeling Processes

A process is the execution of a sequential program. It is modelled as a finite
state machine which transits from state to state by executing a sequence of

atomic actions.

/ﬁ@
@w/ a light switch LTS

a sequence of actions or

lrace

on->of f ->on->of f ->on->o0f f -> ...

FSP — Action Prefix and Recursion

Repetitive behaviour uses recursion:

SW TCH = OFF,
OFF = (on -> ON), m
ON = (off-> OFF).

Substituting to get a more succinct definition:

SWTCH = OFF,
OFF = (on ->(off->0FF)).
Again?:

SWTCH = (on->of f->SW TCH) .

Animation using LTSA

- ,
The LTS animator can be used to
s :“ ¥ or produce a trace.

A TicKed actions are eligible for

selection.

In the LTS, the last action is
highlighted in red.

- O SU

(@)

2535553353

FSP — Action Prefix

FSP model of a traffic light:

TRAFFI CLI GHT = (red->or ange- >gr een- >or ange
-> TRAFFI CLI GHT).

LIS?

@/@\@/Orfa@e\s green
‘\WJ

Trace(s)?

10

FSP — Action Prefix

FSP model of a traffic light:

TRAFFI CLI GHT = (red->or ange- >gr een- >or ange
-> TRAFFI CLI GHT).

LTS?
@/@\@/Gr/a@e\s green
‘\WJ
Trace(s)?

r ed->o0r ange->gr een->or ange->r ed->or ange->...

11

F'SP - Choice

If X and Y are actions then (X=> P [Y=> Q) describes a process
which initially engages in either of the actions X or Y. After the first

action has occurred, the subsequent beRaviour is described by P if the first

action was X; and Q if the first action was Y.

Who or what makes the choice?

Is there a difference between input and output actions?

12

F'SP - Choice

FSP model of a drinks machine :

DRI NKS = (red->cof f ee->DRI NKS
| bl ue- >t ea- >DRI NKS

) .

LTS generated using LISA:

Possible traces?

13

Non-deterministic Choices

Process (x-> P | x -> Q) describes a process which engages in X and
then behaves as either P or Q,

CO N = (toss->HEADS| t oss->TAI LYS),
HEADS= (heads->CO N),
TAILS= (talls->CAON).

Tossing a coin.
LTS?

Possible traces?

14

Example

How do we model an UNreliable communication channel

which accepts IN actions and if a failure occurs produces no output,

otherwise performs an OUT action?

Use non-determinism....
CHAN = (i n- >CHAN
| 1 n- >out - >CHAN
).

15

FSP — Indexed Processes and Actions

Single slot buffer that inputs a value in the range 0 to 3 and then outputs

that value:

equivalent to

BUFF = (1 n[O] ->out|[0] - >BUFF
| n[1] - >out [1] - >BUFF
| N[2] - >out [2] - >BUFF
| n[3] - >out [3] - >BUFF

) .

or using a process parameter with default value:

BUFF(N=3) = (in[i:0..N->out[i]-> BUFF).

16

Cont.

BUFF = (in[i:0..3]->out[i]-> BUFF).

equivalent to

BUFE = (in[i:0..3]->QUT[i]),

QUT[1:0..3] = (out[i]->BUFF).
equivalent to

BUFF

QUT[] :0.. 3]

(out[]]->BUFF).

(in[i:0..3]->0QUT[i1]),

17

FSP — Constant and Addition

index expressions to model

calculation:

SUM = (| n[a b* >TOTAL[a+b]) |
TOTAL[S out| s] - >SUV

18

FSP — Constant and Range Declaration

index expressions to model

calculation:

const N

range T
range R

SUM
TOTAL[s: R

(infa: T][b: T] - >TOTAL[a+b]),
(out [s]->SUM .

19

FSP — Guarded Actions

The choice (When B X => P [y -> Q) means that when the
guard B is true then the actions X and Y are both eligible to be

chosen, otherwise if B is false then the action X cannot be chosen.

COUNT (N=3) = COUNT[0],
COUNT[1:0..N = (when(i<N) inc->COUNT[I +1]
| when(i >0) dec->COUNT[I - 1]

) .
LIS?

0

1NC

dec

20

FSP — Guarded Actions

A countdown timer which beeps after N ticKs, or can be stopped.

(start->COUNTDOWN] N),

COUNTDOMN (N=3)
COUNTDOMN[i : 0. . N]
(when(i>0) tick->COUNTDOM i - 1]
| when(1 ==0) beep- >STOP
| st op- >STOP
).

21

FSP — Guarded Actions

What is the following FSP process equivalent to?

const False = 0
P = (when (Fal se) doanyt hi ng->P).

Answer:

22

FSP — Guarded Actions

What is the following FSP process equivalent to?

const False = 0
P = (when (Fal se) doanyt hi ng->P).

Answer:

STOP

23

FSP — Process Alphabets

The alphabet of a process is the set of actions in which it can engage.

Alphabet extension can be used to extend the IMPIICIT alphabet of a

process:

VWRI TER = (wite[1l]->wite[3]->WRl TER)
+H{wite[0..3]}.

Alphabet of WRl TERis thesee{Wr 1t e[0. . 3] }

(we make use of alphabet extensions in later chapters)

24

i) Implementing Processes

Modelling processes as finite
state machines using FSP/LTS.

Implementing threads in Java.

Note: o avoid confusion, we use the term PFYOCESS when referring to
the models, and tread when referring to the implementation in Java.

25

“|‘ Process

()]

%1 Process:

#Data: the heap (global, heap allocated data)
% Code: the program (bytecode)

Stack: the stack (local data, call stack)

% Descriptor: program counter, stack pointer, ...

26

‘l“ Implementing Processes: the OS View

A multi-threaded process

stac stac S t(lC

descr. descr. descr.

A (heavyweight) process in an operating system is represented by its code, data

and the state of the machine registers, given in a descriptor. In order to

support multiple (lightweight) threads of control, it fius muttiple
stacks, one for each thread.

27

Threads 1n Java

A Thread class manages a single sequential thread of control. Threads may

be created and deleted dynamically.

Thread

run()

i

MyThread

run()

‘The Thread class executes instructions from its method
run(). The actual code executed depends on the

implementation provided for run()in a derived class.

class MyThread extends Thread {

public void run() {
[]......
}

}
Thread x = new MyThread();

28

Cont.

Since Java does not permit multiple infieritance, we often implement the FUN()

method in a class not derived from Thread but from the interface Runnable.

target

Thread

public I nterface Runnabl e {
public abstract void run();

}

class MyRun i nmpl enents Runnabl e {
public void run() {
[......

}
}

Thread x = new Thread(new MyRun());

29

Thread Life-cycle in Java

An overview of the life-cycle of a thread as state transitions:

.SV Thr ead() start () causes the thread to call its run() method.
) st art
[Created] ()'[Alive]
stop, or

run() returns

\Ys O,O()

*[Terminated]

The predicatel SAl 1 Ve() can be
used to test if a thread has been started

but not terminated. Once terminated, it

cannot be restarted (see mortals).

30

Cont. Alive States

Once started, an @HIV@ thread has a number of sub-states :

start()/ \

{ Running
yi el d() di spat ch
Y suspend =
[Runnable J_‘ { Non-Runnable]
resune \

o /

stop(), or
run() returns

wal t () anda NOt 1 Ty () mayalso be used to l
change between Runnable and Non-Runnable

Jave Thread Life-cycle: FSP

THREAD
CREATED

RUNNI NG

RUNNABL E

NON_RUNNABLE

TERM NATED

CREATED,

(start - >RUNNI NG

| st op - >TERM NATED) ,
({suspend, sl eep} - >NON RUNNABLE
| yield - >RUNNABLE

| { st op, end} - >TERM NATED

| run - >RUNNI NG)
(suspend - >NON_RUNNABLE
| di spat ch - >RUNNI NG

| st op - >TERM NATED) ,
(resune - >RUNNABLE

| st op - >TERM NATED) ,

STOP.

32

Java Thread Life-cycle: FSP

start suspend
@/StOl) - resu
N\ \\ét o D
end, run, \\ij\
di spatch arenot "
methods of class Thread. I \SEP/ N

States 0 to 4 correspond to CREATED, TERM NATED,
RUNNI NG, NON- RUNNABLE, and RUNNABLE, respectively.

33

Countdown Timer - Example

COUNTDOWN (N=3)
COUNTDOMWN[i : 0. . N]
(when(i>0) tick->COUNTDOWN i - 1]
| when(1 ==0) beep->STCOP
| st op- >STOP
) .

(start->COUNTDOWN] N),

Implementation in Java?

34

Countdown Timer — Class Diagram

Applet Runnable

A

|
|
CountDown | ____ _ _

—RitO)— counter target Thread
start()
stop()

—FHR0—
tick()

beep()

The class COUNT DOWN derives from APP| €l and contains the
implementation of the ¥V UN() method whick is required by Thr ead.

35

Countdown Timer - Class

public class Count Down extends Appl et

| npl enent s Runnabl e {

Thread counter;
Nt | ;
firnal static int N = 10;

void run() {
void start() { ...
void stop() { ...
void tick() {
voi d beep() {

e d o d e)

36

Class/Model of start(), stop(), and run()

public void start() { _
counter = new Thread(this); start -> CO[N|

I = N, counter.start();

}

public void stop() {
counter = null;

}

public void run() {
whil e(true) {

stop -> STOP

COUNTDOWN[1] process
recursi onasawhi | e foop

I f (counter == null) return; STOP
1 f (i>0) { tick(); --i; } . . .
} if (i==0) { beep(); return;} mgzg:zgé)tb'eg:; :Z CS:'[I?[OID-]-]

}

STOP whenrun() returns

37

i) Summary

Concepts: Process — unit of concurrency, execution of a program

Models: LTS to model processes as state machines — sequences of atomic
actions

FSP to specify processes using prefix. “->", choice “| " and recursion

Practice: Java threads to implement processes

‘Thread life-cycle (created, running, runnable, non-runnable,

terminated)

38

