
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Uppaal SMC Tutorial?

Alexandre David1, Kim G. Larsen1, Axel Legay2, Marius Mikučionis1??, Danny Bøgsted Poulsen1

1 Department of Computer Science, Aalborg University, Denmark
2 INRIA/IRISA Rennes, France

The date of receipt and acceptance will be inserted by the editor

Abstract. This tutorial paper surveys the main features
of Uppaal SMC, a model checking approach in Uppaal
family that allows us to reason on networks of complex
real-timed systems with a stochastic semantic. We demon-
strate the modeling features of the tool, new verification
algorithms and ways of applying them to potentially
complex case studies.

1 Introduction

Computer systems play a central role in modern soci-
eties and their errors can have dramatic consequences.
Proving the correctness of computer systems is therefore
a highly relevant activity, on which both industry and
academics invest a considerable amount of effort. Among
such techniques, one finds (1) testing [12], the traditional
approach that detects bugs by exercising the real sys-
tem with test cases, and (2) formal methods, e.g., model
checking [17], that is a more mathematical approach that
can guarantee the absence of bugs in the system design.
Both approaches have been largely deployed on complex
case studies.

Originally, formal verification was devoted to software
and hardware systems by considering their discrete be-
haviors. However, the past years shown that real-time
aspects play central roles in systems, and that this fea-
ture should be taken into account in the verification
process. Developing formal techniques for such systems

? The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreements � 318490 (SENSATION) and
� 601148 (CASSTING). Also the research has received funding
from the Sino-Danish Basic Research Center IDEA4CPS funded
by the Danish National Research Foundation and the National
Science Foundation China.
?? EU ARTEMIS grant agreement � 269335 (MBAT).

has thus been the subject of intensive studies. One of
the prominent results on the topic was the introduction
of model checking techniques for timed automata [1], a
natural model to capture real-time systems whose be-
haviors depends on clocks that can be reset. Among all
the tools that have been developed to implement the
timed automata theory, one finds Uppaal, which has
now become the leader in the area.

Uppaal is a toolbox for verification of real-time sys-
tems represented by (a network of) timed automata ex-
tended with integer variables, structured data types, and
channel synchronization. The tool is jointly developed
by Uppsala University and Aalborg University. It has
been applied successfully in case studies ranging from
communication protocols to multimedia applications (see
[4] and [5] for concrete examples). The first version of Up-
paal was released in 1995 [36]. Since then it has been in
constant development. In the same spirit as any other pro-
fessional model checker such as SPIN, Uppaal proposes
efficient data structures [37], a distributed version of Up-
paal [9,3], guided and minimal cost reachability [7,35,8],
work on UML Statecharts [25], acceleration techniques
[27], and new data structures and memory reductions
[10,6].

Unfortunately, timed automata is not a panacea. In
fact, albeit powerful, the model is not expressive enough
to capture behaviors of complex cyber-physical systems.
Indeed, the continuous time behaviors of those systems
often rely on rich and complex dynamics as well as on
stochastic behaviors. The model checking problem for
such systems is undecidable, and approximating those
behaviors with timed automata [29] was originally the
best one could originally do in Uppaal.

In this paper, we introduce Uppaal SMC that pro-
poses an alternative to the above mentioned problem.
This new branch of Uppaal proposes to represent sys-
tems via networks of automata whose behaviors may
depend on both stochastic and non-linear dynamical fea-

tures. Concretely, in Uppaal SMC, each component of
the system is described with an automaton whose clocks
can evolve with various rates. Such rates can be specified
with, e.g., ordinary differential equations.

To allow for the efficient analysis of probabilistic per-
formance properties Uppaal SMC proposes to work with
Statistical Model Checking (SMC) [42,38], an approach
that has been proposed as an alternative to avoid an
exhaustive exploration of the state-space of the model.
The core idea of SMC is to monitor some simulations
of the system, and then use results from the statistics
area (including sequential hypothesis testing or Monte
Carlo simulation) in order to decide whether the system
satisfies the property with some degree of confidence. By
nature, SMC is a compromise between testing and classi-
cal model checking techniques. Simulation-based methods
are known to be far less memory and time intensive than
exhaustive ones, more expressive and are oftentimes the
only option. SMC has been implemented in a series of
tools that have been applied to a wide range of case
studies. Unlike more “academic” exhaustive techniques,
SMC gets widely accepted in various research areas such
as systems biology [18,33,34,21,32], energy-centric sys-
tems [20], automotive/avionics, or software engineering,
in particular for industrial applications. There are sev-
eral reasons for this success. First, it is very simple to
implement, understand and use (especially by industry,
software engineers, and generally all people that are not
pure researchers but customers of our results and tools)
[15,11,4]. Second, it does not require extra modeling or
specification effort, but simply an operational model of
the system that can be simulated and checked against
state-based properties. Third, it allows to model check
properties that cannot be expressed in classical temporal
logics. Aside from this, the flexibility of SMC allows it
to be used in other areas than verification, including
planning and robotics.

In this paper SMC is presented as a technique for fully
stochastic models thus it validates performance properties
of a given deterministic (or stochastic) controller in a
given stochastic environment. However, we note that
SMC is applicable to systems exhibiting non-determinism
(transitions with undefined probability distributions): for
instance the SMC tool Cosmos has been used to find
optimal schedulers for Markov Decision Processes [28]
and in a more recent work[22] an experimental version of
Uppaal SMC was used for synthesizing controllers for
priced timed markov decision processes.

This paper is a complete tutorial on Uppaal SMC for
hybrid and fully stochastic systems. We illustrate most
of the modeling features of the tool, the usage of the
graphical interface and of the simulation framework. We
discuss the SMC algorithms that are available, and in-
troduce some techniques to deal with dynamical systems.
Finally, we present some modeling features and tricks.

(a) A1.

(b) A2.

(c) A3.

Fig. 1: Three stochastic timed automata.

2 Modeling Formalism

The modeling formalism of Uppaal SMC is based on
a stochastic interpretation and extension of the timed
automata (TA) formalism [1] used in the classical model-
checking version of Uppaal [4]. For individual TA com-
ponents the stochastic interpretation replaces the non-
deterministic choices between multiple enabled transi-
tions by probabilistic choices (that may or may not be
user-defined). Similarly, the non-deterministic choices
of time-delays are refined by probability distributions,
which at the component level are given either uniform
distributions in cases with time-bounded delays or expo-
nential distributions (with user-defined rates) in cases of
unbounded delays.

Consider the three TAs A1, A2 and A3 from Fig. 1. Ig-
noring (initially) the weight annotations on locations and
edges, the END-locations in the three automata are eas-
ily seen to be reachable within the time-intervals [6, 12],
[4, 12] and [0,+∞). The stochastic interpretation of the
three TAs provides probability distributions over the
reachability time. For A1, the delay of the three tran-
sitions will all be (automatically) resolved by indepen-
dent, uniform distributions over [2, 4]. Thus the overall
reachability time is given as the sum of three uniform
distributions as illustrated in Fig. 2a. For A2, the delay
distributions determined by the upper and lower path to
the END-location are similarly given by sums of uniform
distributions. Subsequently the combination (1

6 to 5
6) of

these as illustrated in distribution of the overall delay is
obtained by a weighted Fig. 2b. Finally, in A3 – in the

2

(a) A1 arrival to END.

(b) A2 arrival to END.

(c) A3 arrival to END.

Fig. 2: Distributions of reachability time

absence of invariants – delays are chosen according to
exponential distributions with user-supplied rates (here
1
2 , 2 and 1

4). In addition, after the initial delay a discrete
probabilistic choice (1

4 versus 3
4) is made. The resulting

distribution of the overall reachability time is given in
Fig. 2c.

Importantly, the distributions provided by the stochas-
tic semantics are in agreement with the delay intervals
determined by the standard semantics of the underlying
timed automata. Thus, the distributions for A1 and A2

have finite support by the intervals [6, 12] and [4, 12],
respectively. Moreover, as indicated by A3, the notion
of stochastic timed automata encompasses both discrete
and continuous time markov chains. In particular, the
class of reachability-time distributions obtained from
the stochastic timed automata (STA) of Uppaal SMC
includes that of phase-type distributions.

Networks. As in Uppaal, a model in Uppaal SMC con-
sists of a network of interacting component STAs. Here
it is assumed that these components are input-enabled,
deterministic (with a probability measure defined on the
sets of successors), and non-zeno. The component STAs
communicate via broadcast channels and shared variables

A1

A0

x<=1

a!

B1

B0
y<=2

b!
T1

T3

T0

C’==2

C’==4

a?

b?

A B T

Fig. 3: An NSTA, (A|B|T).

Time

Cost

Time/Cost

p
ro

b
a
b
ili

ty

0

0.12

0.24

0.36

0.48

0.60

0.72

0 1.2 2.4 3.6 4.8 6.0

Fig. 4: Cumulative probabilities for time and Cost-
bounded reachability of T3.

to generate Networks of Stochastic Timed Automata
(NSTA). The communication is restricted to broadcast
synchronizations to keep a clean semantics of only non-
blocked components which are racing against each other
with their corresponding local distributions.

Figure 3 shows an NSTA with three parallel compo-
nents A, B, and T as specified using the Uppaal GUI.
One can easily see that the composite system (A|B|T)
has a transition sequence:(
(A0, B0, T0), [x = 0, y = 0, C = 0]

) 1−→ a!−→(
(A1, B0, T1), [x = 1, y = 1, C = 4]

) 1−→ b!−→(
(A1, B1, T2), [x = 2, y = 2, C = 6]

)
,

demonstrating that the final location T3 of T is reachable.
In fact, location T3 is reachable within cost 0 to 6 and
within total time 0 and 2 in (A|B|T) depending on when
(and in which order) A and B choose to perform the
output actions a! and b!. Given that the choice of these
time-delays is governed by probability distributions, a
measure on sets of runs of NSTAs is induced, according
to which quantitative properties such as “the probabil-
ity of T3 being reached within a total cost-bound of 4.3”
become well-defined (plot shown in Fig. 4).

For components, as stated in the previous section,
Uppaal SMC applies uniform distributions for bounded
delays and exponential distributions where a component
STA can remain indefinitely in the same location. In a
network of STAs the components repeatedly race against
each other, i.e. they independently and stochastically
decide on their own how much to delay before outputting,
with the “winner” being the component that chooses the

3

minimum delay. For instance, in the NSTA of Fig. 3, A
wins the initial race over B with probability 0.75.

As observed in [24], though the stochastic semantic
of each individual STA in Uppaal SMC is rather sim-
ple (but quite realistic), arbitrarily complex stochastic
behavior can be obtained by their composition when
mixing individual distributions through message passing.
The beauty of our model is that these distributions are
naturally and automatically defined by the network of
STAs.

Train Crossing Example Uppaal SMC takes as input
NSTAs as described above. Additionally, there is support
for all other features of the Uppaal model checker’s
input language such as integer variables, data structures
and user-defined functions, which greatly ease modeling.
Uppaal SMC allows the user to specify an arbitrary
(integer) rate for the clocks on any location. In addition,
the automata support branching edges where weights can
be added to give a distribution on discrete transitions.
It is important to note that rates and weights may be
general expressions that depend on the states and not
just simple constants.

To illustrate the extended input language, we consider
a train-gate example adapted from [41]. The example
model is distributed together with Uppaal SMC tool.
A number of trains are approaching a bridge on which
there is only one track. To avoid collisions, a controller
stops the trains. It restarts them when possible to make
sure that trains will eventually cross the bridge. There
are timing constraints for stopping the trains modeling
the fact that it is not possible to stop trains instantly.
The interesting point w.r.t. SMC is to define the arrival
rates of these trains. Figure 5a shows the template for
a train. The location Safe has no invariant and defines
the rate of the exponential distribution for delays. Trains
delay according to this distribution and then approach by
synchronizing on appr[i] with the gate controller. Here
we define the rational 1+id

N2 where id is the identifier of
the train and N is the number of trains. Rates are given
by expressions that can depend on the current states.
Trains with higher id arrive faster. Taking transitions
from locations with invariants is given by a uniform dis-
tribution over the time interval defined by the invariant.
This happens in locations Appr, Cross, and Start, e.g., it
takes some time picked uniformly between 3 and 5 time
units to cross the bridge. Figure 5b shows the gate con-
troller that keeps track of the trains with an internal
queue data-structure (not shown here). It uses functions
to queue trains (when a train approaches and the bridge
is occupied in Occ) or dequeue them (when some train
leaves and the bridge is free).

(a) Train.

appr[e]?

leave[e]?

appr[e]?
dequeue()

enqueue(e)
stop[tail()]!

go[front()]!

Occ

Stopping

Free

e == front()

e:id_t

e : id_t

e : id_t

enqueue(e)

len == 0

len > 0

(b) Gate controller.

Fig. 5: Templates for the train-gate example.

3 Query Language

In addition to the standard model checking queries – i.e.
reachability, invariance, inevitability and leads-to, which
are still available – Uppaal SMC provides a number
of new queries related to the stochastic interpretation
of timed automata. Uppaal SMC allows the user to
visualize the values of expressions (evaluating to integers
or clocks) along simulated runs. This gives insight to
the user on the behavior of the system so that more
interesting properties can be asked to the model-checker.
The concrete syntax applied in Uppaal SMC is as follows:

simulate N [<=bound] { E1,..,Ek }

where N is a natural number indicating the number of
simulations to be performed, bound is the time bound
on the simulations, and E1, ..,Ek are the k (state-based)
expressions that are to be monitored and visualized. To
demonstrate this on our previous train-gate example, we
can monitor when Train(0) and Train(5) are crossing as
well as the length of the queue. The query is

simulate 1 [<=300] {Train(0).Cross, Train(5) .Cross,

Gate.len}

4

Gate.len

Train[5].Cross

Train[0].Cross

time

v
a

lu
e

0

1.5

3.0

4.5

6.0

0 50 100 150 200 250 300

Simulations

Fig. 6: Visualizing the gate length and when Train(0) and
Train(5) cross on one random run.

This gives us the plot of Fig. 6. Interestingly Train(5)

crosses more often (since it has a higher arrival rate).
Secondly, it seems unlikely that the gate length drops
below 3 after some time (say 20), which is not an obvious
property from the model. We can confirm this by asking
Pr[<=300](<> Gate.len < 3 and t > 20) and adding a clock
t. The probability is in [0.102, 0.123].

For specifying properties over NSTAs, we use a weighted
extension of the temporal logic MITL [2] expressing prop-
erties over runs [13], defined by the grammar:

ϕ ::= ap | ¬ϕ | ϕ1 ∧ ϕ2 | Oϕ | ϕ1U
x
≤d ϕ2

where ap is a conjunction of predicates over the state of
a NSTA, d is a natural number and x is a clock. Here,
the logical operators are interpreted as usual, and O is a
next state operator. A weighted MITL-formula ϕ1U

x
≤d ϕ2

is satisfied by a run if ϕ1 is satisfied on the run until
ϕ2 is satisfied, and this will happen before the value of
the clock x exceeds d. As usual ¬(ϕ1 ∧ ϕ2) = ¬ϕ1 ∨ ¬ϕ2

and we use standard MITL abbreviations tt = ϕ ∨ ¬ϕ,
3x≤d ϕ = tt Ux≤d ϕ and 2x≤dϕ = ¬3x≤d ¬ϕ.

For an NSTA M we define PM (ϕ) to be the proba-
bility that a random run of M satisfies ϕ. The problem
of checking PM (ϕ) ≥ p (p ∈ [0, 1]) is undecidable in
general.1 For the sub-logic of cost-bounded reachability
problems PM (3x≤C ap) ≥ p, where x is a clock and C
is a bound, Uppaal SMC approximates the answer us-
ing simulation-based algorithms known under the name
of statistical model checking[42] algorithms (SMC). We
briefly recap statistical algorithms permitting to answer
the following three types of questions:

1. Probability Estimation:
What is the probability PM (3x≤C ap) for a given
NSTA M?

2. Hypothesis Testing:
Is the probability PM (3x≤C ap) for a given NSTA M
greater or equal to a certain threshold p ∈ [0, 1] ?

3. Probability Comparison:
Is the probability PM (3x≤C ap1) greater than the
probability PM (3y≤D ap2)?

From a conceptual point of view solving the above
questions using SMC is simple. First, each run of the

1 Exceptions being stochastic TAs with 0 or 1 clocks and with p
being 0 or 1.

P

1

0
estimates

probability

Fig. 7: True probability P and confidence intervals.

system is encoded as a Bernoulli random variable that is
true if the run satisfies the property and false otherwise.
Then a statistical algorithm groups the observations to
answer the three questions. For the quantitative question
(1), we will use an estimation algorithm that resemble the
classical Monte Carlo simulation, while for the qualitative
questions (2 and 3) we shall use sequential hypothesis
testing. The two solutions are detailed hereafter.

Probability Estimation. The probability estimation algo-
rithm [31] computes the number of runs needed in order
to produce an approximation interval [p − ε, p + ε] for
p = P(ψ) with a confidence 1− α. A frequentist interpre-
tation of this result tells us that if we repeat the interval
estimation N times, then the estimated confidence inter-
val p± ε contains the true probability at least (1− α)N
times in the long run (N → ∞). Figure 7 shows the
relation between the estimated probability confidence
intervals and the true (unknown) probability P.

The original algorithm for interval estimation decides
the number of runs apriori based on the values of ε and α
by using Chernoff-Hoeffding inequality [16,30], however
for practical purposes this inequality is too conservative,
moreover the result can be even more improved when the
probability is further from 1

2 . Uppaal SMC implements
a sequential method where a probability confidence in-
terval (for given α) is derived with each new simulation
measurement and the simulation generation is stopped
when the confidence interval width is less than 2ε. The
confidence interval is derived by using Clopper-Pearson
“exact” method [19] using the fact that the measurements
are always binary (the property is either satisfied or not)
and thus the result follows binomial distribution. The
confidence level is also adjusted for one sided intervals,
where the measured property is always true or always
false.

In Uppaal SMC the probability confidence interval
can be estimated by the following query:

Pr[bound](ψ)

Example 1. Recall the Train Crossing example of the
previous section. The following queries estimates the
probabilities that Train(0) and Train(5) will be in the
crossing before 100 time-units:

Pr[<=100](<> Train(0).Cross)

Pr[<=100](<> Train(5).Cross)

5

Fig. 8: The Verifier of Uppaal SMC

Fig. 9: The cumulative probability distribution of
Pr[<=T](<> Train(5).Cross).

Figure 8 shows how these (and other) queries are en-
tered in the “Query” field of the Verifier tab of Up-
paal SMC. In the “Overview” field the answers are
provided: [0.502421, 0.602316] and [0.902606, 1] are the
two 95% confidence intervals obtained from 383 and 36
runs, respectively. This shows – as we would expect – that
the more eager Train(5) has a higher probability of reach-
ing the crossing than Train(0) within the given time-limit.
Right-clicking on the answers provide easy access to more
detailed information in terms of (cumulative, confidence
interval, frequency histogram) probability distribution of
the time-bounded reachability property, e.g. Fig. 9.

Hypothesis Testing This approach reduces the qualitative
question to e test the null-hypothesis:

H : p = PM (ψ) ≥ θ

against the alternative hypothesis:

K : p = PM (ψ) < θ

To bound the probability of making errors, we use strength
parameters α and β and we test the hypothesis H0 : p ≥

p0 and H1 : p ≤ p1 with p0 = θ + δ0 and p1 = θ − δ1.
The interval p0 − p1 defines an indifference region, and
p0 and p1 are used as thresholds in the algorithm. The
parameter α is the probability of accepting H0 when
H1 holds (false positives) and the parameter β is the
probability of accepting H1 when H0 holds (false neg-
atives). The above test can be solved by using Wald’s
sequential hypothesis testing [40]. This test computes a
proportion r among those runs that satisfy the property.
With probability 1, the value of the proportion will even-
tually cross log(β/(1− α) or log((1− β)/α) and one of
the two hypothesis will be selected. In Uppaal SMC we
use the following query:

Pr[bound](ψ) >= p0

where bound defines how to bound the runs. The three
ways to bound them are 1) implicitly by time by specify-
ing <=M (where M is a positive integer), 2) explicitly by
cost with x<=M where x is a specific clock, or 3) by num-
ber of discrete steps with #<=M . In the case of hypothesis
testing p0 is the probability to test for. The formula ψ is
either <>q or []q where q is a state predicate.

Remark 1. Bounding runs for a number of discrete steps
guarantees termination of the simulation. Bounding over
time may however result in non-termination if the model
is not time diverging. Similarly, bounding over a non-
diverging clock can result in non-termination.

Uppaal SMC cannot detect if a clock (or time) is
diverging in a model thus the modeler needs to ensure
this.

Example 2. Returning to the Train Crossing example,
we may not be directly interested in the actual prob-
ability of Train(0) crossing within 100 time-units, but
merely whether this unknown probability is above 0.2,
as reflected by the following query (see also Fig. 8):

Pr[<=100] (<> Train(0).Cross) >= 0.2

Within a number of runs significantly smaller than that of
estimating the same probability (383 runs), this property
may be confirmed. The number of runs needed by Wald’s
sequential hypothesis testing method varies, e.g. posing
the above query 5 times, the property was confirming
within 66, 62, 65, 67, and 49 runs respectively with 5%
level of significance.

Probability Comparison This algorithm, which is de-
tailed in [24], exploits an extended Wald testing. In
Uppaal SMC, we use the following query:

Pr[bound1](ψ1) >= Pr[bound2](ψ2)

Example 3. In the Train Gate example, it might be suffi-
cient to confirm that the probability that Train(5) reaches
the crossing within 100 time-units is larger than that of
Train(0). Posing the query:

Pr[<=100](<>Train(5).Cross) >= Pr[<=100](<>Train(0).Cross)

6

Fig. 10: Frequency histogram of maximum number of
trains stopped within 20 time-units.

confirms this belief within 120 (132, 144, 108, 174) runs
with 5% level of significance.

In addition to those three classical tests, Uppaal SMC
also supports the evaluation of expected values of min
or max of an expression that evaluates to a clock or an
integer value. The syntax is as follows:

E[bound ;N](min: expr)

or

E[bound ;N](max: expr)

where bound is as explained in this section, N gives the
number of runs explicitly, and expr is the expression to
evaluate. Also for these properties a confidence interval
is given by using the fact that measurements follow Stu-
dent’s t-distribution (approaching Normal distribution
when N →∞).

Example 4. As an interesting property of the Train Cross-
ing example, we want to know the average of the maxi-
mum number of trains that are stopped within the first
20 time-units:

E[<=20; 20000](max: sum(i:id t) Train(i) .Stop)

Using the explicitly required 20.000 runs, this average
is estimated to be in the confidence interval 3.64775
±0.0126354. Right-clicking gives easy access to more
detailed views, e.g. the frequency histogram in Fig. 10.

Full Weighted MITL Regarding the implementation, we
note that both of the above statistical algorithms are triv-
ially implementable. To support the full logic of weighted
MITL is slightly more complex as our simulation en-
gine needs to rely on monitors for such logic. In [14], we
proposed an extension of Uppaal SMC that can handle
arbitrary formulas of weighted MITL. Given a property ϕ,
our implementation first constructs deterministic under-
and over-approximation monitoring PTAs for ϕ. Then it
puts these monitors in parallel with a given model M , and
applies SMC-based algorithms to bound the probability
that ϕ is satisfied on M . More recently [13], the exact
evaluation of whether the generated run satisfies a given

weighted MITL formula is done on-line by constantly
rewriting the formula during generation of the run.

The probability of satisfying an MITL property ψ is
estimated by Uppaal SMC using the query Prψ, where

ψ :: = BExpr

| (ψ && ψ) | (ψ || ψ)

| (ψ U[a,b]ψ) | (ψ R[a,b]ψ)

| (<>[a,b]ψ) | ([][a,b]ψ)

a, b ∈ N, a ≤ b and BExpr is a Boolean expression over
clocks, variables and locations.

Example 5. The following query:

Pr(<>[10,100] ([] [0,5] Train(0) .Stop))

asks for the probability that Train(0) will stopped for
at least 5 consecutive time-units somewhere in the time-
interval [10,100]. Within 738 runs [0.880894,0.980894]
is returned as a 95%-confidence-interval indicating that
this happens with a very high probability.

4 Extension to Hybrid Systems

Uppaal SMC allows for statistical model checking of
stochastic hybrid systems, i.e. extensions of (stochastic)
timed automata, where the rate of clocks may be given
by general expressions involving clocks, thus effectively
using ODEs.

To illustrate the various aspects of the (extended)
modeling formalism supported by Uppaal SMC, we
consider the case of two independent rooms that can be
heated by a single heater shared by the two rooms, i.e.,
at most one room can be heated at a time. Figure 11(a)
shows the automaton for the heater. It turns itself on
with a uniform distribution over time in-between [0, 4]
time units. With probability 1/4 room 0 is chosen and
with probability 3/4 room 1. The heater stays on for
some time given by an exponential distribution (rate 2
for room 0, rate 1 for the room 1). In summary, one
may say that the controller is more eager to initiate the
heating of room 1 than room 0, as well as less eager
to stop heating room 1. The rooms are similar and are
modeled by the same template instantiated twice as
shown in Fig. 11(b-c). The room is initialized to its initial
temperature and then depending on whether the heater
is turned on or not, the evolution of the temperature is
given by T ′i = −Ti/10 +

∑
j=0,1Ai,j(Tj − Ti) or T ′i =

K−Ti/10+
∑
j=0,1Ai,j(Tj−Ti) where i, j = 0, 1 are room

identifiers. The sum expression corresponds to an energy
flow between rooms and matrix A encodes the energy
transfer coefficient between adjacent rooms. Furthermore,
when the heater is turned on, its heating is not exact
and is picked with a uniform distribution of K ∈ [9, 12],
realized by the update K=9+random(3).

7

on[1]!

on[0]!

off[1]!

off[0]!

ON_1

ON_0

3
x<=4

1
OFF

1x=0

x=0 2

K’==0 &&
T[0]’==K - T[0]/10
 +sum(j:int[0,1])
 A[0][j]*(T[j]+-T[0])/s

on[0]?

off[0]?

ON

T[0]’==-T[0]/10
 +sum(j:int[0,1])
 A[0][j]*(T[j]+-T[0])/s

Init

OFF

K=9+random(3)T[0]=T0[0]

K’==0 &&
T[1]’==K - T[1]/10
 +sum(j:int[0,1])
 A[1][j]*(T[j]+-T[1])/s

on[1]?

off[1]?

ON

T[1]’==-T[1]/10
 +sum(j:int[0,1])
 A[1][j]*(T[j]+-T[1])/s

Init

OFF

K=9+random(3)T[1]=T0[1]

(a) stochastic heater. (b) room 0. (c) room 1.

Fig. 11: A simple two room example with an autonomous heater.

This example illustrates the support for stochastic
hybrid systems in Uppaal SMC with extended arithmetic
on clocks and generalized clock rates.

Uppaal SMC takes as input networks of stochastic
hybrid automata as described above. In addition, the
automata support branching edges where weights can
be added to give a distribution on discrete transitions.
It is important to note that rates and weights may be
general expressions that depend on the states and not
just simple constants.

Remark 2. The ODE solver implemented within Up-
paal SMC is fixed time step Euler’s integration method
thus the results may be sensitive to the discretization
step size. Euler’s method is known to be unstable for
stiffs systems thus care must taken when deciding on
the discretization step size controlled in the settings of
statistical parameters.

4.1 Floating-Point Support

The syntax has been extended to support a double preci-
sion floating-point type (double). This type can be used
mixed with clocks for computing or storing arithmetic
expressions. Its rate cannot be changed. When using
floating-point types or operations in a model, the model is
marked as being hybrid. For such models, model-checking
is disabled, unless the clocks are declared to be hybrid

clock and these clocks nor the floating-point variables
affect the control of the automata, i.e., such variables are
inactive and used as costs.

4.2 Example

All the new queries of Uppaal SMC described in Sec-
tion 3 are available for stochastic hybrid systems. We
illustrate this by a number of queries related to the two-
room example from the previous Section.

We can simulate and plot the temperatures of the
two rooms with the query

simulate 1 [<=600] { T[0], T[1] }

The query request the checker to provide one simulate
run over 600 time units and plot the temperatures of

T[1]
T[0]

time
va
lu
e

0

9

18

27

36

45

0 60 120 180 240 300 360 420 480 540 600

Fig. 12: Evolution of the temperatures of the two rooms.

Room(0) and Room(1). The heater in this example is
purely stochastic and is not intended to enforce any par-
ticular property. Yet, the simulation obtained from this
query in Fig. 12 shows that the heater is able to maintain
the temperatures within (mostly) distinct intervals.

We can evaluate on a shorter time scale the probability
for the temperature of Room(0) to stay below 30 and the
temperature of Room(1) to stay above 5 with the queries

Pr[<=100]([] Room(0).Init || T[0] <= 20)

Pr[<=100]([] Room(1).Init || T[1] >= 7)

The results are respectively in [0.45, 0.55] and [0.65, 0.75].
The precision and confidence of confidence intervals are
user-defined (see later) and influence the number of runs
needed to compute the probability. In this example, for
having the precision to be ±0.05 and a confidence of 95%,
we needed 738 runs. In fact if we are only interested in
knowing if the second probability is above a threshold it
may be more efficient to test the hypothesis

Pr[<=100]([] Room(1).Init || T[1] >= 7) >= 0.69

which is accepted in our case with 902 runs for a level of
significance of 95%. To obtain an answer at comparable
level of precision with probability evaluation, we would
need to use a precision of ±0.005, which would require
73778 runs instead.

We can test the hypothesis that the heater is better
at keeping the temperature of Room(1) above 8 than
keeping the temperature of Room(0) below 20 by the
following comparison query:

Pr[<=100]([] Room(1).Init || T[1] >= 7) >=

Pr[<=100]([] Room(0).Init || T[0] <= 20)

which is accepted in this case with 95% level of signifi-
cance with just 258 runs.

8

Remark 3. As it can be observed, the MITL specifica-
tions allowed in Uppaal SMC are bounded properties.
That is specifications only depend on a run up to a given
time-bound, step-bound or bound on some other quantity
defined in the model. Thus specifications only express
properties of transient behavior of systems, and may or
may not be indicative of safety of a deployed system in
steady operational state, depending on how long the sys-
tem takes to settle. However, given knowledge of the size
of the model , estimation of probability of unbounded
properties may be obtained from the observation of finite
runs as shown in [39].

5 Extension to Dynamic Creation of Processes

An underlying assumption of networks of timed automata
is that computer systems are statically encoded. This is
however not reality. Instead systems are composed of a
number of threads/processes that interact and capable
of spawning other processes/threads. Modeling such dy-
namic systems in standard Uppaal requires the modeler
to model an underlying resource manager. In addition,
the model would consist of a large number of components
in an inactive state available for the resource manager
to “start” whenever a spawn request was made in the
model. A necessary assumption for modeling this resource
manager is thus that the maximum number of spawned
threads during any execution is known in advance (or
can be safely over-approximated). This does not only
make modeling tedious but also affects analysis time.
Uppaal SMC supports instantiating dynamic processes
out of the box. Any automata in the system can spawn
instances of templates of the model that has been de-
clared to be spawnable. Dynamically created instances
act within the system as the static instances with the
exception that they at any time may terminate, and thus
remove themselves from the system.

In Fig. 13 is a high level model of a client server
architecture. The model consists of a number of servers
(10), shown in Fig. 13a, that listens on all possible input
channels req. When a request arrives all the servers will
“race” to acknowledge the connection over the channel
ack[c]. The winner will proceed to communicate with
the client (we abstract from this part) while the others
return to their listening state. When a client has fin-
ished communication with the server it will terminate
the connection by synchronizing on term[c]. Afterwards
the server returns to its listening state.

In Fig. 13b we show the client side of the model. A
client is given an id when spawned which tells it what
channel to connect on (req[id]). A client is first attempt-
ing to get a connection, then it awaits an acknowledgment
from a server and then do some work taking less than
ten time units. Finally, it disconnects from the server
by synchronizing on term[id] and at the same time tears
itself down by using the exit () construction.

i : clientid_t

2

req[i]?

c = i, x =0

term[c]? ack[c]!

ack[c]?

(a) Server

Work

x=0

Wait

exit()

x<=10
term[id]!

ack[id]?

req[id]!

(b) Client

spawn Client (next++),x=0

x<=5

(c) ClientSpawner

Fig. 13: Modeling a server with dynamic spawning

Clients are spawned by the template in Fig. 13c by
using the spawn Client(next++) update. This instantiates
a client and passes the value of next as a parameter to
the client which binds that value to its own local variable
id.

Remark 4. We realize that the template in Fig. 13c may
create an unbounded number of clients whereas the num-
ber of communication channels are bounded. For our
particular use this is not a problem as we know the num-
ber of spawned clients will not exceed the number of
communication channels within the time limit we work
with in our queries.

5.1 Syntax in Uppaal SMC

A template that will be dynamically spawned must be
declared as a dynamic template. This is done in the
global declaration of the Uppaal model using the dynamic

keyword. The declaration for the Client template would for
instance be dynamic Client (int id). The template takes
one parameter id. Parameters to spawnable templates are
restricted to be pass-by-value parameters or a reference to
a broadcast channel. The reasoning behind this restriction
is that templates may cease to exist - invalidating any
references to its local variables that it could have passed
on to spawned templates.

The actual behavior of a spawnable template is de-
fined as usual in the editor. Note, however, that there
must be a correspondence between the parameters de-
fined in the dynamic declaration and the definition. In
the Client example this means that the parameters both
in the dynamic declaration and the definition must be
int id.

Spawnable templates may be spawned by any tem-
plate during a transition using the spawn keyword. For

9

instance, adding spawn Client (2) to the update expres-
sion of an edge will spawn an instance of the template
Client with parameter 2. Obviously, there must be pa-
rameter compatibility between the actual and the formal
parameters.

A spawnable template can tear itself down during a
transition. This is expressed by adding the exit () expres-
sion to the update of an edge.

5.2 Extensions for Queries

Having extended the modeling language of Uppaal SMC
to allow dynamically spawning templates, we also need
an extended specification formalism.

For the statically defined components specifications
are made as described in Section 3. For the dynami-
cally created components of the system three additional
constructions are available:

forall (i : T) (q),
exists (i : T) (q) and
sum(i : T) (a),

which may be used anywhere in a specification.

The predicate forall (i : T) (q) asserts that q is true
for all the dynamically created instances of T. The name
i may be used anywhere in q to refer to the variables of
the instances of T i.e. the name i is temporally bound
to the instances of T while evaluating q. The construct
exists (i : T) (q) is the dual of forall .

Example 6. Returning to the Server example from before,
we may consider the probability that a client is not served
for 5 time units i.e. that it is working in the Wait location
for 5 time units. In the extended specification formalism
this can be checked using the query:

Pr(<> [0,20] (exists (c : Client) ([] [0,5] c.Wait)))

The expression sum(i : T) (a) can be used in arith-
metic expressions and simply evaluates a for all the in-
stances of T. In the Server example we can for instance
count the number of clients that are waiting for a con-
nection with the expression sum(c : Client)(c.Wait). The
sum construction can also be used to count the number
of active clients sum(c:Client)(1). An optimised version of
this is available as numOf(Client). In Fig. 14 we show one
simulation, 100 time units long, where we observe these
two expressions.

The sum operator is useful for computing aggregate
data about all components of a given type but cannot
give the exact value of each component. For instance sum

cannot be used to plot the location of each client. If this
is wanted Uppaal SMC supports the query:

simulate 1 [<=100] {foreach(c: Client)
(3*C.id+c.Wait+2*c.Work) }

Fig. 14: Plot of the number of waiting clients and total
number of clients. The plot was obtaind with the query
simulate 1 [<=100] {numOf(Client), sum(c:Client)(c.Wait)}

Fig. 15: Plot showing the life span of each client in the
server example.

The foreach statement is here used to tell the plotting
facility of Uppaal SMC to plot the expression
(3*c. id+c.Wait+2*c.Work) for each of the dynamically in-
stances of Client. The actual expression is just a smart
way to obtain a “gantt-like” chart of each client. The
result of the query is shown in Fig. 15 where each colored
line correspond to a client.

6 Graphical Interface

We focus in this section on the main features of the
interface related to SMC. For a more complete overview
of the interface the reader is referred to [4].

Overview. The graphical interface of Uppaal is divided
into an editor, two simulators, and a verifier. The editor
serves the purpose to define the automata and declaration
of variables and functions. The verifier is used to specify
and check different queries, and to get the results. Then
there are two simulators, one is the well-known symbolic
simulator that has been available in Uppaal since the
birth of this interface. The second simulator is a con-
crete simulator that was originally used in Uppaal-tiga.
This simulator allows the user to simulate a system with
concrete values of clocks, which is more intuitive than
with the symbolic simulator. This simulator is shown
in Fig. 16. The choice of transition is situated in the
upper-left corner. The user chooses with one click a tran-
sition (vertical choice) and a delay (horizontal choice).
The simulator shows the automata and a message se-
quence chart on the right. On the lower left corner is

10

Fig. 16: The concrete simulator in Uppaal.

�
gantt {

gate :
Gate . Occ - > 0 , // red
Gate . Free - > 1 ; // green

t r a i n (i : i d t) :
Train (i) . Appr - > 2 , // blue
Train (i) . Stop - > 1 , // green
Train (i) . S ta r t - > 3 , // magenta
Train (i) . Cross - > 0 ; // red

} 	� �
(a) Definition in System declarations.

(b) Trace visualization in Concrete Simulator.

Fig. 17: Gantt chart.

the trace corresponding to the current simulation. The
central view shows the variables and the user can show
and hide variables in different scopes. In the example,
only the clocks of Train(2) and Train(4) are shown.

The concrete simulator also supports Gantt chart vi-
sualization of the interactive concrete trace. Figure 17
shows a sample use case of Gantt chart for the train-
gate example. The chart is defined in system declarations
(Fig. 17a), where each chart line is defined by a statement
separated by a semicolon. Each statement consists of a
line label (e.g. gate and train) and a comma-separated
list of predicates implying color-numbers. For example, a
line gate is painted in color #0 (red) whenever Gate.Occ

is true and in color #1 (green) whenever Gate.Free. The
colors are mixed when the corresponding predicates are
true at the same time. It is also possible to define a chart
line for a whole range of discrete values at once, like
the parameterized definition of train (i : id t), where the

temporary variable i has a range of type id t. For exam-
ple, the first 32 colors can be rendered by the following
definition: gantt { C(i : int [0,31]) : true -> i ; }.

SMC Options. Under the menu Options the user can
choose Statistical parameters. This opens the window
shown in Fig. 18.

– −δ and +δ: When testing for hypothesis of the form
Pr(ϕ) ≥ θ, the algorithm behind tests for two hy-
pothesis. They are 1) H0 : Pr(ϕ) ≥ θ + δ+ and 2)
H1 : Pr(ϕ) ≤ θ − δ−. These parameters define the
region of indifference.

– α and β: α and β are used for hypothesis testing.
The probability of accepting H1 instead of H0 is
α and conversely for β. In the case of probability
evaluation, α is also used and it is then the probability
to be outside the result interval of probability. For
probability comparison, the use of α and β is the
same as for hypothesis testing.

– ε is the uncertainty for probability evaluations. The
tool evaluate some probability µ and outputs the
result [µ− ε, µ+ ε].

– u0 and u1 are the lower and upper bounds used in
probability comparison. Similarly to hypothesis test-

ing, the algorithm tests two hypotheses:H0 : Pr(ϕ1)
Pr(ϕ2)

≥
u1 and H1 : Pr(ϕ1)

Pr(ϕ2)
≤ u0. These parameters define

the region of indifference for comparing probabilities.
– Histogram parameters: If the bucket width is set to a

positive value, its value determines the width of the
bars in the histogram and the number of bars depends
on the range of the obtained results. Otherwise if the
bucket count is positive then the number of bars is
set to this value and the width of the bars depends
on the range of the obtained result. Otherwise if both
parameters are set to zero (default), the number of
bars in the histogram is set to the square root of the
number of runs used to obtain the graph.

– Trace resolution: When computing a simulation using
the simulate query, the tool filters out the data on-the-
fly and retains points that are distinguishable w.r.t.
a certain resolution when plotted on a screen. This
parameter controls the maximum width of the plot
in pixels.

– Discretization step: This is used for integration when
ODEs are used in the model. We note that defining
rates as constants does not qualify as ODE, but having
x’==y does.

Plotting and Composing. Most of SMC queries also pro-
vide quick result visualization in a form of data plots
accessible in the Verifier by right-clicking on a selected
property and choosing one of the available plots from a
pop-up menu. Simulation queries display all the requested
trajectories in one plot with different colors assigned to
various expressions. Statistical queries result in a number
of different histograms showing the data scattered along

11

Fig. 18: The statistical parameters from the options menu.

Fig. 19: Visual data comparison in the Plot Composer.

time, cost or discrete transitions horizontal axis. The
displayed plot elements (like title, legend, transparency,
comments and logarithmic scale) can be customized by
right-clicking on the plot and choosing appropriate items
from a pop-up menu. The plotted data can be exported
as either a picture or a text file by using the same plot
pop-up menu. The size of the exported plot can be cus-
tomized by resizing the plot window. Note that larger
window will result in smaller fonts when rescaled for in-
clusion into a document, so smaller window will result in
fewer details but clearer picture with larger fonts. The
dark-colored areas are printer-friendlier when the plot is
brightened by choosing Areas/Bright in the plot pop-up
menu.

The different data can also be contrasted and com-
pared in one plot by using the Plot Composer from the
Tools menu. Figure 19 shows a sample Plot Composer win-
dow with data from several verifications already loaded.
The bottom panel on the right shows the resulting plot
and the data is organized in the tree on the left. Each
verification data is appended to the tree to its correspond-
ing query. For example simulate query has been checked
four times and each result contains one plot with two
datasets. The data can be added to the composite plot
by ticking its check-box and its drawing properties can
be customized in the top-right panel when it is selected
in the tree. For example E2 and E4 are ticked in Fig 19
and E2 is selected and drawing properties can be changed.
The main plot attributes like the title and the labels of
both axis can be changed by selecting the root node and
changing its properties in the upper panel on the right.
It is also possible to edit several composite plots at the

same time by invoking Plot Composer several times from
the Tools menu.

7 Modeling Tricks

7.1 How to Convert Channel Synchronizations Into
Broadcast Synchronizations

Problem. It is common that a user wants to analyze
performance of a given model previously model-checked
with Uppaal. This model may contain ordinary channel
synchronizations that work by hand-shake. The problem
is that the SMC extension does not support them as
explained in Subsection 2. Here we present a translation
to convert these models so that they can be analyzed by
Uppaal SMC.

Translation. We distinguish three cases: the basic simple
one-to-one synchronization, the one-to-any synchroniza-
tion, and a problematic case.

The common simple case is of one process synchroniz-
ing with exactly one other process on a channel as shown
in Fig. 20. The sender in state A may have an invariant or
not. The receiver in state Loc2 does not have an invariant.
The synchronization may be guarded by, resp. g1() and
g2(), for resp. the sender and the receiver. To convert this
model, the user should redeclare the channel a as broad-
cast, move the guard of the receiver to the sender2, and
make the actual location visible from the sender by using
a simple encoding with the extra integer variable recvLoc.
Other encodings may be used, e.g., with booleans, but
the integer presents the advantage to keep the translation
of several synchronizations simple. The integer allows the
user to map each location to a unique value that is used
by the sender to allow the synchronization only in the
right state. The example illustrates the update of this
variable for some other peripheral locations Loc0, Loc1,
and Loc4.

The second more general case is of one process syn-
chronizing with one process out of several ones. There is
a choice of one-to-any synchronization shown in Fig. 21.
Here as well, the receiver is in a location without in-
variants. In this case, the same principle as the simple
case is used with in addition a renaming of the channel.
The initial transition in the sender has a copy with a
unique channel name for each possible synchronization
that is possible in the original model. Each copy uses the
right associated guard and looks up the state of the right
process. In the example, we illustrate with the use of an
array a generic encoding where there would be several
instances of the same template for the receiver. If the
guards g2() and g3() are generic or depend on some id

used to instantiate the receivers, the select construct can

2 This may require moving local variables to the global scope to
make the state visible.

12

⇓

Fig. 20: Basic case of a one-to-one channel synchroniza-
tion and its translation to a broadcast channel synchro-
nization.

⇒

Fig. 21: Extended case of a one-to-any channel synchro-
nization (only two here) and its translation to a broadcast
channel synchronization.

be used, in which case the original transition is not copied
and the channel a is renamed as a[id] with an array.

The last case is the problematic one where a receiver
has an invariant as shown in Fig. 22. Any translation of
this model will violate the independent progress condi-
tion because here a receiver would force another sender
process to synchronize. Not synchronizing would result
in a deadlock. We note that if there is an output from
that location, i.e., some b! synchronization, then there is
no problem.

Fig. 22: Problematic case where the translation to broad-
cast channel is not possible.

The last technical detail to take care of is to add
exponential rates to the locations without invariants and
that have output synchronizations (or tau transitions).
This is the rate of the exponential distribution used for
picking delays.

7.2 How to Encode Custom Distributions

Problem. Sometimes, the default uniform or exponential
distributions available in Uppaal SMC are not enough.
The user needs a simple way to encode any distribution
into the model to generalize the ones illustrated in Fig. 2.

Encoding. The pattern for encoding general distributions
is given in Fig. 24. The principle is that upon entry of
a given location Wait where the actual custom delay is
to take place, the actual delay is computed and stored
into a clock delay. The function f() that computes this
delay returns a floating-point value of type double. The
automaton will then delay for this amount and take
the transition. The location Wait has its invariant set to
x<=delay and delay’==0. The clock delay is used here only
for storage. This technique is similar to the one used for
computing stochastic simulations in Modest [26].

Implementation of f(). The function that computes the
delay may use the random(n) function with n being a
floating-point value. The function returns a number in
[0, n) with a uniform distribution. This can then be trans-
formed to return a delay with another distribution. We
note that the function may keep a state as well, by storing
what it wants into global variables (also of type double),
which allows the encoding of virtually any distribution.
For example, to generate random numbers according to
a normal distribution using the Box-Müller method, we
can use the following function: The distribution obtained
is shown in Fig. 23 together with the parameters used.

Remark. The reader may wonder why the pattern pro-
poses to use a clock for the variable delay instead of a
variable of type double. In fact it is possible to use double,
which saves the trouble of setting its rate to 0. How-
ever, the performance of the model-checker may drop. In
its current implementation, Uppaal SMC uses a fined-
grained discretization if guards or invariants contain a
“general” floating-point expression. The syntax analyzer

13

�
const double PI = 3.14159265358979323846;
double stdNormal () { // N(0, 1)

return s q r t (-2* l n (1 - random (1))) *

cos (2*PI*random (1)) ;
}
double Normal (double mean , double stdDev) {

return mean + stdDev * stdNormal () ;
}
double f () { // N(10.0, 1.0)

return Normal (10 . 0 , 1 . 0) ;
} 	� �

Listing 1: Normal distribution generating functions.

Fig. 23: Result from modeling a Gaussian distribution.

Fig. 24: Pattern for custom delay distributions.

will not recognize that the discretization is not needed
in this case. Using clocks alleviates the problem.

7.3 How to Model Physics

Problem. The formalism of Uppaal SMC is stochastic
hybrid automata so modeling physics is a simple matter
of writing the ODEs in the model. However, only first
degree derivatives are allowed.

Modeling. To model an n-degree derivative, the user
should use a clock variable for every intermediate deriva-
tive. This is standard renaming technique used in other
tools, e.g., Matlab. For example, instead of modeling
y’’==-9.81 for a falling object, the user should declare
y’==v and v’==-9.81. Using different clocks or arithmetic
expressions mixing double typed variables is also sup-
ported.

7.4 How to Model Biochemistry

Problem. Cyber-physical systems may involve chemical
and even biological processes and hence there is a need

�
i n t A=100 , B=200 , C=0, D=0;
double gamma=0.0001; 	� �

(a) Declarations.

(b) Automaton. (c) Simulation.

Fig. 25: Stochastic model and its behavior.

to evaluate the performance of control systems in such a
context. Suppose the reaction involves a mixed solution
of materials A and B and produce C and D with reaction
speed of γ:

A+ 2B
γ−→ C + 3D

Here we show how this reaction can be modeled as either
probabilistic or dynamical system. The containment of re-
actions and other interactions can be modeled by adding
additional locations, edges and channel synchronizations.

Stochastic model. Figure 25 shows a stochastic model
of the reaction and its behavior. The discrete quantities
(molecules) of the materials involved are counted by the
corresponding integers A, B, C and D. The reaction rate
is represented by the double precision floating point vari-
able gamma. The automaton in Fig. 25b captures the
interaction between chemicals A and B in the following
way:

– The automaton takes a discrete transition when the
reaction happens.

– The reaction requires at least one molecule of A and
at least two molecules of B, hence the edge is guarded
by an expression A>0 && B>1.

– Each reaction consumes A and 2B and produces C
and 3D, hence the edge has the update A--, B-=2,

C++, D+=3.
– In a well mixed (homogeneous) compound the prob-

ability of a reaction is proportional to its speed γ
and the probability of meeting the required three
molecules (A, B and another B) in one place. The
probability of reaction remains the same as long as
the conditions (quantities and temperature) do not
change, hence the reaction is a Poisson process and
the delay until the next reaction follows an exponen-
tial distribution with the rate gamma*A*B*B.

If there are more reactions, then they have to be modeled
by another parallel process. The trajectory of the quanti-
ties can be inspected by the following query: simulate 1

[<=5]{A,B,C,D}. The resulting plot is shown in Fig. 25c:

14

�
typede f i n t [- (1 << 31) , (1 << 31) - 1] i n t 3 2 t ;
const i n t s =1000; // scale by a thousand
i n t 3 2 t A=100*s , B=200*s , C=0, D=0;
double gamma=0.0001; 	� �

(a) Scaled declarations.

(b) Scaled rate. (c) Scaled trajectories.

Fig. 26: Scaled stochastic model and its scaled behavior.

A and B are slowly decaying, replaced by C and D. We
notice that the trajectory is jittery and can be slightly
different with every new simulation due to probabilis-
tic nature of the stochastic process and relatively small
amounts of molecules. The trajectories are smoother
when quantities are much larger and approach the limit
of the continuous dynamics.

Scaling. Usually chemical reactions involve huge num-
bers of molecules with different orders of magnitude and
thus some scaling of dimensions may be desired. Note
that if the quantities are scaled by 1000, then the expo-
nential rate gamma*A*B*B has to be scaled by 106 (while
the dynamical coefficients are scaled by 109) and thus it
is very easy to overflow the default range of int. Figure 26
shows the same model but with molecule quantities scaled
by 1000. The simulated trajectories are divided by s back
down to a comparable scale as in previous and next ex-
ample. The simulated behavior is smoother and closer to
the dynamical model (shown next).

The default integer range is rather small (±216), thus
one may need to broaden it by defining a custom range.
Uppaal supports integer ranges up to 32 bits, hence the
type declaration typedef int [-(1<<31),(1<<31)-1] int32 t ;

corresponds to a range of signed 32 bit integer. The
range can be expanded further to a double precision
floating point, but note that its precision is limited to 52
bits (≈ 4.5× 1012) and hence beyond that point minor
increments (like +1) will not affect the variable value
anymore.

Dynamical model. The same reaction can be rewritten
using a set of differential equations describing the rate of

�
c l o ck A=100.0 , B=200.0 , C=0.0 , D=0.0;
double gamma=0.0001;
urgent broadcast chan ASAP; 	� �

(a) Declarations.

(b) Automaton. (c) Simulation.

Fig. 27: Dynamical model and its behavior.

change of the quantities:

d[A]

dt
= − γ · [A] · [B]2

d[B]

dt
= − γ · [A] · [B]2 · 2

d[C]

dt
= γ · [A] · [B]2

d[D]

dt
= γ · [A] · [B]2 · 3

The idea here is that the rate of change in quantities is
proportional to the speed of reaction and concentration
of materials. The contribution to various materials is
then scaled by coefficients from the original reaction. We
have one equation per each material mentioned. If there
are more reactions then their contributions can be added
up to the same system of differential equations either
as separate extra terms or a separate equation for each
new chemical. Fig. 27 shows the dynamical model and
its behavior. The quantities are captured by dynamical
clock variables A, B, C and D and the same reaction
coefficient gamma. The differential equations are then
typeset as a single invariant of derivative expressions in
Lagrange’s prime notation (Fig. 27b). We also added
an escape transition if/when the quantity of A reaches
zero, i.e. the reaction stops. The trajectories can be in-
spected by the same simulation query as previously and
the result is shown in Fig. 27c. Notice that the trajec-
tory is smoother, very close to the scaled-up stochastic
simulation, and is the same every time (deterministic),
because ordinary differential equations have one fixed
solution for the same initial conditions. Some ODE sys-
tems might require tuning the discrete integration step
in the Statistical parameters from the Options menu: the
smaller the step the more precise simulation is, but it is
also computationally more expensive. Stiff systems may
require smaller integration steps. A more complicated

15

https://en.wikipedia.org/wiki/Derivative#Lagrange.27s_notation

�
c l o ck E, t ;
double P; 	� �

(a) Model. (b) Trajectories of energy and power.

(c) Estimated energy probability distribution.

Fig. 28: Cost estimation in terms of energy.

biochemical model can be found in a study of a circadian
rhythm genetic oscillator [23,21].

7.5 How to Obtain Distributions Over Costs

When the user checks queries to evaluate probabilities,
e.g., Pr[<=100](<> Proc.Goal), Uppaal SMC keeps track
of when the runs satisfy the specified goal state and
uses this information to build a frequency histogram.
Specifically, what is counted is the number of runs that
were satisfied at a given “time” as defined by the bound
of the run. When no explicit variable is used, e.g., <=100,
the plot is the count of satisfied runs as a function of time,
discretized in the histogram bars (so in fact in function of
time intervals). When a clock variable is used, the plot is
in function of this variable. Alternatively the runs can be
bound by number of discrete steps of the form #<=100.

Now suppose that we want to estimate a cost ex-
pressed as some energy consumption. To illustrate this,
let us consider the example in Fig. 28a. In this model,
a random power level is chosen stochastically and the
corresponding energy consumption is integrated by Up-
paal SMC. The evolution of the energy is naturally
expressed by the equation E’==P.

Figure 28b shows one stochastic simulation bounded
by two time units obtained with the query simulate 1

[<=2] {E,P}. Every run will have its own energy con-
sumption. The question is to know the mean of the en-
ergy consumption and its distribution over runs bounded
by two time units. To obtain this we check the query
Pr[E<=10](<> t==2). The trick is that first we bound the
actual energy by a high enough bound that covers the
reachable range for all runs. It could be E<=1000 if the
user is unsure. Second, the goal state is the time bound

that will be reached since time progresses3. The result
probability is one but this is not the point. The point is
the distribution generated by this query. Uppaal SMC
will record “when” (in function of the bound) the runs
reach the goal, here t==2. We obtain now a distribution
of energy consumption on runs bounded by two time
units as shown in Fig. 28c.

Remarks. If the suggested query is checked with the
default settings the obtained histogram will have poor
precision because Uppaal SMC does not need many
runs to conclude that the result probability is one. The
user should increase the precision by changing the SMC
options as described in Section 6. Specifically, Fig. 28c was
obtained from 7598 runs using α = 0.001 and ε = 0.0005.

It is also possible to estimate discrete costs even
though the tool does not support integers as bounds.
Users can use clocks for this purpose by maintaining their
rates to zero and updating them manually. For example,
if c is a counter, then it is declared as a clock. Then the
user adds one process with one location and no transition
with the invariant c’==0. Finally, the increment c = c +

1 is used wherever necessary and the bound c<=100 can
now be used.

7.6 How to Model Custom Discretizations

Problem. Sometimes users want to use a custom integra-
tion method or want to change the integration granularity
at the level of locations. Uppaal SMC uses a global time
step when it detects that some integration is needed. It
may be better for performance or precision to change this
step depending on the locations and the type of equation
to integrate.

Modeling. The modeling trick consists of using a “high”
exponential rate on the locations where the manual dis-
cretization is needed. The tool will then take small delay
steps, albeit random according to an exponential distribu-
tion with high rate, which allows for custom discretization.
Fig. 29 shows an example of the temperature of a room
that can have a heater turned on or off4. The value of
RATE controls the precision. The functions for cooling
and heating are depicted in Listing 29a. The value of
the clock dt is the time elapsed and is used for the in-
tegration. KHEAT and KCOOL are constants used in the
model. The result of a simulation is shown in Fig. 29.
This manual encoding replaces, resp., T’==-T/KCOOL

and T’==KHEAT-T/KCOOL for, resp., cooling and heat-
ing. The example also illustrates a recent new feature
of the language, namely initializers for clocks with the
declaration T = T0[i], where T0 is declared as const

double T0={70.0,60.0}.

3 Uppaal SMC detects zeno runs and rejects models producing
them.

4 The actual controller is not important for this example and is
not given here.

16

�
c l o ck T = T0 [i] , dt ;
void coo l ()
{

T = T - (T*dt) /KCOOL;
}
void heat ()
{

coo l () ;
T = T + KHEAT*dt ;

} 	� �
(a) Variable and function declarations.

(b) The model. (c) Temperature trajectories.

Fig. 29: The temperature of a heated room with a manual
discretization using a high exponential rate RATE.

8 Conclusion

This paper presented Uppaal SMC as an efficient tool
for evaluating performance properties of stochastic hy-
brid systems. The modeling language has been extended
to handle dynamical behaviors, discrete probabilities, a
stochastic interpretation for timed delays and even dy-
namic process creation – far beyond analytically tools
reach. Most importantly the old Uppaal models require
only small changes in order to benefit also from Up-
paal SMC features, thus it is straightforward to gain
also performance measures in addition to firm results. The
paper also includes tricks for handling more problematic
corner cases to satisfy Uppaal SMC assumptions and in
particular how to transform handshake synchronization
to broadcast synchronization. The query language has
been expanded to request simulation trajectories, com-
pute probabilistic aspects and evaluate weighted MITL
formulas.

In the future, we intend to include better ODE solvers
to improve dynamical simulations and improve the in-
teractive concrete run simulator including a Gantt chart
visualization of a run.

References

1. R. Alur and D. L. Dill. A theory of timed automata.
Theor. Comput. Sci., 126(2):183–235, 1994.

2. R. Alur, T. Feder, and T. A. Henzinger. he benefits of
relaxing punctuality. J. ACM, 43(1):116–146, Jan. 1996.

3. G. Behrmann. Distributed reachability analysis in timed
automata. STTT, 7(1):19–30, 2005.

4. G. Behrmann, A. David, and K. Larsen. A tutorial on
Uppaal. Lecture Notes in Computer Science, pages 200–
236, 2004.

5. G. Behrmann, A. David, K. G. Larsen, P. Pettersson, and
W. Yi. Developing uppaal over 15 years. Softw., Pract.
Exper., 41(2):133–142, 2011.

6. G. Behrmann, A. David, K. G. Larsen, and W. Yi. Unifi-
cation & sharing in timed automata verification. In SPIN
Workshop 03, volume 2648 of LNCS, pages 225–229, 2003.

7. G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pet-
tersson, and J. Romijn. Efficient guiding towards cost-
optimality in uppaal. In T. Margaria and W. Yi, editors,
Proceedings of the 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, number 2031 in Lecture Notes in Computer Science,
pages 174–188. Springer–Verlag, 2001.

8. G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pet-
tersson, J. Romijn, and F. Vaandrager. Minimum-cost
reachability for priced timed automata. In M. D. D.
Benedetto and A. Sangiovanni-Vincentelli, editors, Pro-
ceedings of the 4th International Workshop on Hybris Sys-
tems: Computation and Control, number 2034 in Lecture
Notes in Computer Sciences, pages 147–161. Springer–
Verlag, 2001.

9. G. Behrmann, T. Hune, and F. Vaandrager. Distributed
timed model checking - How the search order matters.
In Proc. of 12th International Conference on Computer
Aided Verification, Lecture Notes in Computer Science,
Chicago, Juli 2000. Springer-Verlag.

10. G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and
W. Yi. Efficient timed reachability analysis using clock
difference d iagrams. In Proceedings of the 12th Int. Conf.
on Computer Aided Verificat ion, volume 1633 of Lecture
Notes in Computer Science. Springer–Verlag, 1999.

11. B. Boyer, K. Corre, A. Legay, and S. Sedwards. Plasma-
lab: A flexible, distributable statistical model checking
library. In QEST, pages 160–164, 2013.

12. M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and
A. Pretschner, editors. Model-Based Testing of Reactive
Systems, Advanced Lectures The volume is the outcome
of a research seminar that was held in Schloss Dagstuhl in
January 2004, volume 3472 of Lecture Notes in Computer
Science. Springer, 2005.

13. P. Bulychev, A. David, K. G. Larsen, A. Legay, G. Li, and
D. B. Poulsen. Rewrite-based statistical model checking
of wmtl. In Runtime Verification, volume 7687 of LNCS,
pages 260–275, 2012.

14. P. Bulychev, A. David, K. G. Larsen, A. Legay, G. Li,
D. B. Poulsen, and A. Stainer. Monitor-based statisti-
cal model checking for weighted metric temporal logic.
In N. Bjørner and A. Voronkov, editors, 18th Interna-
tional Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, volume 7180 of LNCS, pages
168–182. Springer, 2012.

15. P. E. Bulychev, A. David, K. G. Larsen, A. Legay,
M. Mikučionis, and D. B. Poulsen. Checking and distribut-
ing statistical model checking. In NASA Formal Methods,
volume 7226 of Lecture Notes in Computer Science, pages
449–463. Springer, 2012.

16. H. Chernoff. A measure of asymptotic efficiency for tests
of a hypothesis based on the sum of observations. The An-
nals of Mathematical Statistics, 23(4):pp. 493–507, 1952.

17. E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, Cambridge, MA, USA, 1999.

18. E. M. Clarke, J. R. Faeder, C. J. Langmead, L. A. Harris,
S. K. Jha, and A. Legay. Statistical model checking in

17

biolab: Applications to the automated analysis of t-cell
receptor signaling pathway. In CMSB, LNCS, pages 231–
250, 2008.

19. C. J. Clopper and E. S. Pearson. The use of confidence
or fiducial limits illustrated in the case of the binomial.
Biometrika, 26(4):404–413, 1934.

20. A. David, D. Du, K. G. Larsen, A. Legay, and
M. Mikučionis. Optimizing control strategy using statis-
tical model checking. In NASA Formal Methods, volume
7871 of Lecture Notes in Computer Science, pages 352–
367. Springer, 2013.

21. A. David, D. Du, K. G. Larsen, A. Legay, M. Mikučionis,
D. B. Poulsen, and S. Sedwards. Statistical model check-
ing for stochastic hybrid systems. In E. Bartocci and
L. Bortolussi, editors, Hybrid Systems and Biology (HSB),
volume 92 of EPTCS, pages 122–136, Newcastle Upon
Tyne, UK, September 2012.

22. A. David, P. G. Jensen, K. G. Larsen, A. Legay, D. Lime,
M. G. Sørensen, and J. H. Taankvist. On time with
minimal expected cost! In F. Cassez and J.-F. Raskin,
editors, Automated Technology for Verification and Anal-
ysis (ATVA), volume 8837 of Lecture Notes in Computer
Science, pages 129–145. Springer International Publishing,
2014.

23. A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B.
Poulsen, and S. Sedwards. Runtime verification of bio-
logical systems. In T. Margaria and B. Steffen, editors,
ISoLA (1), volume 7609 of Lecture Notes in Computer
Science, pages 388–404. Springer, 2012.

24. A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B.
Poulsen, J. V. Vliet, and Z. Wang. Statistical model check-
ing for networks of priced timed automata. In FORMATS,
LNCS, pages 80–96. Springer, 2011.

25. A. David, M. O. Möller, and W. Yi. Formal verifica-
tion of UML statecharts with real-time extensions. In
R.-D. Kutsche and H. Weber, editors, Fundamental Ap-
proaches to Software Engineering, 5th International Con-
ference, FASE 2002, volume 2306 of LNCS, pages 218–232.
Springer–Verlag, 2002.

26. A. Hartmanns. Model-checking and simulation for
stochastic timed systems. In B. K. Aichernig, F. S.
de Boer, and M. M. Bonsangue, editors, FMCO, vol-
ume 6957 of Lecture Notes in Computer Science, pages
372–391. Springer, 2010.

27. M. Hendriks and K. G. Larsen. Exact acceleration of
real-time model checking. In E. Asarin, O. Maler, and
S. Yovine, editors, Electronic Notes in Theoretical Com-
puter Science, volume 65. Elsevier Science Publishers,
April 2002.

28. D. Henriques, J. ao Martins, P. Zuliani, A. Platzer, and
E. M. Clarke. Statistical model checking for markov
decision processes. In Ninth International Conference on
Quantitative Evaluation of Systems, QEST 2012, London,
United Kingdom, September 17-20, 2012, pages 84–93.
IEEE Computer Society, 2012.

29. T. A. Henzinger and P. Ho. Algorithmic analysis of non-
linear hybrid systems. In P. Wolper, editor, Computer
Aided Verification, 7th International Conference, Liège,
Belgium, July, 3-5, 1995, Proceedings, volume 939 of Lec-
ture Notes in Computer Science, pages 225–238. Springer,
1995.

30. W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):pp. 13–30, 1963.

31. T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet.
Approximate probabilistic model checking. In B. Steffen
and G. Levi, editors, Verification, Model Checking, and
Abstract Interpretation, volume 2937 of Lecture Notes in
Computer Science, pages 73–84. Springer Berlin Heidel-
berg, 2004.

32. C. Jégourel, A. Legay, and S. Sedwards. Importance
splitting for statistical model checking rare properties. In
CAV, volume 8044 of Lecture Notes in Computer Science,
pages 576–591. Springer, 2013.

33. S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay,
A. Platzer, and P. Zuliani. A bayesian approach to model
checking biological systems. In CMSB, volume 5688 of
LNCS, pages 218–234. Springer, 2009.

34. M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism
2.0: A tool for probabilistic model checking. In Proc. of
1th Int. Conference on the Quantitative Evaluation of
Systems (QEST), pages 322–323. IEEE, 2004.

35. K. G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker,
T. Hune, P. Pettersson, and J. Romijn. As cheap as
possible: Efficient cost-optimal reachability for priced
timed automata. In G. Berry, H. Comon, and A. Finkel,
editors, Proceedings of CAV 2001, number 2102 in Lecture
Notes in Computer Science, pages 493–505. Springer–
Verlag, 2001.

36. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for Technology
Transfer, 1(1–2):134–152, Oct. 1997.

37. F. Larsson, K. G. Larsen, P. Pettersson, and W. Yi.
Efficient verification of real-time systems: Compact data
structures and state-space reduction. In Proc. of the 18th
IEEE Real-Time Systems Symposium, pages 14–24. IEEE
Computer Society Press, Dec. 1997.

38. K. Sen, M. Viswanathan, and G. Agha. Statistical model
checking of black-box probabilistic systems. In CAV,
LNCS 3114, pages 202–215. Springer, 2004.

39. B. Theelen. Performance Modelling for System-Level
Design. PhD thesis, Eindhoven University of Technology,
2004. ISBN 90-386-1633-3.

40. A. Wald. Sequential tests of statistical hypotheses. Annals
of Mathematical Statistics, 16(2):117–186, 1945.

41. W. Yi, P. Pettersson, and M. Daniels. Automatic verifi-
cation of real-time communicating systems by constraint-
solving. In Proceedings of the 7th IFIP WG6.1 Interna-
tional Conference on Formal Description Techniques VII,
pages 243–258, London, UK, UK, 1995. Chapman & Hall,
Ltd.

42. H. L. S. Younes. Verification and Planning for Stochas-
tic Processes with Asynchronous Events. PhD thesis,
Carnegie Mellon, 2005.

18

	Introduction
	Modeling Formalism
	Query Language
	Extension to Hybrid Systems
	Extension to Dynamic Creation of Processes
	Graphical Interface
	Modeling Tricks
	Conclusion

