Verification and Performance Evaluation of
Timed Game Strategies*

Alexandre David!, Huixing Fang?, Kim G. Larsen!, and Zhengkui Zhang?

! Department of Computer Science, Aalborg University, Denmark
{adavid,kgl,zhzhang}@cs.aau.dk
2 Software Engineering Institute, East China Normal University, China
wxfang@sei.ecnu.edu.cn

Abstract. Control synthesis techniques, based on timed games, derive
strategies to ensure a given control objective, e.g., time-bounded reach-
ability. Model checking verifies correctness properties of systems. Sta-
tistical model checking can be used to analyse performance aspects of
systems, e.g., energy consumption. In this work, we propose to combine
these three techniques. In particular, given a strategy synthesized for a
timed game and a given control objective, we want to make a deeper
examination of the consequences of adopting this strategy. Firstly, we
want to apply model checking to the timed game under the synthesized
strategy in order to verify additional correctness properties. Secondly, we
want to apply statistical model checking to evaluate various performance
aspects of the synthesized strategy. For this, the underlying timed game
is extended with relevant price and stochastic information. We first ex-
plain the principle of translating a strategy produced by UPPAAL-TIGA
into a timed automaton, thus enabling the deeper examination. However,
our main contribution is a new extension of UPPAAL that automatically
synthesizes a strategy of a timed game for a given control objective, then
verifies and evaluates this strategy with respect to additional properties.
We demonstrate the usefulness of this new branch of UPPAAL using two
case-studies.

1 Introduction

Model checking (MC) of real-time systems [12] has been researched for over 20
years. Mature tools such as UPPAAL [3] and KRONOS [5] have been applied to
numerous industrial case studies. Nowadays, more interesting formal methods
for real-time systems are inspired by or derived from model-checking. Two re-
markable ones are controller synthesis and statistical model checking. Controller
synthesis techniques [6], based on games, derive strategies to ensure some given
objective while handling uncertainties of the environment. Statistical model-
checking (SMC) [14], based on statistical analysis of simulations, is used to anal-
yse reliability and performance aspects of systems, e.g., energy consumption.

* This work has been supported by Danish National Research Foundation — Center
for Foundations of Cyber-Physical Systems, a Sino-Danish research center.

In the UPPAAL toolbox, efficient implementations of these new techniques are
found in the branches UPPAAL-TIGA [2] and UPPAAL-SMC [9].

We believe the three techniques can complement each other. Given a timed
game and a control objective, controller synthesis will generate a strategy if
the game is controllable. The strategy may ensure hard timing guarantees for a
controller to win the game. We aim at verifying additional correctness properties
by applying MC to the timed game under this strategy. Similarly, SMC should
allow to infer more refined performance consequences (cost, energy consumption
etc) of the synthesized strategy. For this, we extend the underlying timed game
with prices and stochastic semantics.

There have been a few previous attempts to combine modelling, synthesis,
verification and performance evaluation in a single paradigm. In [7] Franck et al.
presented a tool chain — UPPAAL-TIGA for synthesis, PHAVER for verification,
SIMULINK for simulation — to solve the energy consumption and wear control
problem of an industrial oil pump case-study. In [10] UPPAAL-TIGA was combined
with MATLAB and SIMULINK to achieve synthesis, simulation and executable
code generation for the climate controller of a pig stable. These tool chains are
not integrated inside one tool and require translations to let the different tools
interact.

As the first contribution in this paper, we propose the principle of trans-
lating a synthesized strategy, as obtained from UPPAAL-TIGA, into a controller
timed automaton. One can build a closed system using the controller and do
model-checking in UPPAAL or statistical model-checking in UpPPAAL-sMC. The
second contribution is an extension of the semantics and algorithms of MC and
SMC to use a synthesized strategy when exploring the state space (for MC) or
generating random runs (for SMC). The third contribution is an implementation
of this extension based on UPPAAL referred here as Control-SMC, which allows
users to synthesize a timed game strategy then verify and evaluate this strategy
automatically. It is worth noting that UPPAAL-TIGA may not guarantee that the
synthesized strategy is time optimal and here we are interested in evaluating a
given strategy w.r.t. a number of different cost measures.

The rest of the paper is organized as follows. Section 2 defines timed games
and strategies. Section 3 provides the stochastic semantics of SMC. Section 4
describes the translation of a strategy to a timed automaton. Section 5 presents
the extended SMC semantics and implementation of Control-SMC. Section 6
gives the experiment results on two case-studies using Control-SMC. The paper
concludes with the future work in Section 7.

2 Timed Game

This section recalls the basic theory of timed game and controller synthesis.
Controller synthesis aims at solving the following problem: Given a system S
and an objective ¢, synthesize a controller C' such that C' can supervise S to
satisfy ¢ (C(S) E ¢) regardless how the environment behaves. The problem can
be formulated as a two-player game between the controller and the environment.

2.1 Timed Game Automata

Let X = {z,y,...} be a finite set of clocks. We define B(X) as the set of clock
constraints over X generated by grammar: g, g1,g2 s=x Xn|z—y>xmn| g Ags,
where z,y € X are clocks, n € Nand e {<,<,=,>,>}.

Definition 1. A Timed Automaton (TA) [1] is a 6-tuple A = (L, 4y, X, X, E,
Inv) where: L is a finite set of locations, £y € L is the initial location, X is a
finite set of mon-negative real-valued clocks, X is a finite set of actions, E C
LxB(X)x X x2%X x L is a finite set of edges, Inv : L — B(X) sets an invariant
for each location.

Definition 2. The semantics of a timed automaton A is a Timed Transition
System (TTS) S4 = (Q, Qo, X, —) where: Q = {({,v) | (¢,v) € L x R¥, and

v = Inv(€)} are states, Qo = (£o,0) is the initial state, X is the finite set of
actions, = C Q x (X' UR>q) X Q is the transition relation defined separately for
action a € X and delay d € R>¢ as:

(i) (L,v) = (£',0') if there is an edge ((X255 ¢)) € E such that v = g,
v =v[r— 0] and v | Inv(?'),

(i) (£,v) N (¢',v+d) such that v = Inv(€) and v+ d = Inv(L).

A timed game automaton is an extension of a timed automaton whose actions
are partitioned into controllable actions for the controller and uncontrollable
actions for the environment. Besides discrete actions, each player can decide to
wait in the current location. As soon as one player decides to play one of his
available actions, time will stop elapsing and the action will be taken.

Definition 3. A Timed Game Automaton (TGA) [13] is a 7-tuple G = (L, 4o, X,
Yo, Xu, E, Inv) where: X, is the finite set of controllable actions, X, is the fi-
nite set of uncontrollable actions, X. and X, are disjoint, and (L,{ly, X, Y. U
X, E, Inv) is a timed automaton.

Let Sg be the timed transition system of G. A run p of G can be expressed in

Sg as a sequence of alternative delay and action transitions: p = qq N a5 LN

q1 N q 2 L, Q1 @y, where a; € X .U, d; € R, g; is state
(4;,v;), and ¢, is reached from ¢; after delay d;11. Execg denotes the set of runs
of G and Ea:ecé denotes the set of its finite runs.

Definition 4. Given a timed game automaton G and a set of states K C L x
RZ,, the control objective ¢ can be: (i) a reachability control problem if we
want G supervised by a strategy to reach K eventually, or (ii) a safety control
problem if we want G supervised by a strategy to avoid K constantly.

We can define a run p € Execg as winning in terms of its control objective.
For a reachability game, p is winning if 3k > 0, (¢, v;) € K. For a safety game,
p is winning if Vk > 0, (¢, vx) € K.

Definition 5. A strategy for a controller in the timed game G is a mapping
5 E:recé — Y. U{A} satisfying the following conditions: given a finite run p
ending in state ¢ = last(p), if s(p) = a € X, then there must exist a transition
q - ¢ in Sg, orif s(p) = A, A\ being the delay action, then there must ezist a

positive delay d € R such that q BN q in Sg.

When a strategy only depends on the current state of the game, that is
Vp,p' € Execg, last(p) = last(p') implies s(p) = s(p’), it is called a positional or
memoryless strategy. The strategies for reachability and safety games, as the
ones handled by UPPAAL-TIGA, are memoryless.

The analysis of TA and TGA is based on the exploration of a finite symbolic
reachability graph, where the nodes are symbolic states. A symbolic state S is a
pair (¢,7), where £ € L, and Z = {v | v = ¢»,9. € B(X)} is a zone [12], which
is normally efficiently represented and stored in memory as difference bound
matrices (DBM) [4]. UPPAAL-TIGA uses efficient on-the-fly algorithms [6] that
manipulate zones to solve timed games. The winning strategy § produced by
UPPAAL-TICA is also represented using zones. More precisely, for each location
£, § gives a finite set of pairs as §(¢) = {(Z1,a1),...,(Zn,an)}, where a; €
Y U{hZnZ; =0ifi#j.

2.2 A Running Example

Fig. 1 [6] shows a timed game automaton named Main which has one clock = and
two types of edges: controllable (solid) and uncontrollable (dashed). The control
objective is to find a strategy that can supervise Main to reach goal, regardless of
the environment’s behavior. The object is expressed as control: A<> Main.goal.
The game is controllable, and UPPAAL-TIGA provides a strategy as shown in
Fig. 2 if running the command line version of UPPAAL-TIGA— verifytga with
the option -w0. The strategy is a list of (zone, action) pairs indexed by locations.

State: (Main.L1)

While you are in (10<=Main.x && Main.x<20), wait.
When you are in (20<=Main.x), take transition
Main.L1->Main.goal { x >= 20, tau, 1 }

State: (Main.L3)

While you are in (Main.x<10), wait.

When you are in (Main.x==10), take transition
Main.L3->Main.L1 { x <= 10, tau, 1 }

State: (Main.LO)

When you are in (Main.x==10), take transition
Main.LO->Main.L1 { x <= 10, tau, 1 }

While you are in (Main.x<10), wait.

State: (Main.L2)

When you are in (Main.x<=10), take transition
Main.L2->Main.L3 { 1, tau, 1 }

State: (Main.goal)

While you are in true, wait.

Fig.1. TGA Main Fig. 2. A Strategy for Main

For example when Main is at L1, the action is to wait if 10 < x < 20, or to take
the action to reach goal if x > 20.

3 Stochastic Priced Timed Automata

In this section, we briefly recall the definition of priced timed automata and
stochastic semantics of SMC. We borrow the definitions from [8].

3.1 Priced Timed Automata

Priced timed automata are a generalization of timed automata where clocks
may have different rates in different locations. We note by R(¢) : X — N the
rate vector assigning a rate to each clock of X at location ¢. For v € R)>(o
and d € Rxq, we write v + R(¢) - d to denote the clock valuation defined by
(v+ R(¢) -d)(x) =v(x) + R({)(x) - d for any = € X.

Definition 6. A Priced Timed Automaton (PTA) is a tuple P = (L, y, X, X, E,
R,I) where: (i) L is a finite set of locations, (ii) Ly € L is the initial location,
(iii) X is a finite set of clocks, (iv) X = X; W X, is a finite set of actions parti-
tioned into inputs (X;) and outputs (X,), (v) EC LxB(X)x ¥ x2X x L isa
finite set of edges, (vi) R : L — NX assigns a rate vector to each location, and
(vii) I : L — B(X) assigns an invariant to each location.

3.2 Stochastic Semantics

Consider a closed network of PTAs A = (P1|...|Py,) with a state space St =
Sty x -+ - x St,,. For a concrete global state ¢ = (q1,...,¢,) € St and ajas...ax €
X* we denote by 7(q, a1as . . . a) the set of all maximal runs from ¢ with a prefix
tiaitaas . . . tpay for some tq,...,t2 € R>g, that is, runs where the i’th action a;
has been output by the component P.,). We give the probability for getting
such sets of runs as:

Pa(m(g,a1az2...a;)) = /t>0,u2(t)»(H />iug(7—)d7—)"}/§t (a1)Pa(7((¢")*", az...an))dt

je

where ¢ = c(a;) is the index of component taking ay, g is the delay density
function for component ¢ to choose a delay t; at ¢, and Vg 18 the output probability
function for component ¢ to choose an action a; after ¢ is delayed by ¢. The above
nested integral reflects that the stochastic semantics of the network is defined
based on race among components. All components are independent in giving
their delays which are decided by the given delay density functions. The player
component who offers the minimum delay is the winner of the race, and takes the
turn to make a transition and (probabilistically) choosing the action to output.

A it B Fig. 3 gives the intuition of the SMC se-
: mantics. Two PTAs P; and P, race to reach
locations A or B. If P; enters A, it blocks P»
to enter B, and vice versa. Furthermore, ei-
ther PTA can delay uniformly within the in-
variants from its initial state before firing its
output transition. We can use the SMC se-
mantics to calculate the probability for P; to
enter location A within 2 time units as:

Init

a!

Fig. 3. A Tiny Example

P a) = [1 (/;;dy)dx 1 emw=?

where qq is the initial state of the network of P, and P», and the delay density
functions for P; and P; at gy are 1 and % respectively. P; can reach A only if it
takes its transition before Ps.

4 Translating Strategies to Timed Automata

In this section, we provide a systematic way to translate a synthesized strategy
of a timed game G produced by UPPAAL-TICA into a controller timed automaton
C. Once the controller is built, we can verify additional correctness properties
or evaluate performance aspects of the closed system C(G) in UPPAAL.

4.1 The Method

We recall from Section 2.1 that strategies have the form §(¢) = {(Z1, a1), ..., (Zn,
an)}. Given a concrete state ¢ = (¢,v), one can lookup which action a; to take
by finding Z; such that v € Z;. Fig. 4 illustrates how to translate the strat-
egy from a location ¢ with the schematic zone representation (left) into a basic

S(ﬂ) = {(Zh (ll)7 (ZQ, a2)7 (237 /\) (Z47)\)}ﬁé cL

Y

ffffffff

Zy | 4

Fig. 4. Translating the Strategy

controller TA (right). The complete controller TA is obtained by repeating the
same translation procedure for all locations and connecting all resulting basic
controller TAs to the same initial state. The symbol “C” inside states indicates
committed states. Time does not elapse in committed states, and the outgoing
transitions are taken atomically. We use Z to denote the closure of the zone Z.

The small controller TA on the right is constructed as follows. For a given
discrete state (¢) (location only), a transition from Init to a switch state SW is
added with a guard encoding ¢. From there we add transitions guarded by Z;
for each (Z;,a;) entry of §(¢) to a choice state CSi. Then, we have tree basic
cases: Either (1) a; is a controllable action, (2) a; is an unbounded delay, or (3)
it is a bounded delay. In case (1), the controller takes a; immediately with the
synchronization a;! (e.g. from CS1 and €S2 in Fig. 4). In case (2) corresponding
to a; = A, the controller stays idle waiting for a move from the environment
with the synchronization u?. Finally, case (3) is similar to case (2) except for the
upper bound on the delay (encoded with an invariant) and additional transitions
to go back to SW whenever the upper bound is reached and a controllable action
is enabled.

4.2 The Running Example

We translate the strategy in Fig. 2 into a controller TA C. Before translating,
we need to synchronize C and G so that C' can observe the state of G and control
it. To observe the locations, we assign unique IDs and use global flags for each
component to keep track of the current active location. Then we rename the
local clocks to be global to make them visible. To monitor every uncontrollable
transition in G, we use a unique channel v and the synchronizations u! in G and
u? in C. Similarly, to control G, controllable actions a; use the corresponding
channel synchronizations a;! in C' and ;7 in G.

In Fig. 5, we define location IDs for Main.LO —Main.L4 and Main. goal from 0
to 5. Then we use the global location flag loc to keep track of the current location
of Main, and the global clock = to replace the local one, then the broadcast
channels ul, 42, al — a4 to synchronize Main and its controller TA MyCon in Fig.
6. In MyCon, by testing loc on the predefined location IDs, transitions from Init
lead to the switch states LO — L3 and L5, which correspond to the strategies at
locations Main.LO — Main.L3 and Main.goal. Choice states MOO, M10, M20 and
M30 depict case (1) in Fig. 4. Accept corresponds to case (2). MO1, M11 and M31
match case (3).

We also add price and a delay distribution to Main for performance evaluation
in SMC. This essentially turns Main into a priced timed automaton. We use
an integer s to count the number of transitions to reach goal, and a clock e
to measure the energy consumption to reach goal. The rate of the clock e is
specified at all locations as ¢/ == n,n € N except at L4 because L4 is not
reachable under the strategy. ¢’ is stopped at goal by setting to 0. Besides, an
exponential rate of 3 is defined for the delay density function at L1. Now a closed
system can be made from Main and MyCon. We can verify correctness properties
and evaluate performance aspects of this strategy as shown in Table 1.

Fig. 5. Decorated TGA Main

10
loc==1 x>=20, C) a2!
x>=10&&x<20
M11
x>=20 u2?
N\ 20

L2
loc==2 © x<=10, © a3!

M30

L3
loc==3 e x==10, a4!
. x<=10

loc==5 L5

© OAccept

Fig. 6. Controller TA MyCon

Table 1. MC & SMC Experiments of the Running Example

7# Queries Results
MC 1 |A<> Main.goal Yes

2 |A<> Main.goal and time<=20|No

3 |Pr[<=30] (<> Main.goal) [0.902606,1]
SMC| 4 |E[<=30;200] (max: Main.s) [3.05

5|E[<=30;200] (max: Main.e) |27.5137

Experiment 1 verifies the orig-
inal control objective that is sat-
isfied (Yes) for sure. Experiment
2 verifies if the strategy ensures
Main to reach goal within 20
time units, where time is a global
clock. The result is not satisfied
(No). We evaluate reachability of
goal within 30 time units under
the strategy in experiment 3. The
probability is [0.902606,1] with
confidence 0.95 if the probability
uncertainty factor € is 0.05. Be-
sides, several kinds of statistical

Cumulative Probability Distribution

0.99
0.88|
0.77|
0.66|
:5‘0‘55

3 £ cumulative

éu 44| Edaverage

5033
0.22)

0.11]

ol
200 213 226 239 252
run duration in time
Parameters: «=0.05, £=0.05, bucket width=1.62906, bucket count=6
Runs: 36 in total, 36 (100%) displayed, 0 (0%) remaining

Span of displayed sample: [20, 29.7744]

Mean of displayed sample: 22.8265 + 1.12486 (95% Cl)

26.5 27.8 29.1

Fig. 7. Distribution on Time to Reach goal

plots can be generated by UPPAAL-SMC such as probability distribution, prob-
ability density distribution, cumulative probability distribution, and frequency
histogram. Fig. 7 shows the cumulative probability distribution of 36 runs. The
curve shows that over 55% of runs reach goal between 20.0 and 22.6 time units,
and almost 90% runs can reach goal within 29.1 time units. The last two exper-
iments report the expected number of steps and energy consumption to reach
goal for 200 simulated runs within 30 time units.

5 MC and SMC under Strategies

Control-SMC is a new extension of UPPAAL. It automatically synthesizes a strat-
egy of a timed game, keeps the strategy in memory, then verifies and evaluates
the strategy on a number of SMC properties. We extended the semantics and
algorithms of MC and SMC to apply the synthesized strategy when exploring
the state space (for MC) and generating random runs (for SMC).

5.1 Extended Stochastic Semantics

Let A = (P1]...|Pn) be a network of priced timed automata modelling an
environment to be controlled. That is A may be seen as a timed game with global
state space St = Sty x --- x St,, and with sets Y. and X, of controllable and
uncontrollable actions, respectively. Now assume that — using UPPAAL-TIGA—
we have synthesized a strategy s : St — (R x X.) U {A} for A ensuring some
desired reachability or safety objective. That is s(¢) = (d,a) indicates that the
strategy s in state ¢ proposes to perform controllable action a after a delay of d;
s(g) = X indicates that the strategy will delay indefinitely until the environment
has performed an uncontrollable action. Now we may view the eztended network:

A° = (Py]...|PnlAs)

as a closed stochastic network over X, U Y., where the components Py,...,P,
have been given delay density functions p', ..., ™ and output probability func-
tions 4!,...,7". Now A, is a one-state component implementing the strategy
s. That is s has delay density function pj = 64, when s(q) = (d,a) and dq is
the Dirac delta function with probability mass concentrated at time-point d>.
Moreover the output probability function vy for s is given by:

e
BO=V1 s = (da)d o
Lo5s(g=A

In this way A° may be subject to statistical model checking provided. We ex-
tend the capability of UPPAAL-SMC to generate random runs for networks of
environment components extended with control strategies.

5.2 Implementation

Fig. 8 shows the work-flow of Control-SMC. The UPPAAL-TIGA engine receives
the timed game model G and the control objective ¢. It synthesizes a strategy
that is kept in memory if G is controllable. The strategy can be printed out with
the option -w0. If the option -X is used then subsequent MC or SMC queries

3 which should formally be treated as the limit of a sequence of delay density functions
with decreasing, non-zero support around d.

p; are checked under this strategy. For the purpose of evaluating performance,
the model G can be extended with costs to G’. These costs are modeled with
clocks that must be declared as hybrid clock. They are ignored for the purpose
of symbolic model-checking (synthesis or MC) and taken into account for SMC.
Furthermore, floating-point variables can be used in the same way. These addi-
tional variables may not be active for the purpose of controlling the behavior.

g pi
| |
| |
| —
g 4’3 UPPAAL/ |
¢ — > UPPAAL-TIGA [™ ™| UppaaL-sMC : Result
| ‘ |
| 3 !
| ! |
! I I Strategy
|

Fig. 8. Workflow of Control-SMC

The exploration under a given strategy is similar to standard MC or SMC
when considering uncontrollable transitions since they are played by an oppo-
nent. The opponent is stochastic for the purpose of SMC and when doing MC, all
possible successors are tried. However, only the controllable transitions allowed
by the strategy are allowed. In addition, delay is constrained by the delays of
the strategy, e.g., if a controllable transition is to be taken after 5 time units,
UprpPAAL will not delay more. For SMC, this is resolved naturally through the
semantics with a race between components. For the symbolic exploration, the
strategy specifies how much delay is allowed and this constrains the standard
delay operation. Furthermore, we have to add the upper border of bounded de-
lays to enable following transitions. More precisely UPPAAL-TIGA maintains a
partition so we could have the case to wait while in = € [0,5[and take a tran-
sition at x = 5, but = 5 is then unreachable. Therefor we have to wait while
x € [0,5]. Finally, when an action follows a delay it has an urgent semantics,
i.e., the states in which such an action is enabled are not allowed to delay.

5.3 The Running Example

We demonstrates how to use Control-SMC on the running example described in
Section 2.2 and 4.2 without the need to translate the strategy. We add prices
and stochastic information directly on the TGA Main as shown in Fig. 9. The
clocks used for cost are declared as hybrid clock (e.g. e), while counters for
SMC evaluation are declared as double (e.g. s).

Fig. 10 shows the query file we use here. A control query that expresses the
control objective starts on the first line with a list of MC and SMC queries on

control: A<> Main.goal

A<> Main.goal

A<> Main.goal and time<=20
Pr[<=30] (<> Main.goal)
E[<=30;200] (max: Main.s)
E[<=30;200] (max: Main.e)

Fig. 9. TGA Main with Prices Fig. 10. Combined Query File

the following lines. For now, Control-SMC is available only from the command
line checker verifytga and is enabled with the option -X. Given the model as
in Fig. 9 and the query file as in Fig. 10 as inputs, it first synthesizes a strategy
for the control query, then processes the rest MC and SMC queries in a batch
fashion, and gives the same results as in Table 1 in Section 4.2.

6 Experiments Results

We show the experiments of two case-studies by first using the Control-SMC
method of Section 5, then using the strategy translation method in Section 4 as
a cross-check. The two methods gave the same results for MC and SMC queries.
We also measured the execution time of the queries for both methods, because
we want to know the runtime benefit of applying a strategy in time and memory
compared with using a translated controller from a strategy. All models in the
experiments are available on our SMC web-page*.

6.1 Case Study 1: Jobshop

The Jobshop problem is about scheduling a set of machines for a set of jobs,
where each job needs to use those machines in a particular order for a particular
time limit. This case-study involves two professors Kim and Jan who want to
read a single piece of four-section newspaper. Each person has his own preferred
order on sections, and can spend different times on different sections. The con-
trol objective, which is expressed as control: A<> Kim.Done and Jan.Done and
time<=80, is to find a scheduling strategy that guarantees both people finish
reading within 80 time units. UPPAAL-TIGA finds such a strategy. The full ex-
planation about this model can be found on web-page of examples [11]. The
model is down-sized for the purpose of the manual conversion to a controller
automaton.

* Section Control-SMC at http://people.cs.aau.dk/~adavid/smc/cases.html

rt'==0 t==0&&
rt'==0&&
7 Isecd sec47 alse wt'==0
sec2=false /
/

/
/

sec2= ue,/l sec3 true,/><>t3 sec4= ue,/l><>t4
x:=0 Ix>t2 52 4 Xi= 4

Fig.11. Job Template with Prices

Table 2. MC & SMC Experiments of Jobshop

E[time<=80 ; 2000000] (max: Jan.wt) 11.5652| 60.9s|136.8s
E[time<=80 ; 2000000] (max: Jan.rt) 47.3951| 62.1s[138.8s
1* in [0.999998,1] with confidence 0.95.

Queries Results [T (CS)|T (M)

1|A[] Jan.Done imply Kim.Done Yes - -
MC |2 |E<> Kim.Done and Jan.Done and time<=45|Yes - -

3 |E<> Kim.Done and Jan.Done and time<=44|No - -

4 |Pr[<=80] (<> Kim.Done and Jan.Done) 1* 76.5s]148.3s

5 |E[time<=80 ; 2000000] (max: Kim.wt) 5.40221| 62.1s|132.5s
SMC|6 |[E[time<=80 ; 2000000] (max: Kim.rt) 22.7469| 61.7s|138.7s

7

8

Fig. 11 shows the TGA template with prices for each person for Control-
SMC. The availability of four sections are maintained by four global boolean
variables. During the initialization of Kim and Jan, the references to the boolean
variables are assigned to secl — sec4 according to each person’s preferred order
of reading. The strategy tells a person when to acquire a section (controllable,
solid edge), while a person can release a section at any time within a time
bound (uncontrollable, dashed edge). We add respectively three stop-watches®
wt, rt and t to measure the accumulated time on waiting, reading and finishing
the newspaper respectively.

We obtain the same results when checking the MC and SMC queries in
Control-SMC and UpPPAAL. Thus in Table 2 we use the single column Result to
show the MC results (Yes for satisfied or No for not satisfied), and SMC results
(probabilities or evaluations). The T (CS) column shows the execution time of
a query in seconds by Control-SMC, while the T (M) column shows that by
using a manually translated controller. We do not compare the runtime of MC
queries because the size of this model is not big enough to make the runtime
distinguishable. But we compare the runtime of SMC queries, because we can
let the SMC engine to generate a large number of runs to make the runtime
difference noticeable.

Experiment 1 shows that Kim always finishes reading before Jan. We get the
shortest time (= 45 time units) for both to finish from experiments 2 and 3.

5 Stop-watches are clocks whose rates are reset to zero.

Experiment 4 measures the probability for Kim and Jan to finish reading within
80 time units if the probability uncertainty ¢ = 0.000001.

In UpPAAL-SMC we can get
the plot of probability distribu-
tion of this query as shown in Fig.
12. The plot gives the mean value
of around 59 time units. The re-
maining SMC experiments show
the expected time for Kim and
Jan to wait and read the news-
paper individually. The strategy
biases Kim because Kim waits
less than Jan. The runtime ex-
periments of SMC queries were
carried out on a PC with Intel
i7-2640M CPU @ 2.80GHz, 8GB
main memory and Ubuntu 12.04
x86_64 with the upcoming version

Probability Distribution

0.0017,
0.0016|
0.0015|
0.0014|
0.0013|
0.0012)
0.0011]

50.0010|

%0.0009

30.0008

$0.0007]
£0.0006|
0.0005|

Il probability
Edaverage

0.0004|

0.0003|

0.0002)

0.0001]

ol
44.9 49.5 54.1 58.7 63.3 67.9 72.5

time

Parameters: a=0.05, £=1e-06, bucket width=0.020511, bucket count=1359

Runs: 1844438 in total, 1844438 (100%) displayed, 0 (0%) remaining

Span of displayed sample: [44.9821, 72.8566]

Mean of displayed sample: 59.003 + 0.00626518 (95% CI)

Fig. 12. Distribution on Time to Finish Read-
ing for Both People

0.18 of UPPAAL-TIGA. Experiment 4 set ¢ = 0.000001 to force the SMC engine
to generate a large number of runs (1844438 runs). In experiments 5 — 8, we
set the number of runs to 2000000. We can conclude that applying a strategy
in memory improves the performance of SMC engine inside Control-SMC by
a factor of two. This is due to the strategy look-up in a hash table instead of

simulating it within the model.

6.2 Case Study 2: Train-Gate

X>=3
Safe @®_ ___ T ncr=ncr+1 Cross
(1 +id) : N*N P x<=5&&
eng'==1 . L eng'==

! R
! p

x=0 1 , |
} /’ x>10 } x>7
, e x=0 1 x=0
y ‘

Fig. 13. Train Template with Prices

Train-Gate is a classical case-study for
real-time model checking. It is distributed
with UPPAAL with an detailed expla-
nation in [3]. Fig. 13 shows the game
version of it with prices and stochastic
extensions. The control objective, which
is expressed as control: A[] forall (i :
id_t) forall (j
and Train(j).Cross imply i == j,is find-
ing a strategy to guarantee the exclusive
access to Cross by two trains. If neces-
sary, the strategy should stop a train at
Appr in time (z < 10) by the control-
lable solid edge to Stop, otherwise the
train goes to Cross directly by the un-
controllable dashed edge. The train can
resume at Stop by the other controllable

: id_t) Train(i).Cross

solid edge to Start. The exponential rate ((1+id) :N*N) appears at Safe for spec-
ifying the delay density function. A counter ncr records the throughput at Cross.

Table 3. MC & SMC Experiments of Train-Gate

Result

Queries Syn Que T (CS)|T (M)
MC |1 |E<> Train(0).Cross && Train(1).Start [Yes No - -

2 |Pr[<=100] (<> Train(0).Cross) 1" 1" 45.9s| 88.5s
SMC| 3 |E[<=100 ; 1000000] (max: ncr) 8.0665 |5.8065| 72.3s/173.3s

4 |E[<=100 ; 1000000] (max: Train(O).eng)|124.938|88.402| 69.3s|169.5s

1* in [0.999998,1] with confidence 0.95.

A hybrid clock e measures the energy consumption of a train. The interesting
point of this case-study is that we compare the behavior and performance of
the synthesized strategy with the manually programmed queue-based controller
available in the train-gate example provided in the distribution of UPPAAL.

Table 3 shows the comparative experiments of the synthesized strategy Syn
and the queue-based controller Que. Experiment 1 shows Syn allows Train(1)
to approach Cross while Train(0) is still crossing. This is forbidden by Que.
Experiment 2 measures the probability for Train(0) to reach Cross within 100
time units with the probability uncertainty ¢ = 0.000001. Experiment 3 shows
that Syn gives a bigger throughput from Que, because Syn allows different trains
to approach Cross concurrently as witnessed by experiment 1. Experiment 4
gives the expected energy consumption for Train(0). We compare the execution
time of SMC queries in seconds by Control-SMC in the T (CS) column with that
using a manually translated controller in the T (M) column. In experiment 2,
we set € = 0.000001 to force the SMC engine to generate a large number of runs
(1844438 runs). In experiments 3 and 4, we set the number of runs to 1000000.
We can conclude that applying a strategy in memory improves the performance
of SMC engine inside Control-SMC by a factor of two.

7 Future Work

The future work are in three directions. Our first goal is to merge UPPAAL and
UPPAAL-TICGA, which will enable Control-SMC from the graphical interface with
all its capabilities, in particular the plot composer. Next, we aim to make the
clocks for measuring prices in Control-SMC to become real hybrid as in UPPAAL-
sMC. The clock rates can be floating-point, negative, or in the form of ordinary
differential equations (ODE). The third direction is exploring more potential
use of the synthesized strategy in memory. We can try to refine or optimize the
strategy using machine learning methods.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183235 (1994)

10.

11.

12.

13.

14.

. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:

Uppaal-tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV.
Lecture Notes in Computer Science, vol. 4590, pp. 121-125. Springer (2007)
Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SEFM. Lecture Notes in Computer Science, vol. 3185, pp. 200
236. Springer (2004)

Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
Lecture Notes in Computer Science, vol. 3098, pp. 87-124. Springer (2003)
Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Hu, A.J., Vardi, M.Y. (eds.) CAV.
Lecture Notes in Computer Science, vol. 1427, pp. 546-550. Springer (1998)
Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CON-
CUR. Lecture Notes in Computer Science, vol. 3653, pp. 66-80. Springer (2005)
Cassez, F., Jessen, J.J., Larsen, K.G., Raskin, J.F., Reynier, P.A.: Automatic syn-
thesis of robust and optimal controllers - an industrial case study. In: Majumdar,
R., Tabuada, P. (eds.) HSCC. Lecture Notes in Computer Science, vol. 5469, pp.
90-104. Springer (2009)

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., van Vliet,
J., Wang, Z.: Stochastic semantics and statistical model checking for networks of
priced timed automata. CoRR abs/1106.3961 (2011)

David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV. Lecture Notes in Computer Science, vol. 6806, pp. 349-355. Springer (2011)
Jessen, J.J., Rasmussen, J.I., Larsen, K.G., David, A.: Guided controller synthesis
for climate controller using uppaal tiga. In: Raskin, J.F., Thiagarajan, P.S. (eds.)
FORMATS. Lecture Notes in Computer Science, vol. 4763, pp. 227-240. Springer
(2007)

Larsen, K.G.: Quantitative model checking exercise. http://people.cs.aau.dk/
~kgl/QMC2010/exercises/ (2010), 28. Job Shop Scheduling

Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
Reichel, H. (ed.) FCT. Lecture Notes in Computer Science, vol. 965, pp. 62-88.
Springer (1995)

Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems (an extended abstract). In: STACS. pp. 229-242 (1995)

Younes, H.L.S.: Planning and verification for stochastic processes with asyn-
chronous events. In: McGuinness, D.L., Ferguson, G. (eds.) AAAI pp. 1001-1002.
AAATI Press / The MIT Press (2004)

