
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Statistical Model Checking for Biological Systems?

Alexandre David1, Kim G. Larsen1, Axel Legay1,2, Marius Mikučionis1, Danny Bøgsted Poulsen1,
Sean Sedwards2

1 Department of Computer Science, Aalborg University, Denmark
2 INRIA Rennes – Bretagne Atlantique, France

The date of receipt and acceptance will be inserted by the editor

Abstract Statistical Model Checking (SMC) is a highly

scalable simulation-based verification approach for testing

and estimating the probability that a stochastic system sat-

isfy a given linear temporal property. The technique has been

applied to (discrete and continuous time) Markov chains,

stochastic timed automata and most recently hybrid systems

using the tool Uppaal SMC. In this paper we enable the

application of SMC to complex biological systems, by com-

bining Uppaal SMC with ANIMO, a plugin of the tool Cy-

toscape used by biologists, as well as with SimBiologyR©, a

plugin of Matlab to simulate reactions. ANIMO and

SimBiologyR© are two domain specific tools that have their

own user interfaces and formalisms specifically tailored to-

wards the biology domain. However – though providing means

for simulation – both tools lack the powerful analytic capa-

bilities offered by SMC, which in previous work have proved

very useful for identifying interesting properties of biologi-

cal systems. Our aim is to offer the best of the two worlds:

optimal domain specific interfaces and formalisms suited to

biology combined with powerful SMC analysis techniques for

stochastic and hybrid systems. This goal is obtained by devel-

oping translators from the XGMML and SBML formats used

by Cytoscape and SimBiologyR© to stochastic and hybrid au-

tomata, allowing Uppaal SMC to be used as an efficient

backend analysis tool, that we demonstrate can handle real-

world biological systems by pitting it against the BioMod-

els database. We present detailed analysis on two particular

case-studies involving the ANIMO and SimBiologyR© tools.

1 Introduction

It is conceivable to design systems to make their analy-
sis easier, but usually they are optimised for other con-

? Work is supported by the VKR Center of Excellence MT-
LAB and by the Sino-Danish Basic Research Center IDEA4CPS,
DNRF86-10.

straints (efficiency, size, cost, etc.) and they evolve over
time, developing highly complex and unforeseen inter-
actions and redundancies. These phenomena are epit-
omised by biological systems, which have no inherent
need to be understandable or analysable. The discov-
ery that the genetic recipe of life is written with just
four characters (nucleotides Adenine, Cytosine, Guanine
and Thymine) that are algorithmically transcribed and
translated into the machinery of the cell (RNA and pro-
teins) has led scientists to believe that biology also works
in a computational way. The further realisation that
biological molecules and interactions are discrete and
stochastic then suggests that biological systems can be
analysed using the same tools used to verify for instance
a complex aircraft control system.

Using formal methods to investigate natural systems
can thus be seen as a way to challenge and refine the pro-
cess of investigating man-made systems. It is very diffi-
cult to reason about systems of this type at the level of
their descriptions, however. It is much more convenient
to directly analyse their observed behaviour. In the con-
text of computational systems we refer to this approach
as runtime verification, while in the case of biological
systems this generally takes the form of monitoring the
simulation traces of executable computational models.

There already exists several formal tools dedicated
to this purpose. As an example, the ANIMO toolset [22]
can be used to model biological pathways. This tool han-
dles phenomena described via the Cytoscape library [24].
The tool chain goes via a translation from the library
to timed automata, which allows to exploit Uppaal for
verifying properties of the system. Unfortunately, AN-
IMO is restricted so that it cannot capture the stochas-
tic behaviours inherent to many biological phenomena.
Moreover, its expressive power is restricted to timed au-
tomata while many behaviours have to be described via
general Ordinary Differential Equations (ODE). Another

2 Alexandre David et al.: Statistical Model Checking for Biological Systems

interesting toolset is Matlab with SimBiology R©1 fron-
tend from Mathworks. While Matlab is clearly power-
ful enough to handle complex phenomena, including non
linear ones, it does not provide efficient verification tech-
niques and powerful logics to describe eventually com-
plex properties one may want to measure and check on
the model.

In this paper, we propose a new tool-chain for the
analysis of biological systems. Our approach heavily re-
lies on Statistical Model Checking (SMC) [20, 23, 26],
a powerful formal approach that has recently been pro-
posed as a new validation technique for large-scale, com-
plex systems. The core idea of SMC is to conduct some
simulations of the system, monitor them, and then use
statistical methods (including sequential hypothesis test-
ing or Monte Carlo simulation) to decide with some
degree of confidence whether the system satisfies the
property or not. By nature, SMC is a compromise be-
tween testing and classical formal method techniques.
Simulation-based methods are known to be far less mem-
ory and time intensive than exhaustive ones, and are
some times the only option. SMC has been implemented
in a series of tools [27, 4, 18] that have defeated well-
known numerical-based analysis tools on several non-
academic case studies. Such tools have been applied to
large-size industrial applications such as the verification
of a complex aircraft control system [3], schedulability
analysis of mixed criticality systems [13] or more recently
for complex systems of systems within the integrated
project DANSE2 and performance evaluation of energy-
aware buildings in the Sino-Danish Basic Research Cen-
ter IDEA4CPS3.

In fact, one shall see that biological phenomena can
be represented by networks of Stochastic Hybrid Au-
tomata (SHAs). SHAs are timed automata whose clocks
can evolve with different rates, which may depend not
only on values of discrete variables but also on the value
of other clocks, effectively amounting to ordinary dif-
ferential equations (ODEs). In [10, 11], we showed that
SHAs can be equipped with a stochastic semantic based
on stochastic delays and repeated races between the com-
ponents of composite model. Importantly, the stochastic
semantics provide the foundation for well-defined prob-
ability measures for a range of linear temporal proper-
ties. In the present paper, we shall see that this model
is general and can be used to capture a wide range of
biological phenomena. More precisely, our approach can
handle biochemical reactions that rely on the interac-
tion of molecules of different species. In one approach,
the models based on elemental reactions with mass ac-
tion kinetics may be simulated exactly as a continuous
time Markov chain (CTMC) having discrete states. Al-
ternatively, in case of huge amount of molecules, approx-

1 http://www.mathworks.se/products/simbiology/
2 http://www.danse-ip.eu/home/
3 http://www.idea4cps.dk/

imate analysis may be preferable (or necessary) using
sets of coupled ODEs that assume continuous states.
The method of conversion between these two paradigms,
along with explanations of the emphasised terms, is given
in [16].

We then see how to connect ANIMO and Matlab
SimBiology R© to Uppaal SMC. Uppaal SMC is a stochas-
tic and statistical model checking extension of Uppaal
that relies on the SHA model described above.
Uppaal SMC comes together with a friendly user in-
terface that allows a user to specify complex problems
in an efficient manner as well as to get feedback in the
form of probability distributions and compare probabili-
ties to analyse performance aspects of systems. The Up-
paal SMC model checking engine has been applied to a
wide range of examples ranging from networking and
Nash equilibrium[7] through systems biology [14, 11],
real-time scheduling [13] to energy aware systems [12].
Our connection is based on intermediary translations to
XGMML (used by ANIMO) or SBML (used by SimBiology R©)
to the CTMCs and ODEs format of Uppaal SMC. By
connecting ANIMO and SimBiology R© to Uppaal SMC,
we not only unify their expressive power, but also make
the powerful simulation engine of SMC available for effi-
cient verification of complex behaviours. It is worth ob-
serving that our transformation is general and can be
used to connect Uppaal SMC to other libraries to de-
scribe biological phenomena, including the BioNetGen
framework of Faeder et al. [15].

Finally, we compare the performances of ANIMO,
SimBiology R©, and Uppaal SMC on several biology ex-
amples. The structure of the paper is as follows. Section 2
presents the formalisms used in ANIMO and Simbiology,
Section 3 reviews the SHA modelling formalism of Up-
paal SMC as well as application of its SMC engine,
Section 4 presents our translators from ANIMO and
SimBiology R© (SBML format in fact) to Uppaal SMC,
and Section 5 focuses on two case-studies and compares
the different tools.

2 Modelling Formalisms for Biology

Here we introduce a simple example and use it to demon-
strate features of ANIMO and Matlab SimBiology R©.

Suppose we have two reactants A and B which pro-
duce C with a rate kon = 0.2m−1s−1, the reaction can be
reversed with a rate koff = 0.1s−1 and the product C can
decay into some other materials with rate kdeg = 1.0s−1.
The system can be described by the following chemical
reactions:

A + B
kon−−−⇀↽−−−
koff

C
kdeg−−−→

Due to results of [16], such a system of chemical re-
actions can be modelled as a CTMC under the assump-
tions that at most two molecules can participate in one

Alexandre David et al.: Statistical Model Checking for Biological Systems 3

〈3, 3, 0〉
3·3·kon ,,

〈2, 2, 1〉
2·2·kon ,,

1·koff

ll

1·kdeg

��

〈1, 1, 2〉
1·1·kon ,,

2·kdeg

��

2·koff

ll 〈0, 0, 3〉
3·koff

ll

3·kdeg

��
〈2, 2, 0〉

2·2·kon ,,
〈1, 1, 1〉

1·1·kon ,,

1·kdeg

��

1·koff

ll 〈0, 0, 2〉
2·koff

ll

2·kdeg

��
〈1, 1, 0〉

1·1·kon ,,
〈0, 0, 1〉

1·koff

ll

1·kdeg

��
〈0, 0, 0〉

(a) Balanced quantities.

〈2, 4, 0〉
2·4·kon ,,

〈1, 3, 1〉
1·3·kon ,,

1·koff

ll

1·kdeg

��

〈0, 2, 2〉

2·kdeg

��

2·koff

ll

〈1, 3, 0〉
1·3·kon ,,

〈0, 2, 1〉

1·kdeg

��

1·koff

ll

〈0, 2, 0〉
(b) Unbalanced quantities.

Figure 1. Continuous Time Markov Chain models of reactions.

reaction instance and that molecules are well mixed (uni-
form reaction rates). Fig. 1(a) shows a CTMC model of
our reactions where the state 〈[A], [B], [C]〉 corresponds to
the number of molecules of each reactant and transition
probability is proportional to the reaction rate and avail-
able reactant molecules. For example, if we start with a
mix containing [A]=3, [B]=3 and [C]=0 molecules (state
〈3, 3, 0〉 in Fig. 1(a)), then the molecules of A and B may
react with a probability rate of 3 · 3 · kon by consum-
ing one molecule of each A and B and producing one
C, thus the resulting target state contains [A]=2, [B]=2
and [C]=1 molecules (state 〈2, 2, 1〉). The other reactions
can be modelled likewise. Eventually all of our molecules
decay into other materials which do not participate in
our system resulting in a dead-end state 〈0, 0, 0〉. If the
initial quantities are not so well balanced, then the final
state may contain some of the initial reactants like in
Fig. 1(b). It is easy to see that the modelling approach
can be generalised by encoding the quantities of species
as variables and disregarding the reactions where the
reaction rate is zero due to some reactant having zero
molecules.

Alternatively, when there is an abundance of reac-
tants (the number of molecules is large enough that
changes can be viewed as continuous) the system of re-
actions can be modelled as a dynamical system using

Figure 2. Screenshot from ANIMO.

ordinary differential equations (ODE):

d[C]

dt
= +kon [A] · [B]− (koff + kdeg) · [C] (1)

d[A]

dt
= −kon [A] · [B] + koff · [C] (2)

d[B]

dt
= −kon [A] · [B] + koff · [C] (3)

In our examples we will assume the initial conditions as
follows: [A]=50m, [B]=80m, [C]=0m.

2.1 ANIMO

ANIMO [21, 22] is a tool developed for modelling biolog-
ical pathways. In Fig. 2 we provide a screenshot of the
main window of the tool. At the center of the screen is a
model of our running example. In this model the nodes
represent species and the edges represent reactions. To
the right of this is presented a single simulation of the
model. Below this simulation is a slider that the user can
use to zoom into a specific time point of the simulation:
during this movement the representation of the model is
updated such that the colouring of the nodes represent
the quantity(colouring scheme is shown in the left of the
screen) of each species and the thickness of the edges
represent how likely that reaction is to occur next. In
this manner ANIMO gives a visual representation of the
current state of the pathway.

In ANIMO a molecule can be in an inactive or ac-
tive state and the reactions of the pathway may alter
the state of a single molecule4. If a reaction activates a
molecule we call it an activation reaction and if it de-
activates a molecule, we call it an inhibitory reaction.
In the graph an edge A → C means A activates C and
A a C means A inhibits C. In ANIMO the amount of

4 In fact the colouring of the nodes represent how large a fraction
of each species is active

4 Alexandre David et al.: Statistical Model Checking for Biological Systems

each species is fixed and given as a user defined value
known as the number of activation levels. An activation
reaction increases the current activation level of a species
and inhibitory reactions decrease the current activation
level. Initially the species starts at an activity level de-
fined by the user.

The example in Fig. 2 is the model of our running ex-
ample. Because reactions in ANIMO can only influence
one species (and condition its behaviour on others) the
model does not correspond exactly to the description.
For instance, the reaction binding A and B molecules
into a C molecule is split into three separate reactions:
one increasing the activity level of C and two decreasing
the activity level of A and B respectively. Similarly, the
splitting of a C molecule into A and B is given as three
reactions. A final difference from the description is that
the model does not incorporate the decay of C molecules
into “something else”.

The graph view of a pathway shows how species in-
fluence each other but provides no visual means to indi-
cate how the species influence the time before a reaction
occurs. The user controls this by choosing an appropri-
ate reaction type and by setting a reaction rate k. Also
the user should provide a scaling factor timeScale that
translates the model time units to real-world time units.

ANIMO supports three kinds of reactions:

– A reaction C → A(C a A) is a type-1 activation
(inhibition) reaction, if the time before the reaction
occurs only depend on the activity level of A ,

– a reaction E → F (E a F) is a type-2 activation
(inhibition) reaction, if the time before the reaction
occurs depends on the activity level of E and the
inactivity (activity) level of F and

– the last reaction type supported by ANIMO is a type-
3 reaction. In this reaction scheme two species, called
reactants, inhibits/activates a third species - an ex-
ample of this reaction is the double arrow from A
and B to C in Fig. 2. The time before the reaction
occurs depend on the activity level of the reactant,
the inactivity levels of the reactants or the activity
of one and inactivity level of the other reactant.

The time before a reaction occurs is selected in the
interval [0.95 × f, 1.05 × f] where f is calculated dif-
ferently depending on the reaction type as decribed by
Schivo et al. [21].

In ANIMO the pathway is translated into a network
of timed automata. We notice that it is more natural
to use exponential distributions for reaction times com-
pared to the uniform distributions in ANIMO.

2.2 Matlab SimBiology R©

Matlab SimBiology R© is a tool for modelling, simulation
and analysis of dynamic systems with a focus on pharma-
cokinetics/pharmacodynamics and systems biology. The

(a) Modelled reactions.

cell

A

B

C

(b) Graphical editor.

0 1 2 3 4 5
0

20

40

60

80

Time

S
ta

te
s

States versus Time

A

B

C

(c) Dynamical out-
put.

0 1 2 3 4 5
0

20

40

60

80

Time

S
ta

te
s

States versus Time

A

B

C

(d) Stochastic out-
put.

Figure 3. Matlab SimBiology R© modelling and simulation using
different solvers.

tool features include an editor with textual and graphi-
cal notation to model chemical reactions. For example,
the screenshot in Fig. 3(a) shows that reactants, reac-
tion rates and kinetic laws of our basic example can be
specified at the upper half, and the quantities with units
can be declared at the lower half. Besides simple reaction
specification, the tool provides means of grouping reac-
tions into compartments allowing to model physical iso-
lation of materials, also the coefficient declarations can
be separated by a reaction scope allowing reuse of vari-
able names. The reactions can be specified using graph-
ical notation interchangeably with textual notation. For
example our reactions were automatically rendered in
graphical diagram shown in Fig. 3(b): species are drawn
as blue ellipses, reactions appear as yellow circles, lines
denote participating reactants and arrows point to re-
action products. Lines are dashed if a reactant is only
participating as a catalyst but is not consumed (a few
instances are shown in Fig. 12).

Once the model is complete, SimBiology R© can simu-
late the model as either dynamical system using stiff nu-
merical differentiation formula solver (ode15s stiff/NDF,
the plot is shown in Fig. 3(c)) or stochastic simulation
using ssa solver (plot shown in Fig 3(d)). The simulation
can be accelerated by compiling the model into native
executable code. Note that the solver has to be selected
for entire simulation and thus stochastic and dynamical
phenomena cannot be combined in one simulation.

3 UPPAAL SMC

The verification tool Uppaal [19, 5] provides support
for modelling and efficient analysis of real-time systems

Alexandre David et al.: Statistical Model Checking for Biological Systems 5

modelled as networks of timed automata [1]. To ease
modelling, the tool comes equipped with a user-friendly
GUI for defining and simulating models. Also, the mod-
elling formalism extends basic timed automata with dis-
crete variables over basic, structured and user-defined
types that may be modified by user-defined functions
written in a Uppaal specific C-like imperative language.
The specification language of Uppaal is a fragment of
timed computation tree logic supporting a range of safety,
liveness and bounded liveness properties.

Uppaal SMC is a recent branch of Uppaal which
supports statistical model checking of stochastic hybrid
systems, based on a natural stochastic semantics [11].
Firstly, Uppaal SMC extends the basic timed automata
formalism of Uppaal by allowing rates of clocks to be
defined by general expressions possibly including clocks,
thus effectively defining ODEs. Secondly, Uppaal SMC
comes equipped with a stochastic semantics [10] that re-
fine the non-deterministic choices that may exist with
respect to delay, output as well as next state. For delay
of individual components, uniform distributions are ap-
plied for states where delay is bounded, and exponential
distributions (with location-specified rates) are applied
for the cases where a component can remain indefinitely
in a location. Also, Uppaal SMC provides syntax for
assigning discrete probabilities to different outputs as
well as specifying stochastic distributions on next-states
(using the function random(b) denoting a uniform distri-
bution on [0, b]). The stochastic semantics of a network is
given in terms of repeated races between the constituent
components, where in each round the component choos-
ing to output at the earliest time-point is the winner.

The specification formalism of Uppaal SMC is that
of weighted metric temporal logic(WMTL) [9, 8] with
respect to which four different (simulation-based) sta-
tistical model checking queries are supported: hypothe-
sis testing, probability estimation, probability compari-
son and simulation. Here the user may control the ac-
curacy of the analysis by a number of statistical pa-
rameters (size of confidence interval, significance level,
etc.). Uppaal SMC also provides distributed implemen-
tations of the hypothesis testing and probability estima-
tion demonstrating linear speed-up [9].

Throwing & Bouncing Ball To give an illustration of
the expressive power of the modelling formalism of Up-
paal SMC, we consider a variant of the well-known
bouncing ball. In our version the ball is initially thrown
against a wall, bounces against it, and then continues
its trajectory by falling and bouncing against the floor.
In addition, an inexperienced player tries to hit the ball
randomly according to an exponential distribution. The
model is depicted in Fig. 4(a)–(c). The player is mod-
elled as a simple automaton that broadcasts hit! with
an exponential distribution of rate 5/2. The x coordi-
nate (Fig. 4(a)) is initialised to 10 with an uncertain
derivative vx uniformly distributed between [−10,−9.5]

x = 10,
vx = −10+random(0.5)

vx = −(0.85+random(0.15))*vx

bounce!
x == 0 && vx < 0

x’==1*vx

(a) Model of x coordinate.

hit?

hit?

y = 10,
vy = 5.8+random(0.5)

vy = −(0.8+random(0.12))*vy
y == 0 && vy < 0
bounce!

y>=6 && vy<0 && vy>=−4 &&
x>=10

y >= 6 && vy >= 0 &&
x >= 10

vy’ == −9.81 &&
y’ == 1*vy

vy = −4.0

vy=−(0.85+random(0.1))*vy−4

(b) Model of y coordinate.

5:2

hit!

(c) Player trying to hit with exponentially
distributed delay.

y

x

v
a

lu
e

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40

(d) Trajectory as (x, y) plot.

Figure 4. Models and a trajectory of a thrown/bouncing ball hit
by a player.

(the ball is thrown against the wall), after which the ball
moves toward the wall (placed at 0). Here, the automa-
ton outputs bounce! on an urgent channel, which forces
the transition to take place deterministically at x= 0.
After a bounce with a random dampening factor of the
velocity vx uniformly between [0.85, 1], the ball contin-
ues to move in the opposite direction. The y coordinate
(Fig. 4(b)) is initialised to 10 with an uncertain deriva-
tive vy. The model shows the effect of gravitation with
vy’= −9.81. The ball bounces with a random dampen-
ing factor on the floor (at 0) and when the ball is away
from the wall (x≥ 10) then it can be hit by the player
provided it is high enough (y≥ 6). Depending on the
current direction of the ball, the ball may bounce or it
is pushed. One possible trajectory of the ball is shown
in Fig. 4(d). The plot is obtained by checking the query
“simulate 1 [x<=40]{y}”. The vertical line shows the ball
moving to its initial position and should be ignored. The
ball bounces as expected against the wall, the floor, and
the hitting of the player. Uppaal SMC is able to simu-
late this hybrid system that has a second order ODE, a
stochastic controller (the player), and a stochastic envi-
ronment (random dampening factor).

In addition, we may perform statistical model-checking
in order to estimate the probability that the ball is still
bouncing above a height of 4 after 12 time units with
the query:

Pr[<=20](<> time>=12 and y>=4)

which returns the confidence interval [0.44, 0.55] with
95% confidence after having generated 738 runs. We can
also test for the hypothesis

Pr[<=20](<> time>=12 and y>=4) >= 0.45,

6 Alexandre David et al.: Statistical Model Checking for Biological Systems

M
Model

Generator

φ
Property

Validator

α1, θ
α2, δ

Core
algorithm

PrM (φ) ≥ θ
with significance α1

PrM (φ) ∈ [a ± δ]
with confidence α2

run state

true/false

Inconclusive

Figure 5. High level view of a statistical model checker for prob-
ability estimation and hypothesis testing. The dashed lines corre-
spond to Uppaal SMC optimised generation/validation loop and
the solid lines to a generic statistical model checker.

which gives a more precise lower bound. The hypothe-
sis holds with a region of indifference ±0.01 and a level
of significance of 5% after generating 970 runs. In the
queries the [<=20] tells the engine that the property
should be true within the first 20 model time units hence
the sample runs should only have a length of 20 model
time units..

Uppaal SMC, and in principle any statistical model
checker, consist of three components: A generator, a val-
idator and a core algorithm as depicted in Fig. 5. The
generator takes as input a model M and produces a sin-
gle run of a given length, the validator takes as input
a property φ and a run and returns true if the run
satisfies the property and false otherwise. This control
flow is shown by the solid lines in Fig. 5. The core al-
gorithm essentially “keeps score” of the number of true
and false results, in order to perform hypothesis test-
ing or estimation with respect to the unknown probabil-
ity PrM (φ) using classical statistical algorithms. For hy-
pothesis testing, additional information with respect to
required significance level (α1) and threshold probability
(θ) is required. For estimation, information concerning
the size of the confidence interval (δ) and the required
confidence level (α1) is required.

In order to increase performance, Uppaal SMC is
validating a run while it is generated. Here the genera-
tor passes a single state forward to the validator and the
validator can ask for the next state in the run being gen-
erated or may pass true or false to the core algorithm.
This one-step validation is shown by the dashed lines i
Fig. 5 and is essentially made to avoid generating and
storing long runs, e.g. 1000 steps, if the property may
already be settled after a few, e.g. two, steps.

Weighted Metric Temporal Logic Besides pure reacha-
bility properties Uppaal SMC also supports Weighted

MTL (WMTL) properties with a point-wise semantics.
An example of a WMTL property is that the ball within
4 but not earlier than 2 time units should reach a height
greater than 6 and afterwards within 1 time unit should
drop below 4. In WMTL we can describe this as

(trueU[0;4] (y > 6 ∧ (trueU[0;2] y < 4)),

in which an expression as φ1U[a;b]φ2 should be inter-
preted as φ1 must be true until φ2 is true and φ2 must
be true before b time units have passed but not before a
time units.

The syntax of WMTL extends propositional logic
with time- and weight-constrained Until and Release
modalities:

ϕ ::=p | ¬p |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |
Oϕ |ϕ1Ux

[a;b]ϕ2 |ϕ1Rx
[a;b]ϕ2 |

true | false

where x is a clock that for any infinite run will exceed any
given bound of the system (we omit this clock when we
bound over the global time), p is an atomic expression,
a, b ∈ Q and a < b. An expression φ1R[a;b]φ2 means that
φ2 must be true until both φ1 and φ2 are true and they
should be true after a time units and before b time units.
Alternatively φ2 is true from now and until b time units
have passed. The expression Oϕ means ϕ should be true
in the next observation.

In Uppaal SMC there are two different ways of us-
ing WMTL. For the MTL fragment of WMTL a MTL
property can be passed directly to the engine[8]. For the
full WMTL language, the formula can be converted into
an observer automaton and that automaton be parallel
composed into the system[9]. The observer is guaranteed
to reach a specific location if the property is satisfied and
another if its not satisfied thus we can use the optimised
reachability engine of Uppaal SMC to verify WMTL.
There is a catch though - sometimes an exact observer
cannot be constructed and only an over or underapprox-
imation can be made.

In adition to verify properties in WMTL, we can also
use the observers to, at run time, detect certain phenom-
ena of the system (peaks for instance). By coordinating
multiple observers we can detect the period of the peri-
odic behaviours of the observed system. In Section 5.2
we will see an example of this usage.

4 Translators

4.1 Overview

We have implemented two tools to translate (i) network
description files (XGMML) with the semantics of the
ANIMO plugin, and (ii) a subset of the standard format

Alexandre David et al.: Statistical Model Checking for Biological Systems 7

XGMML2CTMCANIMO plugin

Cytoscape

Simbiology

Matlab/Simulink

Other, e.g., Bionetgen

SBML2UPPAAL

XGMML

SBML

Tools

UPPAAL

XML

Translation

UPPAAL

Query file

Simulation

Simulation

(CTMC and ODE)

Simulation

Statistical model−checking (SHA)

Figure 6. Overview of our tool chain.

SBML5 to Uppaal SMC stochastic hybrid automata
(XML). Fig. 6 gives an overview of our translations. We
can export ANIMO models to XGMML within the Cy-
toscape tool and translate this format into a CTMC Up-
paal SMC model. From the SimBiology R© plugin we ex-
port SBML that we can translate to both a CTMC or an
ODE Uppaal SMC model. We note that we could con-
nect to other tools that use this standard format, such as
BioNetGen. The translators complement the functional-
ities of other tools by offering statistical model-checking.
In addition, we can envision that Uppaal SMC could be
used as a backend to other tools that translate models
from a domain specific formalism to stochastic hybrid
automata.

Implementation and Availability The translators are im-
plemented in C++. The XGMML translator uses the
rapidxml library and the SBML translator the libsbml li-
brary. Our translators are available with the distribution
of Uppaal version 4.1.14. The translator for XGMML
interprets the network according to the semantics of AN-
IMO only. The translator for SBML is general and has
been tested against the BioModels database of biological
models6.

4.2 General Principle of The Translations

To explain the general principles of our translations, we
consider the following example that is representative of
the types of reactions we suppot:

A+B
kon−−−⇀↽−−−
koff

C
kdeg−−−→

Here, A and B are reactants, C is the product of the
first reaction, and C is itself a reactant for a second
reaction where it degrades. In general, we can have more
reactants or products. To model these reactions we need
to pick a kinetic law V for each of them (in function of
the concentrations of the reactants). If we separate the

5 http://sbml.org
6 http://www.ebi.ac.uk/biomodels-main/publmodels

A-=1, B-=1, C+=1

A>0 && B>0

Kon*A*B

(a) A + B
Kon−−−→ C

C-=1, A+=1, B+=1

C>0

Koff*C

(b) C
Koff−−−→ A+B

C-=1

C>0

Kdeg*C

(c) C
Kdeg−−−→

Figure 7. The three stochastic hybrid automata to model the
three reactions of our example.

reactions we have:

A+B
kon−−−→ C Von = kon [A][B]

C
koff−−−→ A+B Voff = koff [C]

C
kdeg−−−→ Vdeg = kdeg [C]

We note that the kinetic laws may contain some extra
terms, e.g., concentrations of catalysts that are not ex-
plicitly present in the reactions. These reactions can be
Modelled as continuous Markov chains (the stochastic
model) or with ordinary differential equations (the ODE
model).

Basic Stochastic Model The stochastic model for these
reactions is a network of simple stochastic hybrid au-
tomata. The template for each reaction has one transi-
tion with:

– A guard that ensures there is enough reactant, in
our case A>0 && B>0 for the first reaction of our
example.

– Updates that encode the actual reaction, e.g., A−=1,

B−=1, C+=1.

Furthermore, the kinetic law is encoded in the exponen-
tial rate that define the distribution of the delay to take
this transition. For this example we have Kon∗A∗B. Fig. 7
shows the three stochastic automata used to model the
three separate reactions of our example. The automatic
generation of these automata is straight-forward from
the reactions. The variables used are integers since we
only need counters. This may require rescaling the values
of the initial reactions.

Basic ODE Model To model with ODEs, we derive the
equations from the reactions and their kinetic laws. The
derivative for each reactant is the weighted sum (posi-
tive if produced or negative if consumed) of the kinetic
laws of the reactions that involve this reactant. For our
example, we obtain the derivatives of equations 1, 2 and
3 in Section 2.

To model these equations in Uppaal SMC, we use
one automaton with one transition from an initial state
to a main state to initialise the reactants, and then the
equations are declared in the invariant of the main state
as shown in Fig. 8. In practice, the values of the constants
are inlined in the model.

The generation of the model is done by first collect-
ing the reactants and the different sums for their deriva-
tives and second by writing the resulting list of rates.

8 Alexandre David et al.: Statistical Model Checking for Biological Systems

A=50,
B=80,
C=0

A’==-Kon*A*B+Koff*C &&
B’==-Kon*A*B+Koff*C &&
C’==Kon*A*B-(Koff+Kdeg)*C

Figure 8. The ODE hybrid automaton to model the three reac-
tions of our example.

C2
C1
B2
B1
A2
A1

time

v
a
lu
e

0

16

32

48

64

80

0 0.8 1.6 2.4 3.2 4.0 4.8

(a) Unscaled CTMC and ODE simulations.

C3 / SCALE
C2
B3 / SCALE
B2
A3 / SCALE
A2

time

va
lu

e

0

16

32

48

64

80

0 0.8 1.6 2.4 3.2 4.0 4.8

(b) Scaled CTMC and ODE simulations.

Figure 9. Simulation results of the CTMC and ODE models
for our running example. The {A,B,C}1 variables are from the
non-scaled CTMC model, the {A,B,C}2 variables are from the
the ODE model and the {A,B,C}3 variables are from the scaled
CTMC model.

The variables are clocks here. We do not need to rescale
values as for the stochastic model.

Example We show the results of the simulation of our
example in Fig. 9. Fig. 9(a) compares the simulations of
the CTMC and the ODE models (the ODE correspond-
ing to the smooth plot). To increase the precision of the
CTMC simulation (done with small numerical values),
we can scale the amounts by 100 (and correct the ki-
netic laws). Fig. 9(b) plots the scaled-down values from
the scaled model. The plot shows how the CTMC is now
much closer to the ODE solution and is in fact its dis-
cretization. This illustrates that by taking large amount
of reactants, the behaviour converges to the solution of
the ODEs.

4.3 ANIMO to Uppaal SMC

ANIMO models are exported to the XGMML format,
which is a general XML based format for representing

Type
Guard

Update
Exponential

A a B
1

A > 0 && B−1>0
B=B−1

nB/(nA∗ts)∗k∗A

2
A>0 && B−1 >=0 && B>0

B=B−1
1/(nA∗ts)∗k∗A∗B

A→ B
1

A > 0 && B+1<=nB
B=B+1

nB/(nA∗ts)∗k∗A

2
A>0 && B+1 <=nB && (nB−B)>0

B=B+1
1/(nA∗ts)∗k∗A∗(nB−B)

A,B a C 3
f(A,actA) > 0 && f(B,actB)>0 && C−1>0

C=C−1
nB/(nA∗nB∗ts)∗k∗f(A,actA)∗f(B,actB)

A,B → C 3
f(A,actA) > 0 && f(B,actB)>0 && C−1>0

C=C+1
nB/(nA∗nB∗ts)∗k∗f(A,actA)∗f(B,actB)

Table 1. Overview of the translation where actA, actB ∈
{active, inactive}, f(X, active) = X and f(X, inactive) = nX −
X.

networks. Our tool recognises the types of nodes and
their semantics used by ANIMO. The translation from
ANIMO follows our general principle for translating the
reactions into CTMCs. Let A,B and C be species with
nA, nB and nC activation levels and let the time scale
in ANIMO be ts, then the translation is performed as
shown in Table 1.

Recall that the reaction time in ANIMO was cho-
sen uniformly in the interval [0.95 × f ; 1.05 × f], f be-
ing calculated differently depending on the type of re-
action. The exponential rate we use in our translation
to CTMCs correspond to 1

f thus we ensure the average
reaction time is the same for our translation and the
semantics for ANIMO.

4.4 SimBiology R© to Uppaal SMC

SimBiology R© models are exported to SBML, a standard
format to describe biological systems. The SBML lan-
guage has been designed for biologists and can be used by
several tools, in particular BioNetGen or SimBiology R©.
SBML is rich and is unfortunately not used in a stan-
dard way nor do different simulators agree on simulation
results [6], which shows that handling general models is
difficult: As an example, for the model #24, only six
out of 12 simulation packages returned a result and only
two of these seemed to agree on a specific behaviour. We
choose to support a subset of SBML and to judge if it
is relevant and to assess the validity of our translations,
we apply our tool to all the 436 models of the BioMod-
els database. According to [6], The curated models in the
BioModels Database cover a wide range of features of the
SBML language and are therefore an optimal choice as
a base set of models for simulator comparison.

Translation To translate SBML models we use both the
basic stochastic model and the ODE models that we need
to extend to accommodate the extra features of SBML.
We mention the following features that need extra han-
dling:

Alexandre David et al.: Statistical Model Checking for Biological Systems 9

time

trigger assignments

delay

(a) Time frame of events.

!triggered && triggerCondition

triggered=false

triggered=false,
load()

triggered && delayCondition

triggered &&
!triggerCondition

asap!

asap!
triggered=true,
save()

(b) Simplified template for
encoding events.

Figure 10. Events in SBML and their encodings.

– Functions: User functions in the form of lambda ex-
pressions can be defined. These functions return float-
ing point values, which is not yet supported by Up-
paal SMC, so we inline them in the model.

– Compartments: Species exist in compartments that
have volumes, e.g., a cell. We use compartments as
namespaces.

– Species: Species (names for the reactants and prod-
ucts) are declared with either initial amounts or ini-
tial concentrations (this is inconsistent across mod-
els). We choose on-the-fly the right initial state. In
addition, quantities are not integers in general so
our tool suggests a scaling factor (option --scale

value) to scale the values and update the kinetic
laws automatically.

– Parameters: Models can be parameterized by global
or local parameters (local to kinetic laws). We inline
the definition of these parameters in formulas where
they are used if they are constants. If parameters are
not constants, they are typically used in event assign-
ments, in which case they are added to the model as
extra variables.

– Assignment and rate rules: The models may con-
tain reactions and explicit equations that define how
species evolve. The explicit definition of [A] = expr is
an assignment rule and d[A]/dt = expr is a rate rule.
Sometimes assignment or rate rules are present to-
gether with reactions involving the same species and
they may conflict. When rules are given, we consider
that they override any equation that we may infer
from the reactions. Assignment rules are inlined in
formulas and rate rules override the derivatives. It is
forbidden to have both assignment and rate rules for
the same species.

– Names: Species are not used directly in the model,
but rather species references (to some identifier). Some-
times the identifier is misused as the name and some-
times the name of the species is the right name. By
default our translator uses IDs but there is an option
(--name) to use the names of the species instead.
This helps to understand the output.

– Events: External events to the reactions can occur,
e.g., an operator pours a reactant or a cell divides.
They are akin to discrete transitions in hybrid sys-

tems. An event is triggered when its trigger condi-
tion is true. Event assignments are performed after
an optional delay with either the state or the state
when the trigger occured (that means it has to be
saved). Events can be persistent. A non-persistent
event means that the trigger condition has to hold
until the event assignment takes place otherwise it
is cancelled. Fig. 10(a) shows the time frame of such
events. Fig. 10(b) shows the extra transitions for each
event that are added to the basic ODE model7. The
flag triggered records the occurrence of the event,
triggerCondidion is the trigger condition,
delayCondition is the optional delay condition, save()
is replaced by saving the clocks needed for the as-
signment if the values at the trigger are needed, and
load() is replaced by the actual event assignments
that read either the current values or the values saved.
The bottom transition can disable the event if it is
not persistent.

We do not support the other features. In particular,
we currently assume that the units in the model are con-
sistent. Units can be handled via rescaling and this is not
a fundamental limitation. On the other hand, algebraic
rules that define equations of the form f(xi) = A where
f(xi) is some arbitrary function depending on species
and A a constant, are more problematic. In practice they
are rarely used (not at all in the BioModels database)
so this is not a limitation either.

Validating the Tool To validate and assess the tool we
use the following methodology. We download all curated
models from the BioModels database. A curated model
is a manually sanitised model. We run our translator
on all of them and then we (manually) simulate all of
those that were successfully translated. We record the
following results:

– We found models with negative initial amounts or
that use reaction identifiers as variables. They cannot
be translated and are considered to be inconsistent.

– We failed to translate some models that use unsup-
ported features.

– For the models we successfully translate (72.3%), we
can simulate CTMC or ODE models (or both)8. The
simulations may also fail mainly due to numerical
problems.

The detailed results of our validation experiments
can be found in Table 6 at the end of this paper and
are summarised in Table 2. These experiments show that
we can obtain meaningful simulations automatically out
of 40.4% of all the models from this database, which is
a positive result considering that these models are not
easy to handle even by specialised tools in biology. This

7 They can be added to the CTMC model as well but this is not
yet implemented.

8 The individual scaling or simulation steps are not reported
here for brevity.

10 Alexandre David et al.: Statistical Model Checking for Biological Systems

Inconsistent models 2.7%
Unsupported features 25%
CTMC and ODE 10.1%
CTMC or ODE 30.3 %
Failed simulations 31.9%

Table 2. Synthetic results on the database in percentage of the
436 models.

shows that Uppaal SMC can realistically be used as a
backend tool to handle real-world models. In the next
section, we study in details one of these models (number
35).

Remark 1. Some of the models used for the experiments
are stiff and the step size has to be adjusted for the in-
tegration to work. In particular, the biological oscillator
(model 35) needs a step size of 10−4.

5 Case Studies

In this section, we demonstrate the intended usage and
benefit of the developed tool chain on two case studies.

5.1 PC-12 Neural Pathways

We consider the case that the authors of [22] used to
exemplify the use of ANIMO. The case is a pathway that
coordinates the neural differentiation of PC-12 cells. The
original ANIMO model was obtained from the authors
and afterwards translated into a Uppaal SMC model
using xgmml2ctmc. We use this model to compare the
model of ANIMO with our translated model. For the
experiments we have used version 2.55 of ANIMO.

For the ANIMO model we generated 100 runs and
took the average on each sampling point to obtain an
“expected” run. We did similarly for our translated but
for 10000 runs - we used a greater number of runs for our
model to accommodate for the higher variability that the
exponential distributions give.

In Fig. 11(a) we have plotted the expected run from
ANIMO and in Fig. 11(b) we show the expected run of
Uppaal SMC. By visual inspection we notice that the
graphs of ANIMO and Uppaal SMC are not lining up
perfectly. However, they do share a common structure
where ERK, and MEK rises rapidly in the beginning and
then drops and approaches zero as the time progresses.
Similarly RAF rises in the beginning and drops after-
wards. The primary difference in the runs is that the
Uppaal SMC run takes longer to reach the maxima for
the species and equivalently takes longer in approaching
zero. This difference may easily be explained by our use
of exponential distribution versus the uniform distribu-
tions of ANIMO.

(a) A simulation from ANIMO.

(b) Average run from Uppaal SMC.

Figure 11. Comparison between Uppaal SMC and ANIMO. The
time is on the x-axis and on the y-axis we have the activity levels
of the variables. In (a) R45 = RAF, R26 = MEK and R39 = ERK

.

5.2 Genetic Oscillator

We show how the genetic oscillator [2, 25] can be Mod-
elled and simulated in Matlab SimBiology R© exactly as
a stochastic process with discrete states, approximated
using ODEs that assume continuous states, and then
demonstrate statistical model-checking approach using
Uppaal SMC.

The synthetic genetic oscillator distills the essence
of several real circadian oscillators to demonstrate how
nature constructs a reliable system in the face of inherent
stochasticity: the oscillator has been shown to exhibit a
kind of regularity referred to as stochastic coherence [17].
The model is based on elemental reactions with mass
action kinetics shown in Table 3 .

Oscillations arise in the model as a result of a phase
shift between competing processes of production and se-
questration of protein A. Genes DA and DR are tran-
scribed to messenger RNA MA and MR, that are trans-

Alexandre David et al.: Statistical Model Checking for Biological Systems 11

A + DA
γ
A−→ D′A

D′A
θ
A−→ DA + A

A + DR
γ
R−→ D′R

D′R
θ
R−→ DR + A

D′A
α′
A−→ MA + D′A

DA
α
A−→ MA + DA

D′R
α′
R−→ MR + D′R

DR
α
R−→ MR + DR

MA

β
A−→ MA + A

MR

β
R−→ MR + R

A + R
γ
C−→ C

C
δ
A−→ R

A
δ
A−→ ∅

R
δ
R−→ ∅

MA

δ
MA−→ ∅

MR

δ
MR−→ ∅

αA = 50h−1 δMR= 0.5h−1

α′A = 500h−1 θA = 50h−1

αR = 0.01h−1 θR = 100h−1

α′R = 50h−1 DA = 1m
βA = 50h−1 D′A = 0
βR = 5h−1 DR = 1m
γA = 1m−1h−1 D′R = 0
γR = 1m−1h−1 MA = 0
γC = 2m−1h−1 MR = 0
δA = 1h−1 A = 0
δR = 0.2h−1 R = 0
δMA= 10h−1 C = 0

Table 3. Reactions and initial values for constants and species from the genetic oscillator [25].

lated to proteins A and R, respectively. A and R dimerise
to produce complex C. Protein A acts as a promoter
for its own gene, creating a positive feedback loop that
causes the production of A to increase rapidly. Protein A
also promotes the production of protein R. Hence, as A
increases, so too does R, but after a delay due to the two
step transcription-translation process. As R increases it
sequesters A via the second order dimerisation reaction,
thus limiting the maximum amount of protein A. The
delay in this negative feedback causes the system to os-
cillate.

Matlab SimBiology R© is designed specifically for bio-
chemical processes, thus modelling is straightforward and
simulation benefits from a similar set of solvers with an
important addition of the stochastic one. The remark-
able feature of SimBiology R© is that simulations can be
performed in ensembles and the simulation can be ac-
celerated further by compiling into native executable
through translation into C, but eventually the behavioural
data is recorded as large Matlab arrays for later post-
processing.

We have modelled the genetic oscillator [25] in our
previous study [11, 14] and in this paper we compare the
results and performance of Uppaal SMC with Matlab
SimBiology R© and Simulink R©. Fig. 12 shows the reac-
tion model and simulation plots using a deterministic
ODE and a stochastic solver. The simulated behaviour
is identical with our previous results and the translated
models to Uppaal SMC through SBML are equivalent
to the ones we studied before. We also Modelled the dif-
ferential equation model in Simulink R© and got identical
results.

Table 4 summarises the timing measurements of 100h
of model time simulations (containing about four peri-
ods of oscillations) with graphical plotting turned off.
Matlab family of tools provides a wide range of solvers
with varying quality and behaviour. We tried a fixed
time step ode1 Euler solver because it is the same method
used by the current release of Uppaal SMC. The results

Tool Simulation Performance, s

SimulinkR©
fixed 10−4 step ode1 (Euler) 3.7900 ±0.11
variable step ode45 (Runge-Kutta) 0.7700 ±0.02
variable step ode15s (stiff/NDF) 0.0783 ±0.0065

SimBiologyR©

ode15s (stiff/NDF) 0.1805 ±0.0017
ssa (stochastic) 0.2575 ±0.0090
accelerated ode15s (stiff/NDF) 0.0203 ±0.0015
accelerated ssa (stochastic) 0.2476 ±0.0054

Uppaal SMC
fixed 10−4 step ODE (Euler) 1.7520 ±0.0056
CTMC (stochastic) 1.0400 ±0.24

Table 4. Genetic oscillator simulation performance using various
tools: the intervals computed using 20 measurements with 95%
confidence.

Tool Simulation Tuples Min memory, KB

SimBiologyR© ode15s 747 58.4
ssa 286080 ±7674 22350.0

Uppaal SMC
ODE 5354 418.3
stochastic 4437 ±34 346.6

Table 5. Simulation data comparison.

show that Uppaal SMC implementation is about two
times faster. A default choice in Simulink R© is a vari-
able step ode45 solver which is more accurate and faster
than Uppaal SMC because it can leap in larger time
steps when dynamics change little. Solver ode15s seems
to be even a better choice here because it is designed for
stiff functions and still fast. The problem with Matlab
Simulink R© is that resulting models are large9 and thus
the modelling process is tedious and difficult to debug.

Table 5 shows amounts of data generated for simula-
tion purposes. A tuple of data consists of ten double pre-
cision numbers (one for time and nine for species quan-
tities). SimBiology R© works very well for deterministic
ODE simulations and acceleration can be dramatic, but
the stochastic simulations hardly get any benefit from
acceleration and can be problematic due to vast amount
of generated data while performing small time steps and

9 e.g. StateSpace approach is not applicable due to multiple
species coupling.

12 Alexandre David et al.: Statistical Model Checking for Biological Systems

cell

A

D_A

DA

DR

D_R

MA

MR

R

C

(a) Graphical overview of reactions.

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Time

S
ta

te
s

States versus Time

cell.A

cell.R

cell.C

(b) Output of ODE solver.

0 10 20 30 40 50
0

500

1000

1500

2000

2500

Time

S
ta

te
s

States versus Time

cell.A

cell.R

cell.C

(c) Output of stochastic solver.

Figure 12. Modelling and simulating the genetic oscillator in SimBiology R©.

even simple ensemble simulation becomes a memory bot-
tleneck in the process. For example, generating ensem-
ble simulation of just 100 runs (without plots), Mat-
lab’s virtual memory grows from 1329MB to 5633MB
(504MB to 4600MB of resident memory). The small time
steps are inevitable in stochastic simulations of biologi-
cal systems because the reaction rates are proportional
to molecular quantities and some of them can get very
high. While it is possible to use the memory more effi-
ciently by analysing one run at a time, it still requires
programming and is still constrained to storing at least
one entire run.

Uppaal SMC contains twice as fast Euler ODE in-
tegrator, but it is still much slower than variable step
solvers like ode45 and ode15s. On the other hand, stochas-
tic simulation is more than 64 times efficient in space
due to data filtering and thus is more suitable for inter-
active exploration. In addition, Uppaal SMC provides
a query language and evaluates the statistical properties
on-the-fly by storing only one state at a time, and thus
does not have a storage bottleneck. Uppaal SMC may
also terminate simulation earlier due to feedback from
its Validator and Core algorithm to Generator that it
has acquired enough information about a single run or
observed enough runs.

max: A * v

p
ro

b
.
d
e
n
s
it
y

0

0.0014

0.0028

0.0042

1140 1530 1920
max: C * v

p
ro

b
.
d
e
n
s
it
y

0

0.0016

0.0032

0.0048

1960 2280 2600
max: R * v

p
ro

b
.
d
e
n
s
it
y

0

0.0016

0.0032

0.0048

1500 1800 2100

A periodlo
g

 p
ro

b
.

d
e

n
s
it
y

−4.0

−3.0

−2.0

−1.0

0 13 26 39 52
C periodlo

g
 p

ro
b
.
d
e
n
s
it
y

−4.2

−3.1

−2.0

−0.9

15 35 55 75 95
R periodlo

g
 p

ro
b
.
d
e
n
s
it
y

−4.1

−3.1

−2.1

−1.1

1 19 37 55 73

(a) A. (b) C. (c) R.

Figure 13. Estimated probability density distributions for ampli-
tude and period.

Next, we demonstrate statistical query language ap-
plication. For example, the amplitude of each protein
quantity can be measured by the following query:

E[<=100; 2000](max: Q)

where 100 is the time bound for simulation, 2000 is the
number of simulations and Q is a model expression of
interest: in our case it is simply one of variables A, C

or R. As a result, Uppaal SMC renders a probability
density plot of possible amplitudes and a vertical line for
an average value shown in upper plots of Fig. 13. The
memory consumption remains about the same: around
40MB of virtual and 3.7MB of resident.

Uppaal SMC can also estimate a distance between
peaks by the monitors WMTL. The idea of the approach

Alexandre David et al.: Statistical Model Checking for Biological Systems 13

is to translate a WMTL formula that describes the shape
of a peak into a monitoring automaton. By resetting a
clock x and start a secondary monitor when a peak is
detected we can estimate the distance as the value of x

when the second monitor detects a peak[14].
To detect peaks of A when its amount rises above

1100 and drops below 1000 within 5 time units, we use
the formula (in the tool syntax):

true U[<=100] (A>1100 && true U[<=5] A<=1000)

Then the distance between peaks can be estimated by
measuring maximal value of clock x with similar queries
we used to estimate amplitude. The result is rendered by
the tool as a logarithm of probability density shown in
the second row of Fig. 13. The plots show that in most
cases the measured distance between peaks is about 24.2
hours (slightly more than one day-night cycle). Then
there are some smaller bumps with several magnitudes
lower probability which can be explained by either a)
false positive peak as the WMTL monitor is confused by
a sudden stochastic saw-tooth in signal A, or b) missing
a peak or two, or even three (in C) if the peak is not
high enough to be registered at all, hence the next one
is registered instead.

6 Conclusions

The present paper proves three main points:

1. Uppaal SMC can handle a wide range of biological
systems.

2. The simulation engine of Uppaal SMC is of compa-
rable performance with Simulink R© and SimBiology R©.

3. The essential benefit of Uppaal SMC comes with the
power of statistical model checking with respect to a
range of temporal logic properties.

In order to show the range of applicability we have
connected the Uppaal SMC toolset to ANIMO and
SimBiology R©– two tools that can be used to specify
and analyse biological phenomena. In particular we sup-
port SBML, used in many other research projects. Our
implementation works via a translation from the input
languages of those tools to the one of Uppaal SMC.
This approach allows us not only to exploit the efficient
ODEs solver of Uppaal SMC, but also to apply pow-
erfull techniques such as Statistical Model Checking to
the systems.

As future work, we would like to implement new func-
tionalities to capture a wider range of biological phenom-
enas. We also plan to improve the ODE solving capabil-
ities of Uppaal SMC by implementing more advanced
ODE solvers such as CVODE and ode15s.

Acknowledgement

The authors of this paper are grateful for the detailed
comments from the anonymous reviewers.

Nr. Res. Nr. Res. Nr. Res. Nr. Res. Nr. Res. Nr. Res. Nr. Res.
001 - 002 x 003 ode 004 ode 005 ctmc 006 ode 007 x
008 ode 009 x 010 both 011 both 012 both 013 x 014 both
015 x 016 x 017 x 018 x 019 - 020 x 021 ode
022 ode 023 ode 024 - 025 - 026 ode 027 both 028 both
029 both 030 both 031 ode 032 x 033 x 034 - 035 both
036 ode 037 both 038 x 039 x 040 x 041 ode 042 ode
043 ctmc 044 ctmc 045 ctmc 046 x 047 - 048 x 049 both
050 both 051 - 052 both 053 x 054 ode 055 - 056 x
057 ode 058 ode 059 x 060 ode 061 ctmc 062 ode 063 !
064 ctmc 065 ode 066 ode 067 ode 068 x 069 ode 070 ctmc
071 x 072 x 073 ode 074 ode 075 - 076 both 077 -
078 - 079 ode 080 x 081 - 082 x 083 - 084 ode
085 x 086 x 087 x 088 - 089 x 090 ctmc 091 ctmc
092 both 093 both 094 both 095 - 096 - 097 - 098 ode
099 ode 100 x 101 - 102 ode 103 ode 104 - 105 both
106 ode 107 ode 108 ctmc 109 - 110 ode 111 x 112 -
113 ode 114 ode 115 ode 116 ctmc 117 - 118 x 119 x
120 - 121 - 122 - 123 x 124 - 125 - 126 -
127 - 128 - 129 - 130 - 131 - 132 - 133 -
134 - 135 - 136 - 137 - 138 x 139 - 140 -
141 - 142 - 143 x 144 ode 145 ode 146 ode 147 ode
148 ctmc 149 - 150 x 151 x 152 - 153 - 154 -
155 - 156 ode 157 ode 158 x 159 ode 160 ode 161 -
162 - 163 x 164 - 165 - 166 ode 167 - 168 x
169 ode 170 both 171 - 172 x 173 - 174 - 175 x
176 x 177 x 178 x 179 - 180 - 181 ode 182 x
183 x 184 ode 185 ode 186 - 187 - 188 - 189 -
190 ode 191 both 192 x 193 - 194 - 195 x 196 -
197 both 198 ode 199 x 200 x 201 x 202 ode 203 x
204 x 205 x 206 ode 207 ode 208 - 209 x 210 x
211 ode 212 x 213 x 214 - 215 - 216 ode 217 ode
218 x 219 x 220 x 221 x 222 x 223 x 224 ode
225 ode 226 x 227 - 228 ode 229 ode 230 ode 231 ctmc
232 x 233 ode 234 x 235 - 236 ode 237 - 238 x
239 ode 240 ode 241 - 242 ode 243 both 244 - 245 !
246 x 247 x 248 ! 249 ode 250 x 251 x 252 x
253 x 254 ode 255 - 256 - 257 ode 258 ode 259 both
260 both 261 both 262 - 263 - 264 - 265 x 266 x
267 both 268 - 269 ode 270 x 271 both 272 x 273 -
274 ode 275 ode 276 ode 277 ode 278 x 279 x 280 x
281 - 282 x 283 both 284 ode 285 x 286 - 287 -
288 x 289 x 290 x 291 x 292 ode 293 both 294 ode
295 - 296 ode 297 x 298 ode 299 ode 300 x 301 -
302 x 303 x 304 x 305 ! 306 x 307 x 308 x
309 both 310 x 311 x 312 - 313 ode 314 ode 315 both
316 - 317 - 318 - 319 ode 320 ode 321 ode 322 ode
323 ode 324 x 325 ! 326 - 327 - 328 both 329 ode
330 x 331 x 332 ode 333 ode 334 ode 335 x 336 x
337 - 338 - 339 - 340 - 341 ode 342 - 343 x
344 x 345 x 346 x 347 x 348 x 349 x 350 -
351 - 352 - 353 ode 354 ctmc 355 x 356 - 357 both
358 both 359 ode 360 ode 361 both 362 x 363 ode 364 ode
365 ode 366 ode 367 ode 368 x 369 x 370 x 371 !
372 x 373 ! 374 ! 375 ! 376 ! 377 ! 378 !
379 ode 380 x 381 ode 382 x 383 x 384 x 385 x
386 x 387 x 388 ode 389 ctmc 390 x 391 x 392 x
393 x 394 ode 395 ode 396 ode 397 both 398 both 399 -
400 x 401 ode 402 ode 403 ode 404 - 405 x 406 x
407 x 408 - 409 ode 410 ode 411 - 412 - 413 both
414 ode 415 x 416 x 417 both 418 ode 419 ode 420 ode
421 ode 422 - 423 x 424 x 425 ode 426 x 427 ode
428 x 429 - 430 both 431 both 432 both 433 both 434 x
435 ode 436 -

Table 6. Detailed results on all 436 (curated) SBML mod-
els from the database available at http://www.ebi.ac.uk/

biomodels-main/publmodels. The results are reported as follows:
“!” means the model was inconsistent, “x” means the simulation
failed, “-” means the translation failed, “ctmc” means only the
CTMC simulation worked, “ode” means only the ODE simulation
worked, and “both” means both simulations worked. Italic “ode”
means that the CTMC model could not be generated because of
the presence of rate rules in the SBML file (it is not possible to
get a CTMC model)

References

1. Rajeev Alur and David L. Dill. A Theory of
Timed Automata. Theor. Comput. Sci., 126
(2):183–235, 1994. doi: 10.1016/0304-3975(94)
90010-8. URL http://dx.doi.org/10.1016/

0304-3975(94)90010-8.
2. Naama Barkai and Stanislas Leibler. Biological

rhythms: Circadian clocks limited by noise. Nature,
403:267–268, 2000.

3. Ananda Basu, Saddek Bensalem, Marius Bozga,
Benot Caillaud, Benot Delahaye, and Axel Legay.
Statistical Abstraction and Model-Checking of
Large Heterogeneous Systems. In John Hatcliff and
Elena Zucca, editors, Formal Techniques for Dis-
tributed Systems, volume 6117 of Lecture Notes in
Computer Science, pages 32–46. Springer Berlin /
Heidelberg, 2010. ISBN 978-3-642-13463-0. doi:
10.1007/978-3-642-13464-7\ 4.

14 Alexandre David et al.: Statistical Model Checking for Biological Systems

4. G. Behrmann, A. David, and K. G. Larsen. A tuto-
rial on Uppaal. Lecture Notes in Computer Science,
pages 200–236, 2004.

5. Gerd Behrmann, Alexandre David, Kim Guldstrand
Larsen, Paul Pettersson, and Wang Yi. Developing
UPPAAL over 15 years. Softw., Pract. Exper., 41
(2):133–142, 2011. doi: 10.1002/spe.1006.

6. Frank T. Bergmann and Herbert M. Sauro.
Comparing simulation results of SBML capa-
ble simulators. Bioinformatics, 24(17):1963–
1965, 2008. doi: 10.1093/bioinformatics/btn319.
URL http://bioinformatics.oxfordjournals.

org/content/24/17/1963.full.
7. Peter Bulychev, Alexandre David, Kim G. Larsen,

Axel Legay, and Marius Mikučionis. Computing
Nash Equilibrium in Wireless Ad Hoc Networks:
A Simulation-Based Approach. In Johannes Re-
ich and Bernd Finkbeiner, editors, Second Interna-
tional Workshop on Interactions, Games and Proto-
cols, volume 78 of EPTCS, pages 1–14, 2012. doi:
10.4204/EPTCS.78.

8. Peter E. Bulychev, Alexandre David, Kim G.
Larsen, Axel Legay, Guangyuan Li, and
Danny Bøgsted Poulsen. Rewrite-Based Sta-
tistical Model Checking of WMTL. In Shaz Qadeer
and Serdar Tasiran, editors, RV, volume 7687 of
Lecture Notes in Computer Science, pages 260–275.
Springer, 2012. ISBN 978-3-642-35631-5, 978-3-642-
35632-2. doi: 10.1007/978-3-642-35632-2\ 25.

9. Peter E. Bulychev, Alexandre David, Kim Guld-
strand Larsen, Axel Legay, Guangyuan Li,
Danny Bøgsted Poulsen, and Amélie Stainer.
Monitor-Based Statistical Model Checking for
Weighted Metric Temporal Logic. In Nikolaj
Bjørner and Andrei Voronkov, editors, LPAR,
volume 7180 of Lecture Notes in Computer Science,
pages 168–182. Springer, 2012. ISBN 978-3-642-
28716-9. doi: 10.1007/978-3-642-28717-6\ 15.

10. Alexandre David, Kim G. Larsen, Axel Legay, Mar-
ius Mikučionis, Danny Bøgsted Poulsen, Jonas van
Vliet, and Zheng Wang. Statistical Model Check-
ing for Networks of Priced Timed Automata. In
Uli Fahrenberg and Stavros Tripakis, editors, FOR-
MATS, volume 6919 of Lecture Notes in Computer
Science, pages 80–96. Springer, 2011. ISBN 978-3-
642-24309-7. doi: 10.1007/978-3-642-24310-3\ 7.

11. Alexandre David, Dehui Du, Kim G. Larsen, Axel
Legay, Marius Mikučionis, Danny Bøgsted Poulsen,
and Sean Sedwards. Statistical Model Checking for
Stochastic Hybrid Systems. In Ezio Bartocci and
Luca Bortolussi, editors, HSB, volume 92 of EPTCS,
pages 122–136, 2012. doi: 10.4204/EPTCS.92.9.

12. Alexandre David, DeHui Du, Kim G. Larsen, Marius
Mikučionis, and Arne Skou. An evaluation frame-
work for energy aware buildings using statistical
model checking. Science China Information Sci-
ences, 55:2694–2707, 2012. ISSN 1674-733X. doi:

10.1007/s11432-012-4742-0. URL http://dx.doi.

org/10.1007/s11432-012-4742-0.
13. Alexandre David, Kim Guldstrand Larsen, Axel

Legay, and Marius Mikučionis. Schedulability of
Herschel-Planck Revisited Using Statistical Model
Checking. In Tiziana Margaria and Bernhard
Steffen, editors, ISoLA (2), volume 7610 of Lec-
ture Notes in Computer Science, pages 293–307.
Springer, 2012. ISBN 978-3-642-34031-4. doi: 10.
1007/978-3-642-34032-1\ 28.

14. Alexandre David, Kim Guldstrand Larsen, Axel
Legay, Marius Mikučionis, Danny Bøgsted Poulsen,
and Sean Sedwards. Runtime Verification of Biolog-
ical Systems. In ISoLA (1), pages 388–404, 2012.
doi: 10.1007/978-3-642-34026-0\ 29.

15. James R. Faeder, Michael L. Blinov, and William S.
Hlavacek. Rule-Based Modeling of Biochemical Sys-
tems with BioNetGen. Systems Biology, 500, Jan-
uary 2009. doi: 10.1007/978-1-59745-525-1\ 5.

16. D. T. Gillespie. Exact Stochastic Simulation of Cou-
pled Chemical Reactions. Journal of Physical Chem-
istry, 81:2340–2361, 1977. doi: 10.1021/j100540a008.

17. Robert C. Hilborn and Jessie D. Erwin. Stochas-
tic coherence in an oscillatory gene circuit model.
Journal of Theoretical Biology, 253(2):349 – 354,
2008. ISSN 0022-5193. doi: 10.1016/j.jtbi.2008.
03.012. URL http://www.sciencedirect.com/

science/article/pii/S0022519308001264.
18. Cyrille Jegourel, Axel Legay, and Sean Sedwards.

A Platform for High Performance Statistical Model
Checking – PLASMA. In Cormac Flanagan and Bar-
bara König, editors, Tools and Algorithms for the
Construction and Analysis of Systems, volume 7214
of Lecture Notes in Computer Science, pages 498–
503. Springer Berlin Heidelberg, 2012. ISBN 978-3-
642-28755-8. doi: 10.1007/978-3-642-28756-5\ 37.

19. Kim Guldstrand Larsen, Paul Pettersson, and Wang
Yi. UPPAAL in a Nutshell. STTT, 1(1-2):134–152,
1997. doi: 10.1007/s100090050010.

20. Axel Legay, Benôıt Delahaye, and Saddek Bensalem.
Statistical Model Checking: An Overview. In RV,
volume 6418 of Lecture Notes in Computer Sci-
ence, pages 122–135. Springer, 2010. doi: 10.1007/
978-3-642-16612-9\ 11.

21. S. Schivo, J. Scholma, B. Wanders, R.A.
Urquidi Camacho, P.E. van der Vet, M. Karperien,
R. Langerak, J. van de Pol, and J.N Post. Modelling
biological pathway dynamics with Timed Automata.
Biomedical and Health Informatics, IEEE Jour-
nal of, PP(99):1–1, 2013. ISSN 2168-2194. doi:
10.1109/JBHI.2013.2292880.

22. Stefano Schivo, Jetse Scholma, Brend Wanders, Ri-
cardo A. Urquidi Camacho, Paul E. van der Vet,
Marcel Karperien, Rom Langerak, Jaco van de Pol,
and Janine N Post. Modelling biological pathway dy-
namics with Timed Automata. In Proceedings of the
2012 IEEE 12th International Conference on Bioin-

Alexandre David et al.: Statistical Model Checking for Biological Systems 15

formatics & Bioengineering (BIBE), pages 447–453,
2012.

23. Koushik Sen, Mahesh Viswanathan, and Gul Agha.
Statistical Model Checking of Black-Box Probabilis-
tic Systems. In CAV, LNCS 3114, pages 202–215.
Springer, 2004. doi: 10.1007/978-3-540-27813-9\ 16.

24. Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S
Baliga, Jonathan T Wang, Daniel Ramage, Nada
Amin, Benno Schwikowski, and Trey Ideker. Cy-
toscape: a software environment for integrated mod-
els of biomolecular interaction networks. Genome
research, 13(11):2498–2504, 2003. doi: 10.1101/gr.
1239303.

25. José M. G. Vilar, Hao Yuan Kueh, Naama Barkai,
and Stanislas Leibler. Mechanisms of noise-
resistance in genetic oscillators. Proceedings of
the National Academy of Sciences, 99(9):5988–5992,
2002. doi: 10.1073/pnas.092133899. URL http:

//www.pnas.org/content/99/9/5988.abstract.
26. H̊akan L. S. Younes and Reid G. Simmons. Proba-

bilistic Verification of Discrete Event Systems Using
Acceptance Sampling. In Proc. of 14th Int. Confer-
ence on Computer Aided Verification (CAV), LNCS
2404, pages 223–235. Springer, 2002.

27. H̊akan L.S. Younes. Ymer: A Statistical Model
Checker. In Kousha Etessami and Sriram K. Raja-
mani, editors, Computer Aided Verification, volume
3576 of Lecture Notes in Computer Science, pages
429–433. Springer Berlin Heidelberg, 2005. ISBN
978-3-540-27231-1. doi: 10.1007/11513988\ 43.

