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Abstract—We define the concept of degree of schedulability
to characterize the schedulability and performance of mixed-
criticality scheduling systems. The degree of schedulability of
a system is given in terms of the two factors 1) Percentage of
Missed Deadlines (PoMD); and 2) Degradation of the Quality of
Service (DoQoS). Our work is set as a hierarchical scheduling
framework where we introduce probability based sporadic tasks.
The novel aspect is that we consider task arrival patterns
that follow user-defined continuous probability distributions. The
triggering of the sporadic tasks is modeled separately from the
scheduling system in order to achieve separation of concerns.
The task triggering events represent the system environment.
We determine the degree of schedulability of a single scheduling
component which can contain both periodic and sporadic tasks
using statistical model checking in the form of UprPAAL SMC.
We support uniform, exponential, Gaussian and any user-defined
probability distribution. Finally, we show the applicability of our
framework by analyzing an avionics case study.

I. INTRODUCTION

Limited resources are a strong factor in the system setting in
some embedded software application fields. Engineers could
be interested, not only, in whether or not the system always
meets its requirements, but also how it behaves with insuffi-
cient resources. Supplying a system with less resources than
it requires may lead to a degradation of the quality of service.
A certain level of degradation may be acceptable in a given
setting and we thus consider it important to answer questions
regarding schedulability with estimates of the quality instead
of just providing a yes/no answer.

This paper presents a methodology to measure the degrada-
tion of the quality of service of a given system according to the
resources it has been provided with. We introduce the degree
of schedulability as a technique to analyze the degradation of
the quality of service in the schedulability analysis of mixed-
criticality hierarchical scheduling systems. The methodology is
intended as an engineering technique used to compare system
configurations regarding resources and task attributes.

A hierarchical scheduling system [10] is a component-based
system encompassing global resources shared between the
system components. The system workload consists of a set
of tasks declared with a set of timing attributes such as pe-
riod, deadline and execution time. Task dependencies and the
partitioning of hierarchical resources make the schedulability
analysis of hierarchical scheduling systems difficult. One way
to deal with such a situation is to consider much simpler
system specifications where only interfaces are considered
during the analysis instead of the concrete workload behavior.
One difficulty can be the choice of interfaces that sufficiently
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Fig. 1. Overview of framework setup.

express components and tasks. Another aspect is how to com-
pute the composition of interfaces. In recent years, increasing
attention has been given to compositional analysis techniques,
where system components can be analyzed separately.

The sporadic task model [3] [17] has received research
attention [24] [23] over the years because of its usefulness in
modeling recurring processes for hard-real-time systems. It has
been originally introduced to model external interrupts of sys-
tems. Sporadic tasks can be used in the same way as periodic
tasks to model periodic systems if we consider regular arrival
times for tasks. However, the periodic task model cannot
express the instantaneous and non-regular arrivals of sporadic
tasks. It is obvious that it is not possible to guarantee the
schedulability of real-time systems where sporadic tasks can
occur arbitrarily frequently [3]. To alleviate this the sporadic
task model operates with a minimal inter-arrival time. In many
mixed-critical systems like tracking systems and automotive
info-tainment systems, arrival times are adequately described
by specific distribution functions. In this paper, we model real
world events separately from the tasks. Events are modeled
according to stochastic arrival patterns with an inter-arrival
time that could be zero. Thus, we can determine the degree of
schedulability of systems that are non-schedulable in the clas-
sical sense. Some classical approaches of the schedulability
analysis of sporadic tasks treat the minimum inter-arrival time
as the tasks period. This can seriously lead to a pessimistic
over-estimation of the resource demand, and by that to a non-
optimal resource utilization.

We consider a framework where the triggering mechanism
of sporadic tasks is located outside the hierarchical scheduling
system as illustrated in Fig. 1. Each sporadic task has its
individual arrival pattern, which is characterized by a contin-
uous probability distribution. In this paper, we are focusing
on modeling and analyzing a single component at a time,
with both sporadic and periodic real-time tasks. This analysis
method fits within a larger compositional analysis framework
[4], which analyzes a complete hierarchical scheduling system.



Our main contributions are:

o« We introduce continuous probability distributions to
model sporadic events that trigger the execution of spo-
radic tasks.

o We study the system schedulability and determine the
degree of schedulability (Sched®) in terms of the Percent-
age of Missed Deadlines (PoMD); and average delay per
missed deadline, called Degradation of Quality of Service
(DoQoS).

e We provide a framework including explicit environment
models, which allows us to model and analyze mixed-
criticality hierarchical scheduling systems.

Compared to treating the minimal inter-arrival time as a
period, our method aims at providing both more realistic
and optimistic resource estimates for sporadic tasks. The rest
of the paper is structured as follows: Section II examines
relevant related work, Section III introduces the compositional
analysis framework. In Sections IV, V and VI we introduce
respectively continuous sporadic tasks, the models used to
analyze them and the actual analysis. Finally, we demonstrate
the applicability of our method on an avionics case study in
Section VII, and conclude in Section VIII.

II. RELATED WORK

In this section we present related work with a specific focus
on sporadic tasks. To the best of our knowledge, there is no
previous related work which uses continuous probabilities to
characterize the arrival patterns of sporadic tasks. The sporadic
task model [3], [17], which is an extension of an earlier task
model known as the Liu and Layland (LL) [13] task model
has received immense research attention over the years. In
[24], the authors propose a framework for the schedulability
analysis of real-time systems, where they define a generalized
model for sporadic tasks to characterize more precisely the
task arrival times. The authors characterize each task by two
constraints: higher instantaneous arrival rate which bounds
the maximum number of task arrivals during some small time
interval; lower average arrival rate which is used to specify
the maximum number of arrivals over some longer time
interval. In [23], the authors propose a method to control the
preemptive behavior of real-time sporadic task systems by the
use of CPU frequency scaling. They introduced a new sporadic
task model in which the task arrival may deviate, according
to a discrete time probability distribution, from the minimum
inter-arrival time. In fact, a task arrival 7' may deviate with a
delay ¢ if the probability of T' to occur at instant ¢ is greater
than a certain threshold. Based on the probability of arrivals,
the authors propose an on-line algorithm computing CPU
frequencies that guarantee non-preemptiveness of task behav-
ior while preserving system schedulable. In [3], the authors
propose an exact schedulability analysis by providing some
necessary and sufficient conditions for a sporadic task system
to be schedulable. In fact, the authors consider sporadic tasks
with minimum inter-arrival time as periodic tasks, then define
the set of legal requests that a task may perform. Based on such
a function, they analyze the system schedulability regardless of
the schedulability policy. However, considering sporadic tasks
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Fig. 2. Mixed criticality hierarchical scheduling system.

with known minimum inter-arrival times as periodic tasks may
lead the schedulability analysis to be pessimistic and seriously
overestimates the number of task arrivals. Our work differs
by modeling probabilistic inter-arrival times and quantifying
the system schedulability according to hard and soft real-time
requirements. A concept similar to PoMD as introduced in this
paper is given in [16]. The term “degree of schedulability” was
first introduced in [18] to characterize the sum of response time
delays from the individual deadlines. We define the concept
DoQoS in a similar way, but focus on the total amount of time
by which deadlines are missed. We define our notion of degree
of schedulability (Sched®) by combining PoMD and DoQoS
into one measure.

III. COMPOSITIONAL ANALYSIS FRAMEWORK FOR Sched®

A hierarchical scheduling system [1] consists of a set of
concurrent real-time components sharing a set of resources
according to a scheduling policy. Each component can again
be internally organized as a set of components, giving the orga-
nization of the system a tree like structure. The use of temporal
partitioning [20] between the components is motivated by the
fact that it provides reduction of complexity, separation of
concerns, confinement of failure modes, and temporal isolation
among system applications. One obvious partitioning of the
components in a mixed criticality system is to group them
according to their criticality. Such a grouping enables easier
certification of the safety critical components when they have
minimal communication with the non safety critical parts [19].

In this paper we focus on the schedulability analysis of
one component inside a hierarchical scheduling system. The
hierarchical scheduling system can be as deeply nested as it is
necessary for the given application, and is thus not restricted
to two levels as shown in the avionics system of Fig. 2. The
avionics system is based on a previously published case study
[14], [11], [4]. Throughout this paper we use the Targeting
component as a running example to illustrate our analysis
method. The whole system will be analyzed in Section VII.

Formally, a hierarchical scheduling system S = (C, R, A) is
given by a set of hierarchical components C, a set of resources
R and a scheduling algorithm A. A component, in turn, can be
either a hierarchical unit ({C1, .., C,, }, A) of other components



C}, or a basic composition (W, A) of a workload W, together
with a scheduling policy A. The workload W is a set of real-
time tasks having time constraints like deadline, execution time
and next arrival. The real-time interface Z [22] of a component
C(W, A) specifies the collective resource requirements that the
workloads W performs under the scheduling policy A. Z is
simply given by a period p and a budget b in our framework.

In Fig. 2, we specify for each task (in parenthesis) the
period or arrival pattern (probability distribution), followed by
execution time and deadline. For each component we specify
the period, minimum supply and the scheduling policy. One
component has “insuf” as minimal supply because its resource
requirement exceeds 100% of the system resource for one
CPU. This is dealt with in Section VII by distributing the
components to different CPUs.

In a compositional schedulability analysis framework [6],
[4], a hierarchical system is said to be schedulable if each
component is schedulable. The analytical analysis approaches
[12], [3], [15] compute whether or not a system is schedulable,
according to a scheduling policy, by giving a firm response to
the following question: is the demand bound function dbf of
each component workload W, over a time interval ¢, lower
or equal to the supply bound function sbf of a resource
according to interface Z, over the same time interval, i.e.
YVt > 0 dbfa(W,t) < sbfz(t). If such an equation is
satisfied, the component is said to be schedulable. In the same
way, in a model-based setting [23], [2], [8], [4] a system is said
to be schedulable if the error locations, stating the deadline
violation, are unreachable.

In contrast to the mentioned techniques, we do not only
consider if a system is schedulable or not, but we provide the
degree of schedulability (Sched®) as a way to measure how
schedulable a system is. We define the Sched® of an entity
(system, component or task) by the two concepts: Percentage
of Missed Deadlines (PoMD) and Degradation of Quality of
Service (DoQoS). Each of these concepts can be computed for
either a task, a component or a complete embedded system.
They should be measured or simulated over a sufficiently large
time bounded run and a sufficiently large number of runs in
order to obtain usable values.

By S we designate the system comprising the probabilistic
models of the event-triggering as well as the hierarchical
scheduling of tasks as depicted in Fig. 1. We define a run
7 of a system S as an infinite sequence:

= so(to,€0)s1(t1,€1) ... 8n(tn,en) ...

where s; is a global state giving information about the state
of each task (e.g. idle, ready, running, blocked) and resource
(e.g. idle, occupied) at stage 7; sq is the initial state; e; indicate
events (triggering, completing or preempting tasks) taking
place with ¢; time-units separating e;,_; and e; resulting in
a transition from state s; to s;11. We denote by Runs the set
of runs of S. For a run 7 and a time-bound ¢ € R>, we may
define (in an obvious manner) the functions:
e Miss!(7) € N is the total number of missed deadlines for
task ¢ upto time ¢;
o Trigl(m) € N is the total number of triggerings of task 4
upto time t.

e of Missed Deadlines (PoMD)):
for a run 7 is given by:

Miss¢ (X
PoMD™X (7) = (lim sup M) x 100
S g, (X, )

Degnition 3.1 (Percenta
The PoMD of an entity

where Miss;(X, ) is the total number of deadlines missed
by X on run 7 upto time bound ¢, and Trig,(X, ) is the
total number of X executions triggered within the run 7 until
time bound ¢. The entity X could be a task, a component or a
system. For the infinite set of infinite runs Runs, the PoMD can
be formally defined using Lebesque integrals [9]. In practice
a random variable which is defined using Lebesque integrals
can be estimated using a finite sample of experiments. Thus,
in our framework, the PoMD is defined over a finite set of
runs IT of equal length by:

> et POMD™ ()

]

In fact, we compute the PoMD at the system level by
simulating the complete system and summing up all triggering
events and deadline misses. Our concept of PoMD is similar
to the concept Deadline Miss Ratio (DMR) from [16].

Degnition 3.2 (Degradation of Quality of Service (DoQoS)):
The DoQoS of a task T; over a finite set of runs II is defined
as:

PoMD™ (IT) =

0 if hmt—n)o ZWGH MiSSt(Ti,TC) =0

Z‘!\'EH Overruny (T ,7)
> e Misse (T;,7)

Similarly, the DoQoS of a component C' over a set of time
bounded runs IT is defined by the DoQoS of its workload W
as. S, ew DoQoST ()

W]
where Overrun(T;, 7) is the sum of the time amounts by
which task 7; misses its deadline over run 7, i.e. upto time
bound ¢ each time the task 7T; misses a deadline we accumulate
the current delay by which the deadline is missed with the
other delays made on the same run 7. The value overrun;
(Fig. 3) is the amount of time by which a specific deadline
is missed. W is the component workload. Each item ¢ in the
workload can either be a task or a component. In this way, the
DoQoS can be recursively calculated upto the system level. So
for a simulation run, DoQoS is best explained as the average
time that a deadline is exceeded by when it is missed.
Definition 3.3 (The degree of schedulability (Sched®)):
We define the Sched® of an entity in terms of two factors
Schedp and Sched] to be given by:

DoQoSTi (1) = {

lim¢—y 0o Otherwise

DoQoS¢ (I1)

o 0o if PoMD =0
Schedp = { PoI{/ID Otherwise }
o 00 if DoQoS =0
SChedD - { ) L Otherwise
0QoS

According to such a definition, an entity is absolutely schedu-
lable if either Schedp or Schedp is equal to oo. This cor-
responds to the classical notion of schedulability where no
deadline is missed.

To compare different system configurations in terms of the
Sched®, we use the multi-objective Pareto frontier of Schedp
and Sched]. In this way, engineers could keep updating
resources and requirements and compare the system Sched®
from one configuration to another. Thus, this fact helps to



define the best system configuration in terms of an equation
including the amount of provided resources, the expected
schedulability degree and the task requirements. But, Sched®
is not intended as a measure to compare completely unrelated
systems.
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We reuse and adapt our previous work [4] for the schedu-
lability analysis of hierarchical systems now extended with
probabilistic sporadic tasks. As mentioned earlier, a workload
W = {T1,..,T,n} is a set of periodic and sporadic tasks.
Periodic tasks [13] TP (p, e, d) are commonly given at least by
a period p, an execution time e and a deadline d. Similarly,
sporadic tasks [3] T%(I, e, d) are usually specified with a min-
imum inter-arrival time I, an execution time e and a relative
deadline d. In order to characterize more precisely the arrival
time of sporadic tasks and capture efficiently the deviation of
their arrivals from the minimum inter-arrival time, we associate
to each sporadic task a continuous probability distribution
stating the probability of each possible delay dlypo. Thus,
our sporadic task model is given by T°(P,I,e,d) where
P is a probability distribution given by a density function
F. Depending on the density function J, the probability
distribution P could be uniform, exponential or Gaussian.
Fig. 3 depicts an example of the execution of our probability
based sporadic task model where we show how the probability
distribution influences the task behavior, and thus affects the
task schedulability. We use a; ; as the j'" arrival of the task
with index 4. The task arrival a; delays for diyp.op = 1
time unit, according to the probability distribution, from the
previous minimum inter-arrival time (expected at the starting
point of the time axe). The task arrives at time a; and becomes
immediately ready to start its execution. Unfortunately, due to
the resource availability the task waits dly,..s = 1 time unit
before acquiring resources and starting its execution. After
being provided with resources, the task starts its execution
e which achieves perfectly with the deadline d. After one
minimum inter-arrival time I = 4 since the last task arrival
a;, the task may start a new execution. Always depending on
the probability distribution, the new arrival a;,1 of the task
delays for dly,.o, = 2 time units from the last minimum
inter-arrival time point. After being ready, the task delays
again dly,.s = 1.5 because of the resource availability. After
acquiring resources, the task starts its execution e = 2 which
leads task to miss its deadline d with an amount of time
AlYmiss = 0.5. One can remark that such an excess could
be not critical and can be measured as Quality of Service
(QoS) of the schedulability. Our probability-based sporadic
task model is strictly more expressive than traditional real-time
task models but could retain efficient demand computation for
the analysis.

IV. CONTINUOUS PROBABILITY BASED SPORADIC TASKS

In this section, we introduce the characteristics of the
probability-based sporadic tasks. Our framework models both

a fixed inter-arrival time and a probability distribution. Obvi-
ously, a task cannot arrive before the inter-arrival time, and
the inter-arrival time can potentially be set to zero. After the
inter-arrival time, the arrival of a given task delays with ¢
according to a continuous probability distribution, such as
Gaussian N = (i, 02) with a mean value x4 and a variance
o? (Fig. 4(a)). Fig. 4 shows the three specific probability
distributions we consider in our setting: Gaussian, exponential
and uniform. As the probability distribution is a parameter
of the sporadic tasks in our framework, any user defined
probability distribution can be used.

A. Probability Distributions

We have implemented the
continuous probability distri-
butions we consider via a set
of UPPAAL embedded func-
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more spread out the distribution is. In contrast to the two
previous probability distributions, the uniform distribution
(Fig. 4(c)) has a equal probability for all time instances upto
a maximum time where the probability drops to zero.
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B. Conceptual Sporadic Task Model

Our conceptual event

model is shown in T B TR
Fig. 5(a). When the
delay  has  elapsed, !

the event triggers the @

corresponding task and
moves to the location
InterArrivalWait waiting
for one inter-arrival time
I before starting a new

deadline_missed
trigger?

not deadline_missed

round. The conceptual (b)
task model (Fig. 5(a))

. . ! Fig. 5. Conceptual model of a sporadic
starts in location Wait task and its triggering event.

waiting for the triggering event (trigger?) and then moves to
the location Run. Depending on whether or not the deadline
of the task is missed, the task moves either directly to
location Wait or to location MissedDeadline. If the task
finishes its current execution after missing a deadline, the
overrun will be measured (used for calculating the DoQoS)
before moving to the location Wait. UPPAAL implementations
of our probability based sporadic task model are given in
Section V, whereas the models of triggering events for
different probability distributions are given in Section V-A.



V. ANALYSIS MODELS FOR THE DEGREE OF
SCHEDULABILITY

For our compositional analysis framework, the hierarchical
scheduling systems and their analysis elements consist of
environment models, scheduling models, resource model, and
task models.

We are using UPPAAL SMC to perform a formalized sta-
tistical simulation of our models, known as Statistical Model
Checking (SMC). SMC enables quantitative performance mea-
surements instead of the Boolean (true, false) evaluation that
symbolic model checking techniques provide. We can summa-
rize the main features of UPPAAL SMC in the following:

o Stopwatches [7] are clocks that can be stopped and re-
sumed without a reset. They are very practical to measure
the execution time of preemptive tasks.

e Simulation and estimation of the expected
minimum or maximum value of expressions over
a set of runs, E[bound] (min:expr) and
E[bound] (max:expr), for a given simulation
time and/or number of runs specified by bound.

o Probability evaluation Pr [bound] (P) for a property
P to be satisfied within a given simulation time and/or
number of runs specified by bound. P is specified using
either LTL or tMITL logic.

The disadvantage of using statistical model checking is
that it will not provide complete certainty that a property is
satisfied, but only verify it upto a specific confidence level,
given as an analysis parameter [S].

A. Environment Model

GenRandDly x==minInterTime
© =0
rdly = RandNGauss(mu,sigma),
x=0
x==rdly
startTask[tid]!
Dly X = 0, countAcc++ Run
x<=rdly x<=minlInterTime
&& rdly'==0 && rdly'==0
(a) Gaussian
GenRandDly
©
startTask(tid]
Dly x =0, rdly = 0, countAcc++ Run
PIP2 T dly== 1
y x<=mininterTime
&& rdly'==0
(b) Exponential
GenRandDly

rdly = RandNUniform(randMax)

x=0 _
x==rdly x==mininterTime
startTask][tid]

Dly x =0, countAcc++

x<=rdly
&& rdly'==0

(c) Uniform

Sporadic event models.

rdly'==0
&& x<=minlinterTime

Fig. 6.

Fig. 6 shows the actual UPPAAL models that generate the
probability distributions shown in Fig. 4. These also corre-
spond to the conceptual triggering event given in Fig. 5(a). The

models in Fig. 6 all follow the same structure with a committed
initial location GenRandDly in the upper left corner. For
the Gaussian and Uniform distributions, the templates start
by determining a random delay based on the probability
distribution specified in terms of a density function together
with other parameters. After selecting a random delay and
moving from location GenRandDly to Dly, the template waits
until the selected amount of delay has elapsed. The amount
of time spent in DIy corresponds to dly,,o» in Fig. 3. Upon
moving to location Run, the event template triggers the cor-
responding task by a communication on a broadcast channel
(e.g. startTask[tid]!). After waiting in location InterArrival
for the duration of one inter-arrival time (I in Fig. 3), the
event model joins the initial location. Functions RandNGauss
and RandNUniform, of Fig. 6(a) and Fig. 6(c) respectively,
return floating point numbers because UPPAAL has recently
been extended with the data type double.

B. Resource model

The resource model of this paper is a periodic one, which
provides a specific amount of resources to a set of tasks
or components [21]. The resource model is given by a
stochastic supplier, which supplies a resource allocation non-
deterministically over supplier’s period.

78 [
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-5 =] Tasl4's period

Fig. 7. Supplier and Task Execution.

Fig. 7 shows supplier’s supplying and tasks’ running of
TP and Tj. In this setting, 7 has priority over 73, and
executes sporadically over a uniform distribution. Thus, the
execution period of T} is irregular. The supplier at the bottom
is supplying non-deterministically so the supplying is also
irregular within the period. The detailed explanation can be
found in our previous paper [4]. In order to estimate the
sufficient budget of a supplier that makes the workload of a
component schedulable, we present another stochastic supplier
as shown in Fig. 8.(a). It starts supplying by selecting a random
amount of budget using gbudget[supid] and cbudget[supid].
UPPAAL SMC checks whether any task misses deadline and
generates a probability distribution of budgets leading to a
deadline miss of a component. Fig. 8.(b) shows the estimated
budget numbers that makes the component of 73 and T} non-
schedulable, and it can be concluded that 23 is the minimum
budget for the component.

C. Task Models

For our framework, we provide 4 different task templates:
hard real-time and soft real-time templates for periodic and
sporadic tasks. The hard real-time task stops running imme-
diately when it misses a deadline. Meanwhile, the soft real-
time task continues to run until the end of simulation time
while measuring PoMD and DoQoS. Fig. 9 shows the soft
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Fig. 9. Soft real-time sporadic task

real-time sporadic task template. It is triggered by the event
startTask([tid]? from the environment model following a prob-
ability distribution. The clocks curTime[tid] and exeTimel[tid]
are used to measure the current time and the execution time
(resource usage) respectively. The clock twcert[tid] measures
the worst-case response time. The variables chtExecution[tid],
cntMissDline[tid], and DoQoSJtid] are used to calculate
PoMD and DoQoS with PoMD calculator in Fig. 10 and the
following queries:

E[gClock<=simTime;simNum] (max: PoMD[1])
E[gClock<=simTime;simNum] (max: DoQos[1])

Measure

x <= simTime
&& forall(i:tid_t) PoMD[i]'==0
x == simTime
i<=tid n

cntExecution[i]<=0
i+

CalPoM

cntExecution[i]>0
PoMDI[i] = ((cntMissDline[i]*100)
lentExecution[i]),i++

i>tid_n
End

O forall(i:tid_t) PoMD[i]'==0
Fig. 10. PoMD calculator

For every simulation (simNum) of which time is upto
simTime, one POMD[1] is obtained by calculating the per-
centage of the accumulated number of missed deadlines of
cntMissDline[tid], and the count of task executions of cntEx-
ecution[tid]. Finally, PoMD is calculated from the average
of POMDI[1]s of all traces. DoQoS[tid] measures delay after
a task misses a deadline, and the maximum DoQoS][tid] is
selected from one trace. Finally, DoQoS is determined by
calculating the average of the maximum DoQoS][tid]s of each
individual simulation trace.

VI. ANALYSIS OF THE DEGREE OF SCHEDULABILITY

We use as a running example in this section the Tar-
get component from Fig. 2. The workload is character-
ized by a periodic task 7%(40,4,40) and a sporadic task
T7(Unif.,40,2,40). In our setting, T; has priority over
T¥. Both tasks are scheduled according to the fixed priority
scheduling (FPS) policy. The sporadic task 7} follows the
uniform probability distribution between 0 and 20 time units.
The analysis is performed in the following steps:

1) Estimate a budget for the component as described in

Section V.
2) Analyze the Sched® for the estimated and lower budgets.

To estimate the budget of a component, we use the budget
estimation template shown in Fig. 8(a) and the following

query:
Pr[cbudget|rid]<=randomBudget](<> gClock>=simTime and error)

As a result, we found that 23 time units every 40 time
units is a good candidate as a sufficient budget for both tasks.
In order to have valid results, in the next analysis section we
perform experiments where we analyze the same system with a
varying amount of traces and simulation time. When reaching
more than 1,000 traces and a simulation time of more than
100,000 time units we see that the results stabilize.

A. Analysis Results

In Table I, we show that 75 and T are schedulable under
the budget (40, 23) even if T} is treated as a periodic task
with a period equal to the minimal inter-arrival time. This is
classical worst-case budget estimation, and our analysis also
confirms that tasks miss exactly 0% of their deadlines and
have a DoQoS of 0. Throughout the running example, we use
FPS scheduling but our framework supports other scheduling
policies.



TABLE 1
THE DEGREE OF SCHEDULABILITY OF TASKS UNDER PERIODIC EVENTS

[ Component ((40, 23), FPS) [ PoMD | DoQoS |

TP(40, 4), 0 0
1540, 2), 0 0
TABLE II
THE DEGREE OF SCHEDULABILITY OF TASKS UNDER LACK OF BUDGET
[ Component ((40, 18), FP) | PoMD [ DoQoS |
T3P(40, 4), 1.532 £ 0.191 | 3.034 £ 0.635
T (Periodic, 40, 2, 40) 0 0

Suppose that the resource amount provided to the compo-
nent is reduced to 18. In order to have a baseline to compare
with, in the next analysis steps, we perform an artificial
experiment presented in Table II. We analyze task 7} using
the sporadic template, but with a completely fixed periodic
arrival pattern. Note that the sporadic task 7] never misses its
deadline, because it has the highest priority. Table II shows
the average value of the PoMD and DoQoS for 1000 traces
as well as the variance of each one. In the following, we
fix the set of tasks and vary arrival patters of the sporadic
task. This is done in order to show the versatility of our
method. In an engineering setting, the arrival patterns will
usually be fixed while the workload and budgets vary. For
the same deficit budget (40, 18), Table. III shows the degree
of schedulability when the sporadic task 7 is assumed to
follow an exponential probability distribution with different
rates of exponential. Table IV shows the Sched® for the two
tasks given a uniform probability distribution for triggering the
sporadic task 77;. Table V shows the results of our analysis
when using different Gaussian distributions, all with a mean
value 1 of 10 and different deviations o.

We have provided a highly configurable analysis framework
where the workload, task types, arrival-patterns, priorities and
scheduling mechanisms can be varied and a given system
configuration can be easily analyzed.

VII. CASE STUDY

As a case study to show the applicability of our analysis
framework, we analyze the schedulability of an avionics
system [14], [11], [4]. We use the same timing specification as
[11], whereas the system structure depicted in Fig. 2 follows

TABLE IIT
THE DEGREE OF SCHEDULABILITY OF TASKS UNDER EXPONENTIAL
DISTRIBUTION.

Component Rate of Exp.

((40, 18), FP) of T PoMD DoQoS
/100,000 | 0.350 £ 0.435 | 3.630 & 0.672
TP (40, 4) 171000 0363 £ 0.434 | 4.950 £ 0.840
/10 0.488 £ 0.049 | 8.404 L 1.136
1/100,000 | 0.233 £ 0.284 | 0.022 & 0.040
T (Exp., 40, 2, 40) 171000 0267 £ 0.035 | 2.187 £ 0435
710 0.072 £ 0.016 | 6.766 & 0.636

TABLE IV

THE DEGREE OF SCHEDULABILITY OF TASKS UNDER UNIFORM
DISTRIBUTION.

[ Component ((40, 18), FP) | PoMD [ DoQoS |
T§(40, 4), 0.497 £ 0.051 | 7.564 £+ 1.126
777 (Unif., 40, 2, 40) 0.052 £ 0.015 | 6.515 £ 0.688

TABLE V
THE DEGREE OF SCHEDULABILITY WITH GAUSSIAN DISTRIBUTION
Component (u, o)
(40, 18), FP) of T; PoMD DoQoS
{10.10) | 2000 £ 0.653 | 3.6/7 & 2411
0. 4) (10, 8) | 1.440 £ 0559 | 3.024 T 1914
340, (10.35) | 1.640 £ 0.608 | 3.260 £ 1.966
{10, 1) [ 0400 £ 0.579 | 3.943 £ 2611
(10.10) | 0350 £ 0255 | 1.687 £ 1.339
o (10, 8) | 0.490 £ 0326 | 1.135 £ 1.076
Ty (Gavss., 40, 2, 40) 5510390 £ 0.249 [ 0551 £ 0.672
{10, 1) [ 0.600 £ 0324 | 0.704 £ 0.768

the description given in [14]. In our analysis we include infor-
mation about the criticality of the individual tasks, something
which has not been included in any of the previous treatments
of the case study. Table VI summarizes both architecture and
timing attributes of the components from the avionics system
that we consider.

The avionics system is a mixed-criticality application, where
we mainly considered 7 periodic and 5 sporadic tasks grouped
in 4 components. In the case of critical sporadic tasks, we
have introduced a periodic event to trigger each task where
the event period is equal to the minimum inter-arrival time
of that task. We characterize the arrival times of non-critical
sporadic tasks by different probability distributions where the
delay generated by such a distribution is relatively proportional
to the minimum inter-arrival time of the corresponding task.
This was chosen as the original case-study did not contain
any information on the probability distributions. Because of
space limitations, we only provide the analysis results of
one component (Controls & Displays). Table VII states the
degree of schedulability of the tasks in the component Control
& Displays. One can remark that component Control &
Displays cannot be scheduled with a budget less than 20 for a
period equal to 30 because, at least, one of the tasks misses its
deadline. In particular, tasks HUD Display and MPD Display
miss their deadlines because they are “background tasks”,
i.e. having lower priorities. While keeping budget increasing,
DoQoS and PoMD are decreasing until reaching 0, meaning
that the corresponding budget (20) is the minimal sufficient
budget making the component workload schedulable. Other
budget values (14, 17, 19) can be acceptable as a minimum
sufficient budget depending on the quality of service required
by the system. Over this case study, we have quantified the
components schedulability according to the budgets, hard and
soft real-time requirements.

VIII. CONCLUSIONS

We have presented a compositional method for analyzing
the degree of schedulability of hierarchical real-time systems.
The system is modeled in terms of components containing
periodic and sporadic tasks. In order to characterize more ac-
curately the arrival time of sporadic tasks, we introduced con-
tinuous probability distributions. Given hard and soft real-time
requirements, our approach provides probabilistic guarantees
on the system schedulability. The Degree of Schedulability
(Sched®) is defined by the two factors: 1) Percentage of Missed
Deadlines (PoMD) and 2) Degradation of Quality of Service
(DoQoS). These concepts are helpful when analyzing systems



TABLE VI
GENERIC AVIONICS COMPONENTS AND TASKS

[ Component [ Criticality | T; [ e | pi [ di [ Importance |
Navieation Hard Aircraft flight data(Tf ) 8 50(55) critical
& critical Steering(T; ) 6 80 critical
Tarcetin Hard Target tracking(7%) 4 40 critical
geting critical Target sweetening(7y’) 2 40 critical
AUTO/CCIP toggle(T7) 1 200 critical
Weapon Hard Weapon trajectory(77) 7 100 critical
Control non-critical Reinitiate trajectory(7%) 6 400 essential
Weapon release(Té’ ) 1 10 5 critical
HUD display(Tgp ) 6 55(52) essential
Controls & Soft MPD tactical display(Tl"O) 8 50(52) essential
Displays MPD button response (17)) 1 200 | background
Change display mode (17,) 1 200 | background
TABLE VII
SCHEDULABILITY DEGREE OF COMPONENT CONTROLS & DISPLAYS
[ Task [ Sched® ][ Budget=14 [ Budget=17 [ Budget=19 [ Budget=20 |

. DoQoS || 0.004+0.003 0 0 0

HUD Display(Th) | —p3MD{10.00420.004 0 0 0

. DoQoS || 3.068+0.151 | 0.343+0.052 | 0.003+0.003 0

MPD Display(T10) MBI 0.231E0.018 | 0.002£0.002 | 0.0005E0 0

DoQoS 0 0 0 0

MPD Button(771) PoMD 0 0 0 0

DoQoS 0 0 0 0

Change Mode(T2) PoMD 0 0 0 0

or components with insufficient budgets to meet all deadlines. [11] R. Dodd. Coloured petri net modelling of a generic avionics missions

UPPAAL SMC is used to perform statistical model checking,
in order to compute the DoQoS and PoMD. Finally, we have
demonstrated the applicability of our approach by analyzing
degree of schedulability of an avionics case study which was
previously shown to be unschedulable [14], [11], [4].
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