Concurrency

1 — Introduction

Alexandre David
adavid@cs.aau.dk

Credits for the slides:
Claus Brabrand
Jeff Magee & Jeff Kramer

5 Course

> Teachers:

— Alexandre David adavid@cs.aau.dk

- Emmanuel Fleury fleury@cs.aau.dk

g Page: hitp:/ /www.cs.aau.dk [~adavid /teaching | MTP-05/
> Lectures:
- tuesdays/fridays 8h-12h

- lecture + exercises

- follow the Concurrency book + additional
materials

“|' Materials

> Concurrency — State Models and Java
Programs, by Jeff Magee and Jeff Kramer.

> Other useful books, see on the web site [3]
[4] [6] in particular.

> Other materials:

- slides
- photocopies

- recommended readings on the web

Cconcurrency

State Models and Java Programs

Jeff Magee and Jeff Kramer
adapted by Claus Brabrand
modified by Alexandre David

T Why this Course?

> Story: Between 1985 and 1987, a computer
controlled therapy radiation machine, the
Therac-25, caused 6 known accidents with
massive overdoses causing serious injuries
and deaths. The fault came from race
conditions between concurrent activities in
the control program.

> Lesson: If you are going to design Therac-26,
then do it right.

5 Is it Useful?

> Concurrent programming is used in a wide
range of applications, most are either:

- life critical
- money critical

- important for quality of life

> This course is about the principles and
practices of concurrent programming.

> It is useful even if you don't design Therac-
26.

i) Concurrent Programs

> Example: activities involved in building a
house include bricklaying, carpentry,
plumbing, electrical installation, painting...
Some activities may occur at the same time
and have precedence constraints (no
painting before bricklaying).

> It 1s similar for computer programs:
execution of a program (or subprogram) is
termed as a process.

> Concurrent programs are often interleaved.

What is a Concurrent Program?

" > Sequential program: one
process, one single thread of

control.

- sequential computations only

" > Concurrent program: one or

ov more processes, one or more

threads of control per process.

- multiple computations in parallel

— control of several activities at the
same time

"l_ Advantages of Concurrent Programming

> Performance gain from multiprocessing
hardware

- parallelism

- future of computing (multi-core CPU)
> Increased application throughput

— I/O calls block only their threads
> Increased application responsiveness

- high priority threads for user requests

- reactive systems

i Advantages and Drawbacks!

> More appropriate program structure
- concurrency reflected in programs

> But 1t is more difficult to reason about
concurrent activities than sequential activities:

- shared resources

- mutual exclusion

- preemption

- precedence constraints

- how to write and debug!!!

- etc...

10

5 Be Careful!

> Therac-25: concurrent programming error
with race conditions — caused deaths.

> Mars Rover: problems with interaction
between concurrent tasks (deadlock caused
by a priority inversion of tasks holding
shared resources) that caused periodic

software resets — not nice when it 1s on
Mars!

> We need to be rigorous.

11

M Cruise Control Example

> Requirements: controlled by 3 buttons
(resume, on, off) with simple rules for the
behaviour.

> How to design such a program?

> How to ensure the programs meets its
specifications?

> How to define the specifications?

> How to define unsate behaviours?

12

Java Applet

Cruise Control

Hf}@ﬂ
l1uu Cruise Speed

1110

ignition @ Throttie [l |
Brake []

engineln | enagineDff I accelerate | brake | @l aff I TESLIME |

Cruise control buttons &

¢ Is the system safe?

¢ Would testing be sufficient to discover all errors?

13

il Cruise Controller cont.

> What you would do:

- use your own experience and design it as best as
you can.

- test it with a simulator of some kind, use a
number of scenarios or test cases.

> Testing is difficult: how much testing do we
need? Coverage problems.

> Note: concurrent events may occur in any
order, difficult to (re-)produce right/wrong
sequences.

14

Let's Make a Model!

> A model is a simplified representation of the
real world that focuses on certain aspects to
analyze properties. For us: concurrency.

- Based on Labelled Transition Systems (LTS) .

engineOff
4 speed EngineOff = engineOn->EngineOn
Engineoﬁvo\/,o> EngineOn = engineOft->Engine Off

EngineOn -
engineOn 8 | speed->EngineOn

15

LTSA

> LTSA in Java provided on the

CD Of the bOOko |_ enginen
El:arSpeed |_ clearSpeed
. . recordSpeed [T engineof
> Animation of models to onabieContcol [
. . . g::g:mmﬂ [~ recordSpeed
visualize behaviours. T
L?]Sam?:um,m [disableContral
> Mechanical verification of oo
. engineofr [resume
safety properties. T L epe
gimmttle [setThrottle
Al fzoom;

Engineers use models to gain confidence in the adequacy and validity of
a proposed design

16

“|‘ State Machines

> States: indicate in which states the system is
in, e.g., engine switched on or off.

> Transitions between states: when given events
occur or actions are taken, the system changes

state.

> The point is to analyse the behaviour of the
system before it is implemented.

> Analysis done by a model-checker. When
prooblems are found, it generates the sequence
of actions that lead to the problem.

17

Practice

> Java used for the examples:

- widely available, accepted, and portable

- provides good concurrency abstractions
> Later in the course, C:

- common on all operating systems

¥

“Toy problems”:

A.‘
crystallize concurrency programming issues and problems!

18

Course Objectives

This course is intended to provide a SOUNM UNderstanding of
the cOncepts, models and practice involved in designing

concurrent s oftware.

> Concepts: thorough understanding of
concurrency problems and solution techniques.

> Models: provide insight into concurrent
behaviour and aid reasoning about particular
designs.

> Practice: programming practice and experience.

19

Course Outline

Processes and Threads

Concurrent Execution

Shared Objects & Interference
Monitors & Condition Synchronization
Deadlock

Safety and Liveness Properties

Model-based Design

Concepts
Models

Practice

¢

Message Passing ¢

20

i) Summary

> Concepts:
Model based approach for the design and
construction of concurrent programs.

> Models:
Finite State models to represent concurrent

behaviours.

> Practice:
Java and C for constructing concurrent
programs.

21

