(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

Schedulability of Herschel Revisited Using Statistical

Model Checking *

Alexandre David', Kim G. Larsen!, Axel Legay'?, Marius Mikuéionis

! Computer Science, Aalborg University, Denmark

2 INRIA/IRISA, Rennes Cedex, France

The date of receipt and acceptance will be inserted by the editor

Abstract Schedulability analysis is a main concern for
several embedded applications due to their safety-critical
nature. The classical method of response time analysis
provides an efficient technique used in industrial prac-
tice. However, the method is based on conservative as-
sumptions related to execution and blocking times of
tasks. Consequently, the method may falsely declare
deadline violations that will never occur during execu-
tion. This paper is a continuation of previous work of
the authors in applying extended timed automata model
checking (using the tool UPPAAL) to obtain more ex-
act schedulability analysis, here in the presence of non-
deterministic computation times of tasks given by inter-
vals [BCET,WCET)]. Computation intervals with pre-
emptive schedulers make the schedulability analysis of
the resulting task model undecidable. Our contribution
is to propose a combination of model checking techniques
to obtain some guarantee on the (un)schedulability of
the model even in the presence of undecidability.

Two methods are considered: symbolic model check-
ing and statistical model checking. Since the model uses
stop-watches, the reachability problem becomes undecid-
able so we are using an over-approximation technique.
We can safely conclude that the system is schedulable
for varying values of BCET. For the cases where dead-
lines are violated, we use polyhedra to try to confirm
the witnesses. Our alternative method to confirm non-
schedulability uses statistical model-checking (SMC) to
generate counter-examples that are always realizable.
Another use of the SMC technique is to do performance
analysis on schedulable configurations to obtain, e.g., ex-
pected response times.

* This paper is a special issue extension of [DLLMI2|. The
main differences are a more thorough description of the case-study
and experiments, and the use of the polyhedra library APron.
This work is partially supported by VKR Centre of Excellence
MT-LAB, the Sino-Danish basic research center IDEA4CPS, EU
ARTEMIS project MBAT, the regional CREATIVE project ES-
TASE, and the EU projects DANSE and DALI.

1

The methods are demonstrated on a complex satel-
lite software system yielding new insights useful for the
company.

1 Introduction

Embedded systems involve the monitoring and control
of complex physical processes using applications run-
ning on dedicated execution platforms in a resource con-
strained manner in terms of memory, processing power,
bandwidth, energy consumption, or task response time.

Viewing the application as a collection of (interde-
pendent) tasks various scheduling principles may be ap-
plied to coordinate the execution of tasks in order to
ensure orderly and efficient usage of resources. Based
on the physical process to be controlled, timing dead-
lines may be required for the individual tasks as well as
the overall system. The challenge of schedulability analy-
sis is now concerned with guaranteeing that the applied
scheduling principle(s) ensure that the timing deadlines
are met.

The classical method of response time analysis [JP86
Bur94] provides an efficient means for schedulability ana-
lysis used in industrial practice: by calculating safe up-
per bounds on the worst case response times (WCRT) of
tasks (as solutions to simple recursive equations) schedu-
lability may be concluded by a simple comparison with
the deadlines of tasks. However, classical response time
analysis is only applicable to restricted types of task-
sets (e.g. periodic arrival patterns), and only applicable
to applications executing on single processors. Moreover,
the method is based on conservative assumptions related
to execution and blocking times of tasks [BHK99]. Con-
sequently, the method may falsely declare deadline vio-
lations that will never occur during execution.

Process algebraic approaches |[BACCT98/SLCO6]
have resulted in many methods for specification and
schedulability analysis of real-time systems. In partic-
ular, BHK™04,[BHMQ9] frameworks are based on timed
automata and use UPPAAL to find a schedule, show
schedulability and then use MOBIUS to assess the per-
formance of schedules in realistic settings. This pa-
per demonstrates a combination of model-checking and
stochastic simulation techniques for schedulability ana-
lysis using recent UPPAAL SMC features on the same
model extended with stochastic interpretation. In addi-
tion to providing quantitative information the case study
is novel in showing complementary applications of prov-
ing and disproving schedulability by using symbolic and
stochastic semantics of the same stop-watch automata
model.

In our previous work [MLR10|, we extended the
schedulability analysis framework of [DILSI10] to obtain
more exact schedulability results for a wider class of sys-
tems, e.g., task-sets with complex and interdependent
arrival patterns of task, multiprocessor platforms, etc.
We did so on the industrial case study of the Herschel-
Planck dual satellite system. The system consists of two
satellites sharing the same software architecture hence
the analysis model is easily adaptable to both config-
urations. The control software of this system — devel-
oped by the Danish company Terma A/S — consists of
32 tasks executing on a single processor system with pre-
emptive scheduler, and with access to shared resources
managed by a combination of priority inheritance and
priority ceiling protocols. The main result of this study
was to conclude that the system was schedulable. In
IDLLM12] we relaxed the strong assumption that the
execution time of each task was the same as the worst-
case execution time (WCET). Classical response time
analysis [Bur94] considers that the task execution time
is anywhere in between zero and worst case execution
time (WCET), which is overly conservative and failed to
conclude schedulability in one of the operating modes of
the Herschel satellite, even though no deadline violations
have been observed during testing.

In this work we were more precise and considered
the execution times to be between the best and worst
execution times [BCET, WCET], however we had no
data about actual BCETs, hence BCETSs were treated
as a system parameter to find a schedulability threshold.
In practice one would model fixed BCETSs, attempt to
prove schedulability and then attempt to find a concrete
counter example if schedulability analysis failed using
our techniques. The main result was to conclude schedu-
lability only for larger BCET values and confirm that the
more conservative range is indeed not schedulable, which
means that the system could be proven schedulable if
tasks had larger BCET values, i.e. were not too fast.
Statistical model-checking (SMC) was used to generate
counter examples for cases leading to deadline violations.
In this work, we give a more complete description of the

case, in particular the automata and the tasks. We ex-
pose the real complexity of the model. In addition, a
complementary symbolic technique with polyhedra can
be used to prove that symbolic traces obtained by Up-
PAAL are realizable in some cases (even though the ex-
ploration is over-approximate).

The interesting technical points of our case are that
we deal with non-deterministic computation times and
dependencies between tasks, thus schedulability analy-
sis of the resulting task model is undecidable [FKPYQT].
Our technique uses stop-watches to obtain a guarantee
on schedulability using over-approximation. If a deadline
violation is found during the over-approximate analysis,
then nothing can be concluded because the detected run
can be spurious. Hence we use symbolic model-checking
to assert schedulability and statistical model-checking to
find concrete error traces in case of non-schedulability.
Moreover, we use a polyhedra library to confirm sym-
bolic traces obtained with our over-approximate explo-
ration.

SMC Approach. The core idea of SMC [YS02/[SVA04L
HLMP04[YS06,KZHT09,RPOILDBI0] is to generate
stochastic simulations of the system and verify whether
they satisfy a given property. The results are then used
by statistical algorithms in order to compute among oth-
ers an estimate of the probability for the system to sat-
isfy the property. Such estimate is correct up to some
confidence that can be parameterized by the user. Sev-
eral SMC algorithms that exploit a stochastic semantics
for timed automata have recently been implemented in
UPPAAL |[DLL™11a/DLL™11biBDL™12]. In this case we
assign a uniform probability distribution for the task ex-
ecutions times from an interval [BCET, WCET] which
ensures that the SMC algorithm will try a fair distribu-
tion of different task execution times from that interval
and provide conclusive evidence that the system run is
actually realizable if a deadline violation is found. The
SMC analysis is under-approximate in a sense that we
cannot conclude safety if the error is not found, because
the probability of finding one might be very low and we
are out of luck.

The results obtained show that these techniques com-
plement each other for either proving safety or finding
error traces. In particular for Herschel, as illustrated
in the summary Table [If when %%}?Eq‘; > 90% sym-
bolic model-checking confirms schedulability, whereas
statistical model-checking disproves schedulability for
SEL < 73%. For S2EL € (73%,90%) our experiments
are inconclusive. In addition, we show how to obtain
more informative performance analysis using SMC: e.g.,
expected response times when the system is schedula-
ble as well as estimation of the probability of deadline
violation when the system is not schedulable.

The paper is divided into four sections: Section 2 de-
scribes the model architecture, Section 3 explains the
symbolic analysis for proving schedulability, Section 4

f=wdee || 0-73% 74-86% 87-89% 90-100%
Symbolic MC: H maybe maybe n/a Safe
Statistical MC: H Unsafe maybe maybe

Table 1: Summary of schedulability of Herschel con-
cluded using symbolic and statistical model checking.

shows the statistical analysis for obtaining performance
measurements and disproving schedulability. Each sec-
tion contains two parts: the first demonstrates the tech-
nique on a simple example and the second describes the
interesting extra details from an industrial case study.

2 Modeling

This section introduces the modeling framework that
will be used through the rest of the paper. We start by
presenting the generic features of the framework through
a running example. Then, we briefly indicate the key
additions in modeling the Herschel-Planck application,
leaving details to be found in [MLR™10).

Consider the state machine for tasks in com-
mon operating system shown in Fig. Initially
the task is in state Idle and it can be released
into Ready. The task becomes Running when a pro-
cessor is assigned to it and it starts executing.
The task may be preempted
back into state Ready if a
higher priority task becomes
ready and gets assigned the
processor instead. During
execution the task may be-
come Blocked if it requests
a resource and the resource
is not available at that time,
thus releasing the processor to other tasks. The task
returns to state Ready once the requested resource be-
comes available.

We consider a Running Example, that builds on in-
stances from a library of three types of processes repre-
sented with timed automata templates in UPPAAL: (1)
preemptive CPU scheduler, (2) resource schedulers that
can use either priority inheritance, or priority ceiling pro-
tocols, and (3) periodically schedulable tasks. In what
follows, we use broadcast channels in entire model which
means that the sender cannot be blocked and the receiver
can ignore it if it is not ready to receive it. Derivative
notation like x’==e specifies whether the stop-watch x is
running, where e is an expression evaluating to either 0
or 1. In UPPAAL a stop-watch is an ordinary clock that is
stopped by setting its rate to zero. By default all clocks
are considered running, i.e. the derivative is 1.

For simplicity, we assume periodic tasks arriving with
period Period[id], with initial offset Offset[id], requesting
a resource R[id], executing for at least best case execu-
tion time BCET[id] and at most worst case execution

[Ready — Running]

Figure 1: Typical state
machine for tasks.

time WCET([id] and hopefully finishing before the dead-
line Deadline[id], where id is a task identifier. The wall-
clock time duration between task arrival and finishing is
called task response time: it includes the CPU execution
time as well as any preemption or blocking time. The
task safety is evaluated by the worst case scenario: com-
paring the worst case response time (WCRT) against the
deadline of the task.

Figure[2a]shows the UPPAAL declaration of the above
mentioned parameters for three tasks (number of tasks is
encoded with constant NRTASK) and one resource (num-
ber of resources is encoded with constant NRRES). The
task_t type declaration says that task identifiers are in-
tegers ranging from 1 to NRTASK. Similarly the res_t
type declares resource identifier range from 1 to NR-
RES. Parameters Period, Offset, WCET, BCET, Dead-
line and R are represented with integer arrays, one el-
ement per each task. Figure shows a periodic task
template in UPPAAL timed automata syntax: circles de-
note locations which have names (colored in dark red)
and invariant expressions (magenta), and edges are dec-
orated with guards (green), synchronizations (cyan) and
updates (blue) in that order. The task starts in Starting
location, waits for the initial offset to elapse and then
moves to Idle location. The task arrival is marked by
a transition to a Ready location which signals the CPU
scheduler that it is ready for execution. Then location
Computing corresponds to busy computing while holding
the resource (might as well be blocked if the resource is
not available) and Release is about releasing the resources
and finishing. The periodicity of a task is controlled by
constraints on a local clock p: the task can move from
Idle to Ready only when p==Period[id] and then p is reset
to zero to mark the beginning of a new period. Upon ar-
rival to Ready, other clocks are also reset to zero: c starts
counting the execution time, r measures response time
and ux is used to force the task progress. The invari-
ant on location Ready says that the task execution clock
¢ does not progress (c'==0) and it cannot stay longer
than zero time units (ux<=0) unless it is not running
(ux'==runs[id]). The task also cannot progress to loca-
tion Computing unless the CPU is assigned to it (runs[id]
becomes true). When the CPU is assigned, the task will
be forced to urgently request a resource and move on to
Computing, where the computation time (valuation of c)
increases only when it is marked as running (runs[id] is
true). The task can stay in Computing for at most worst
case execution time (c<=WCET][id]), cannot leave before
best case execution time (c>=BCET][id]), but can be pre-
empted by setting runs[id] to 0. If the resource is not
granted then the resource scheduler is responsible for
blocking the task from using the CPU. If the response
time clock is below deadline (p<=Deadline[id]) then the
task can move on to Release and similarly complete to
Idle. Notice that the task competes for resources in lo-
cations Ready, Computing and Release, and it is forced to
move to Error location if the response time exceeds dead-

const int NRTASK = 3; // # of tasks
const int NRRES = 1; // # of resources
typedef int [1, NRTASK] task_t;
typedef int [1, NRRES] res_t;
const int f=80; // fraction of WCET, in %
int Period[task_t] = { 100, 100, 100 };
int Offset [taskt] = { 20, 0, 10 };
int WCET[task.t] ={ 15, 25, 40 };
int BCET[taskt] = { WCET|[1]«£/100,
WCET|2]xf/100, WCET|3]*£/100 };
int Deadline[task-t] = { 20, 40, 70 };
res.t R[task._t] ={ 1, 1, 1}
int Pltask.t] ={3, 2, 1 }; // priorities
bool runs[task.t] ={0, 0, 0 }; // is running?
bool error = false; // global wvariable

.

(a) Parameter declarations.

@ p==0ffset[id] «m Idle

p=Period[id] ~ \&/ p<=Period[id] && N
Starting c'==0&& r'==0
p<=0ffset[id] &&
¢'==0&&r'==0 runs[id] &&

p==Period[id] r<=Deadling[id]
request[|CPU][id]! release[CPU|][id]!
p=0, c=P, r=0, ux=0 ¢=0,r=0
Ready
c'==0 && ' r>Deadline[id]
ux'==runs[id] error=1 Error
&& ux<=0)
BIGEXP rungfid]
reqyest[R[id]][id]!
Computing
'==runs[id] &&a», r>Deadline[id]
c<=WCETIid] ~ error=1
BIGEXP runslid] &&
c>=BCET[id] &&
r<=[Peadline[id]
relegse[R[id]][id]!
ux=0(, c=0
Release r>Deadline[id
ux'==runslid] ¥ _~" error=1
&& ux<=0 -
BIGEXP

(b) Stopwatch automaton template.

Figure 2: Task model.

line (r>Deadline[id]). The exponential rate BIGEXP is a
large number (10°) used to minimize the (stochastic)
delay when response time is beyond the deadline and
force the simulation to terminate early upon such error.

The CPU scheduler is equipped with a task queue q
sorted by task priorities P[t], where t is a task identi-
fier and task variable holding the currently running task
identifier. Function front(q) always returns the highest
priority task identifier in the q queue. Figure [3a] shows a
CPU template which alternates between Free and Occu-
pied locations.

When a request [CPU][t] arrives, the requesting task t
is put into the queue and the CPU is being rescheduled.

Free <> empty(q)
usage’'==0 O task=0

titask |t
requegt[CPU][t]?
enquepe(q,t),
task=ffont(q
P[front(q)]>P[task] fc\ lempty(q) KCD
preempt[task]! & task=front(q) S
{ggﬁﬁﬁgﬂfgﬁ"se grant[GPU]ltask]! titask t
runs[task]=true release[¢PU][t]?
titask_t runs[t]=false,
©)<_requestiCPUII]? gy dequeuefq, t)
enqueue(q, t)

T Occupied

(a) Preemptive CPU scheduler.

Free @ empty(w)

t:task |t
requegt[id][t]?
enquepe(w,t),
task=ffont(w),
lockin 1(id, task) Unblock

lempty(w) C
request[CPU][front(w)]!

task=front(w),
lockInh(id, task)

titask_t

P[front(q)]<=P[task]

Occupied releaselid][t]?
unlocklinh(id, t),

t:itask_t dequeue(w, t)

request][igl

tid=t, runstid]

enqueue)

boostP(id release[CPU][tid]!

(b) Resource using priority inheritance.

Figure 3: Schedulers for active and passive resources.

This is done either by immediate grant[CPU][task] and
marking that the task is running runs[task]=true, or via
preemption of the currently running task of lower prior-
ity, or simply returning to Occupied if the highest priority
task in the queue is not higher than currently running.
When a release [CPU][t] arrives, the requesting task t is
de-queued, marked as not running (runs[t]=false), and
the CPU is granted to the next highest priority task in
the queue (if the queue is not empty). We use UPPAAL
committed locations (encircled with C) for uninterrupted
(atomic) transitions, thus Free and Occupied are the only
locations where the time can pass. In addition, the sched-
uler is equipped with usage stop-watch: usage is stopped
by invariant usage’==0 at location Free and is running
with default rate of 1 in location Occupied, hence its val-
uation computes the CPU usage.

A resource scheduler shown in Fig. is equipped
with its own waiting queue w. It operates in a simi-
lar way as CPU scheduler, that is by alternating be-
tween Free and Occupied. The main difference is that
a resource cannot be preempted once it is locked.
The locking operations follow the priority inheritance
protocol implemented in functions lockInh(res,task),
unlockInh(res, task). Operation boostP(res,task) raises the

const int NOTASK = 33; // number of tasks
const int NORES = 7; // number of resources
typedef int [0, NOTASK] taskid_t; // task identifier type
typedef int [0, NORES-1] resid_t; // resource identifier type
taskid_t owner[resid_t]; // records the owner of a resource
/** default priority of a task is inverse to its ID: x/
taskid-t defaultP(taskid_t task) {

if (task==0) return 0;

else return NOTASK-task+1;

/*#% Check if the resource is available : */
bool avail (resid_t res) { return (owner[res]==0); }
/*x% Boost the priority of resource owner: %/
void boostP(res_t resource, task_t task) {
if (Plowner[resource]] <= defaultP(task)) {
Plowner[resource]|] = defaultP(task)+1;
sort(q); // sorts the queue by descending priorities

/#*#* Lock based on priority inheritance protocol: */
void lockInh(res_t resource, task-t task) {
owner[resource] = task; // mark as occupied by the task

/#*x% Unlock based on priority inheritance protocol: x/

void unlockInh(res_t resource, task-t task) {
owner[resource] = 0; // mark as released
Pltask] = defaultP(task); // return to default priority

}

Listing 1: Data and function declarations.

priority of the resource res owner to higher level than the
requesting task. Listing [I] shows the listing of UPPAAL
code implementing the priority inheritance protocol.

Similarly to modeling the priority inheritance proto-
col in Fig. BB we model also priority ceiling protocol by
modifying the locking functions.

Herschel. In this paper, we consider a large, industrial
case study: the schedulability analysis of the control soft-
ware of the Herschel satellite. This case study{l} which
seriously challenges the capabilities of UPPAAL, uses the
same basic stop-watch modeling principles as in the Run-
ning Erxample described above. The actual system con-
sists of two satellites (Herschel and Planck) with shared
software architecture split into basic software (BSW)
and application software (ASW) tasks. Each system can
be run in nominal and event operation modes which are
characterized by different sets of tasks and schedulabil-
ity is checked in each mode separately. Table [2[sum-
marizes the number of tasks involved in each satellite
and mode configuration. The software provider Terma
has succeeded in showing the schedulability of all con-
figurations using Alan Burns’ [Bur94] framework except
Herschel in event mode where PrimaryFunctions task
was exceeding its deadline. Interestingly, no deadline vi-
olations were observed during simulation and testing of
the system and thus we chose this configuration to in-
vestigate further by adding more details with a hope of
achieving finer analysis. The Herschel model consists of
32 tasks sharing 6 resources using two protocols: priority
inheritance and priority ceiling. Among these tasks, 24

! mttp://people.cs.aau.dk/~marius/Terma/

Table 2: Herschel-Planck task configurations.

System: Herschel Planck
Mode: | nominal | event | nominal | event
ASW 5 8 5 8
BSW 24 24 19 19
Total: 29 32 24 27

Table 3: System wide resource competition: ASW tasks
(in bold) use priority ceiling and BSW (in plain) use
priority inheritance protocols.

Task \ Resource Icb.R | Sgm_R | PmReq_R | Other_R
MainCycle v

PrimaryFunctions Vv v v

RCSControl v
Obt_P v

StsMon_P v

Sgm_P v

Cmd-P v

SecondaryFuncl v v v
SecondaryFunc?2 v v

Table 4: PrimaryFunctions task behavior.

Primary Functions

- Data processing 20577
Icb_R(LCS: 1200, LC: 1600)
- Guidance 3440

- AttitudeDetermination 3751
Sgm_R(LCS: 121, LC: 1218)
- PerformExtraChecks 42

- SCM controller 3479
PmReq_R(LCS: 1650, LC: 3300)
- Command RWL 2752

are periodic EL while 8 are triggered in a sequence. Ta-
ble []shows a complete matrix of resource sharing among
tasks.

The system was simulated and the task performance
was measured in order to obtain a detailed description
of individual operations. Table [f] shows an example of
a description of task PrimaryFunctions which consists
of a sequence of procedures like Data processing, Guid-
ance etc.. For example, Data processing took 20577us
of processor time in total. During execution, resource
Icb_R was used for LC' = 1600us (locking time) of which
LCS = 1200us (locking time in suspension) the proces-
sor was released due to suspended wait (e.g. task waited
for an on-board device to finish operation). From this
description of tasks we identified five basic operations
needed to encode the task details: LOCK — locks the
specified resource, UNLOCK - unlocks the specified re-
source, COMPUTE - requests CPU and actively uses it
for specified time, SUSPEND — releases CPU for speci-
fied amount of time and END — finishes the task. List-
ing [2| shows the sequence of basic operations for Primary
Functions encoded into a C-like data structure which is

2 In the actual system 16 of them are sporadic, but we model
them as periodic to limit non-determinism.

http://people.cs.aau.dk/~marius/Terma/

const ASWFlow_t PF_f = { // Primary Punctions:
{ LOCK, Icb.R, 0 }, // Data processing
{ COMPUTE, CPU_R, 1600-1200 },// computing with Icb_R
{ SUSPEND, CPU_R, 1200 }, // suspended with Icb-R
{ UNLOCK, Icb_R, 0 },
{ COMPUTE, CPU_R, 20577-(1600-1200) }, // comp. w/o Icb-R
{ COMPUTE, CPU_R, 3440 }, // Guidance
{ LOCK, Sgm.R, 0}, // Attitude determination
{ COMPUTE, CPU_R, 1218-121 }, // computing with Sgm_R
{ SUSPEND, CPU_R, 121 }, J// " suspended with Sgm.R
{ UNLOCK, Sgm_R, 0 }, V7
{ COMPUTE, CPU_R, 3751-(1218-121) },// computing w/o Sgm_R
{ COMPUTE, CPU_R, 42 }, // Perform extra checks
{ LOCK, PmReq_R,0 }, // SCM controller
{ COMPUTE, CPU_R, 3300-1650 },// computing with PmReq-R
{ SUSPEND, CPU_R, 1650 }, // suspended with PmReq-R
{ UNLOCK, PmReq-R, 0 },
{ COMPUTE, CPU_R, 3479-(3300-1650) },// comp. w/o PmReq_R
{ COMPUTE, CPU_R, 2752 }, // Command RWL
{ END, CPU.R, 0} /) finished

h
N

Listing 2: Encoded PrimaryFunctions task.

being interpreted by an automaton template. The model
includes three task templates with small variations on
how the task is started and how resources are shared:
BSW tasks are started periodically and resources are
locked using priority inheritance, MainCycle and ASW
(shown in Fig. [4) use the priority ceiling protocol where
MainCycle is released periodically and ASW tasks are
triggered by MainCycle.

The task templates follow the same scheme as in Fig-
ure except that there are more locations responsible
for the same abstract state and the resource automata
are merged into the task. For example, the task ASW
template from Fig. [f] has location Idle to represent state
Idle, Ready and WaitForCPU represent Ready, Compute,
tryLock, Suspended, Computing, Next and Release perform
the basic operations and correspond to Running, and
location Blocked corresponds to abstract state Blocked.
The edges decorated with both synchronizations enqueue!
and enqueue? are actually two almost identical edges with
overlapping layout where the difference is that one edge
is with output and the other with input broadcast syn-
chronization. Having both equivalent edges with broad-
cast input and output ensures that all ready tasks are
going to be released at once and the scheduler will pick
the highest priority task at once without intermediate
rescheduling. This trick effectively provides partial order
reduction when time does not elapse, i.e. when several
tasks are released at the very same time, and thus the
overall behavior does not change (the scheduler would
eventually pick the highest priority task and preempt
the rest anyway), but a great number of intermediate
states are avoided.

3 Symbolic Safety Analysis

In this section we apply the classical zone-based symbolic
reachability engine of UPPAAL to verify schedulability.
As we are considering systems with preemptive schedul-
ing our models will be using stop-watches as described in
the framework of [DILST0]. With the addition of having

non-deterministic computation times — i.e. computation

Idle start?
— |
@ {;\J/b[ld]zov @
CRT[id]=0, readylid]=1

'L‘Q[5£j‘ijj &\%IC[T‘f/IOO
job[id]>= L 2!
&& x<=Deadline Zﬁiﬁ Lu‘;
release[CPU_R]! add(tpskqueue, id)
ic=0, jobid]=0, I '
. chTj[id]zo, ready[id]=0
x>Deadline

error=1 E}\ END::ﬂow[\r].cmd} Ready
elease schedule[id]? BIGEXP
job[id]<=WCET
runs[id] &§{ BIGEXP
D==flow[ic].cmd &&
x<Deadlin

enqueue!
. enqueue? .
WaitForCPU add(taskqueue, id)

BIGEXP

END!=flow[ic].cmd
schiedule[id]?

UNLOCK==flow[ic].cmd Compute

. x>Deadlinggm _release[flow[ic].res]! fc\ |
error=1 unlockCeil(flow[icl.res, id),

Error ic++, sub=0

release[flow[ic].ref]

schedule[id]? blocked[id]=:

lavail(flow[ic].res)
LOCK== (@) clease[CPU R]! .
flow[icT.cmd =/ blocked[id]=1

tryLock Blocked

Next A SUSPEND==

kub'==runs{id] wneld &G L flow(ifl.cmd avail(flowlicl.res) ~ BICEXP

(& sub<=0 x<=Deadline coupute—l- releajelCPU_R]! lockCell(flowlicl.res, id),
BIGEXP b=0

susp[|d]=true, iC++, 3u

ﬂowi\é] cm cub

runslid] && Suspended
sub>=flow[ic].delay*f/100 Sub<=
. O flow[ic].delay
ic++, sub=0 Computing subd=flowlic].dela
sub'==runs[id] && el -aelay
sub<=flow[ic].delay €nayeue
engyieue?

add(taskqueue, id), susplid]=false, ic++, sub=0 x>Deadling

error=1j

Figure 4: ASW task template executing a list of opera-
tions.

Table 5: Summary of schedulability of the Running Fx-
ample example concluded using symbolic and statistical
MC for varying sizes of computation time intervals.

f=E8%EE || 0-79% 80-83% 84-100%
Symbolic MC: H maybe maybe Safe
Statistical MC: H Unsafe maybe maybe

intervals — as well as dependencies between task due to
resources, schedulability of the resulting task model is
undecidable as a consequence of the results of [FKPYQT].
In our case, we extend the symbolic techniques using
zones to work on stop-watches, the price being that
the technique is now an over-approximation [CL0O0]. Our
symbolic analysis is still useful to assert schedulability
since it is a safety property. For cases where a system
may not be schedulable we use our complementary sta-
tistical technique described in the next section.

Running FExample As detailed in Section [2| our running
example consists of three tasks with WCET times be-
ing 15,25,40, deadlines 20,40,70 and with one single
resource shared by the three tasks. The query used in
UPPAAL to check for schedulability is:

A[] ‘tlerror

Here error is a Boolean being set whenever a task misses
its deadline (see Fig. . We are interested here in the
results of the symbolic analysis shown in Table [5} For
the execution time picked non-deterministically between
84% and 100%, our set of tasks is schedulable. However,
if the execution time is less, it may be non-schedulable.
The classical analysis focused on worst-case execution
time does not apply here (undecidable as mentioned)
and a shorter computation time for one task may cause
another task to miss a deadline. For these cases, UPPAAL
returns symbolic counter-examples that may or may not
be realizable. Here task T(1) may miss its deadline. For

this simplified example, all the checks take less than 0.1s
on a Core i7 2600.

In addition to schedulability, we may obtain upper
bounds on the WCRTSs but using the sup query of Up-
PAAL. It is a special query that makes UPPAAL generate
the whole state-space and check the upper bounds of
some clocks. We check the WCRTSs of the three tasks
with the query

sup: T(1).r, T(2).r, T(3).r

where T(i) .r is a response time clock that starts grow-
ing when the task T(i) is released. The results fall into
two classes: for computation intervals [f-WCET, WCET]
with f > 84% the WCRTS are 20, 40, 70 and for f < 84%
the WCRTSs are 55,40, 70, indicating the possibility of
deadline violation for task T(1).

Finally, using an additional stop-watch usage, which
is only stopped when the CPU is free (and reset for each
2000 time-units) the query sup: usage returns the value
1600, providing 80% (= 1600/2000) as an upper bound
of the CPU utilization.

More Precise Results with Polyhedra. The symbolic
techniques used in UPPAAL rely on zones and they gen-
erate symbolic traces that may or may not be realizable
when stop-watches are used. However, given such a trace,
we use the APron polyhedra library [JM09] to re-execute
the trace but using a polyhedra as the symbolic state in-
stead of a zone. It is a matter of implementing the sym-
bolic operations on a polyhedra instead of a zone. The
result is that this technique may confirm that a trace is
indeed realizable. Failure to confirm means that we still
do not know if the state is reachable or not. What Up-
PAAL does in this case is to resume the search in hope
to find another trace that can be confirmed.

The new behavior of UPPAAL is as follows: When a
trace is requested with the polyhedra option, then the
maybe verdict is changed into satisfied whenever the
error state can be reached with the generated output
traceEl

When run on the simple example, all the traces can
be confirmed on the first error found.

Herschel. Applying in a similar manner symbolic MC
to the Herschel case seriously challenges the engine of
UprPAAL, due to the the explosion in the size of the
symbolic state-space with the increase of the size of
the computation time intervals. In fact, to avoid the
analysis to run out of memory we have applied the
so-called sweep-line method [CKMOI]. The sweep-line
method relies on a progress measure to release explored
states and thus use verification memory more efficiently.
Cyclic systems like ours do not have a notion of progress
as they are supposed to run forever, nonetheless this
heuristic proved to be crucial in managing the verifica-
tion memory. For Herschel in particular, we exploit the

3 This option is available since version 4.1.16 on Linux.

lobalTime==cycle*CYCL

lobalTime==cycle*CYCL
& cycle==CYCLELIMIT

& cycle<CYCLELIMIT

cycle=1, gIobaITlme 0, cycle++
usedTlme , idleTime=0,
WERTIOT=0 @

TIME<=LIMIT &&

lobalTime<=c cIe*CYCLE &&
orall(i: taskid_t {N [iI'==runs[i] &&
forall(i: taskid”t) WCRT[i]'==ready[i]

const int CYCLE = 250000; // one cycle duration

const int CYCLELIMIT = 2; // partition into two cycles
const int LIMIT = 16%250000; // explore up to 16 cycles
int cycle = 1;

progress { cycle; }

Figure 5: Progress measure based on cycles.

idea that most of the tasks settle down to Idle state in
250ms periods (see period specification in Table [7]) and
thus introduce a progress measure based on 250ms peri-
ods. Figure |5| shows an auxiliary automaton responsible
for maintaining execution times of tasks, whose edges
include periodic cycle increments. In our preliminary
experiments we also limit our exploration with global
invariant TIME<=LIMIT like in bounded model check-
ing [BCCZ99], but otherwise the cycle variable traverses
through all integers until CYCLELIMIT and then restarts
from 1 again, thus allowing to explore an entire state
space, while storing only a fraction of the state space
mostly with the same (largest) progress number. The
larger CYCLELIMIT the finer partitioning of the state
space and hence larger memory savings, but memory
savings come at the expense of performance: UPPAAL
may need to re-explore equivalent or similar states when
the progress measure decreases (or drops to 1 in our
case). The analysis can be made more precise by using
smaller CYCLE values, which effectively splits the sym-
bolic states into smaller zones at the expense of exploring
more symbolic states.

Table [6] provides a summary of the effort spent in
verifying the model. We started verification with model-
time limited instances to get an impression of resources
need to verify the model and once we gained enough
confidence we increased the limit, thus the results are
sorted by the model-time limit. The deterministic case of
f = 100% is relatively cheap and even the unlimited case
is verifiable within three hours. An important remark
here is that the verification time correlates linearly with
the limit and the unlimited case seems to correlate with
156 cycles, which is the least common multiple of all task
periods. We managed to verify down to f = 90% where
the verification time increased drastically to more than
6 days. Finally, for the case f = 86% the model-checker
indicates a (possibly spurious) deadline violation after
a little bit more than 4 days, which means that such
a configuration is possibly unsafe. We also attempted
BCET values in between 86 and 90% but the tool ran
out of memory, hence no data available. The results from

Table 6: Verification statistics for different task execu-
tion time windows and exploration limits: the percentage
denotes difference between WCET and BCET, limit is
in terms of 250ms cycles (co stands for no limit, i.e. full
exploration), states in millions, memory in MB, time in
hours:minutes:seconds.

limit f =100% f=95%
cycle states mem time states mem time
1 0.001 51.2 1.47 0.5 83.0 15:03
2 0.003 53.7 2.45 0.8 96.8 27:00
4 0.005 54.5 4.62 1.5 97.2 48:02
8 0.010 54.7 8.48 2.8 97.8 1:28:45
16 0.020 55.3 16.11 5.4 112.0 2:45:52
S 0.196 58.8 2:39.64 52.7 553.9 27:05:07
limit f=90% f=86%
cycle states mem time states mem time
1 1.5 124.1 1:22:43 3.3 186.9 6:39:47
2 2.4 139.7 2:09:15 5.3 198.7 9:14:59
4 4.4 138.3 3:48:40 9.2 274.6 14:12:57
8 9.1 156.5 8:38:42 18.2 364.6 28:35:32
16 17.8 176.0 16:42:05 35.4 520.4 44:06:57
00 181.9 1682.2 147:23:25 pos.unsafe 99:07:56

Table [0] also shows that it takes more effort to prove
schedulability when BCET values are lower, i.e. there
is higher degree of non-determinism (larger state space)
and hence the system is much less predictable if BCET
values are not available.

Since symbolic MC proves that f = 90% case is
safe, we also computed WCRT upper bounds. Table [7]
compares the UPPAAL bounds on WCRTs with the
bounds from classical response time analysis performed
by Terma A/S. In particular Terma A/S found that
PrimaryF task (#21) might violate its deadline even
though this violation has never been observed neither
in simulations nor in system deployment, whereas the
bound provided by UPPAAL is still within the deadline,
thus (re)confirming schedulability.

As the next section shows, it is difficult to hit er-
ror states with statistical model-checking. With model-
checking, the verification time can take several days and
depends on the number of cycles. We tried to confirm
the error traces found by UPPAAL with polyhedra but
we have not succeeded yet. What we did was to let Up-
PAAL generate a trace, try to confirm, resume the search
in case of failure and repeat that every time an error
state is hit. We stopped after several thousands of paths
that could not be confirmed® This does not mean that
there is no trace. In fact our SMC technique finds such
traces.

4 Statistical Analysis

In the previous section, we observed that symbolic MC
can be used to conclude schedulability, but not to dis-
prove it. This is reflected in the first line of Table[5] where

4 This procedure decreases drastically the throughput of the ex-
ploration of the state space.

Table 7: Specification and worst-case response-times of
individual tasks.

Specification
ID Task Period WCET Deadline
1 | RTEMS_RTC 10.000 0.013 1.000
2 | AswSync_SyncPulselsr 250.000 0.070 1.000
3 Hk_Samplerlsr 125.000 0.070 1.000
4 SwCyc_CycStartIsr 250.000 0.200 1.000
5 | SwCyc_CycEndlIsr 250.000 0.100 1.000
6 | Rt1553_Isr 15.625 0.070 1.000
7 | Bcl1553 Isr 20.000 0.070 1.000
8 | Spw.Isr 39.000 0.070 2.000
9 | Obdh.Isr 250.000 0.070 2.000
10 | RtSdb_P_1 15.625 0.150 15.625
11 | RtSdb_P_2 125.000 0.400 15.625
12 | RtSdb_P_3 250.000 0.170 15.625
13 | (no task, this ID is reserved for priority ceiling)
14 | FdirEvents 250.000 5.000 230.220
15 NominalEvents_1 250.000 0.720 230.220
16 | MainCycle 250.000 0.400 230.220
17 | HkSampler_P_2 125.000 0.500 62.500
18 | HkSampler_P_1 250.000 6.000 62.500
19 | Acb_P 250.000 6.000 50.000
20 | IoCyc.P 250.000 3.000 50.000
21 | PrimaryF 250.000 34.050 59.600
22 | RCSControlF 250.000 4.070 239.600
23 | Obt_P 1000.000 1.100 100.000
24 | Hk.P 250.000 2.750 250.000
25 | StsMon_P 250.000 3.300 125.000
26 | TmGen_P 250.000 4.860 250.000
27 | Sgm_P 250.000 4.020 250.000
28 TcRouter_P 250.000 0.500 250.000
29 | Cmd_P 250.000 14.000 250.000
30 | NominalEvents_2 250.000 1.780 230.220
31 | SecondaryF_1 250.000 20.960 189.600
32 | SecondaryF_2 250.000 39.690 230.220
33 | Bkgnd_P 250.000 0.200 250.000
WCRT

1D Terma f=100% f =95% f=90%

1 0.050 0.013 0.013 0.013

2 0.120 0.083 0.083 0.083

3 0.120 0.070 0.070 0.070

4 0.320 0.103 0.103 0.103

5 0.220 0.113 0.113 0.113

6 0.290 0.173 0.173 0.173

7 0.360 0.243 0.243 0.243

8 0.430 0.313 0.313 0.313

9 0.500 0.383 0.383 0.383

10 4.330 0.533 0.533 0.533

11 4.870 0.933 0.933 0.933

12 5.110 1.103 1.103 1.103

13 (no task, this ID is reserved for priority ceiling)

14 7.180 5.553 5.553 5.553

15 7.900 6.273 6.273 6.273

16 8.370 6.273 6.273 6.273

17 11.960 5.380 7.350 8.153

18 18.460 11.615 13.653 14.153

19 24.680 6.473 6.473 6.473

20 27.820 9.473 9.473 9.473

21 65.47 54.115 56.382 58.586

22 76.040 53.994 56.943 58.095

23 74.720 2.503 2.513 2.523

24 6.800 4.953 4.963 4.973

25 85.050 17.863 27.935 28.086

26 77.650 9.813 9.823 9.833

27 18.680 14.796 14.880 14.973

28 19.310 11.896 11.906 14.442

29 | 114.920 94.346 99.607 101.563

30 | 102.760 65.177 69.612 72.235

31 141.550 110.666 114.921 122.140

32 | 204.050 154.556 162.177 165.103

33 | 154.090 15.046 139.712 147.160

there is a wide range of values of f for which symbolic
model-checking cannot conclude due to the potential
presence of spurious counterexamples. In this section,
we introduce statistical model-checking (SMC), a tech-
nique that we consider here to be the dual of symbolic
model-checking. Namely, SMC can be used to disprove
schedulability, but not to prove it.

Concretely, SMC is a simulation-based approach
whose core objective is to estimate the probability for
a system to satisfy a property by simulating and observ-
ing some of its executions, and then apply statistical
algorithms to obtain the result. SMC is parameterized
by two parameters: a confidence interval size on the es-
timate of the probability and a confidence level on the
probability that the answer returned is correct. In terms
of schedulability, SMC will thus be useful to generate
concrete counterexample but cannot be used to conclude
schedulability.

Several SMC algorithms have recently been imple-
mented in UPPAAL [DLL™11b|. In this section, we will
show how this implementation can be used not only to
prove schedulability, but also to observe and reason on
the execution of tasks. The latter will be done by ex-
ploiting the simulation engine and various information
displayed by the GUI of the tool.

SMC relies on the assumption that the dynam-
ics of the system is entirely stochastic. In [DLL™11al
DLLT11b|, we have proposed a refined stochastic se-
mantics for timed automata that associates probability
distributions to both the time-delays spent in a given
location as well as branching transitions. In this seman-
tics timed automata components repeatedly race against
each other, i.e. they independently and stochastically de-
cide on their own how much to delay before outputting,
with the “winner” being the component that chooses
the minimum delay. Our stochastic schedulability model
exploits the semantics of [DLL™11a/DLL™11b| as it as-
sumes the execution time of the task to be picked uni-
formly in the interval [f - WCET;, WCET;].

In the rest of this section, we shall see how the SMC
approach can be used to generate witness traces when
concluding that the system is not schedulable with a
probability greater than 0. We will also illustrate how
the SMC engine of UPPAAL can evaluate the probabil-
ity to reach a state violating a deadline. Finally, and
not to be underestimated, we will show how the GUI of
the UPPAAL tool can be exploited to give quantitative
feedback to the user on, e.g., blocking time, CPU usage,
distribution of response time.

Running Example. Table [§ shows the query used to
evaluate the probability of violating a deadline for runs
bounded by 200 time units and the results for different
values of f. We check only for cases when the symbolic
model-checker reports that deadlines may be violated
to generate a witness with SMC. The SMC technique
gives results with certain levels of confidence and pre-

Table 8: Probability of error estimation with 99% level
of confidence: Pr [<=200] (<> error).

50% 70% 79% 80%
[0.847,0.858] [0.604,0.615] [0.301,0.312] [0,0.005]
i i i
6.0/ -t o] R S
24.0| Edm
2 [E=hp
229, : ! . : ! vt ! =7
00 34 68 102 136 170 204 238 272 306

311
= BI=h
>2.0 - - =713

o 26 52 78 104 130 156 182 208 234
(b) Task 1 failed using f = 79.

Figure 6: Visualization of runs as a Gantt chart. The
chart shows an encoding of the state with different
weights corresponding to steps of different heights.

cision, i.e., the actual result is an interval. However, if
the lower bound of the interval is greater than zero, this
guarantees that the checker did find at least one witness.
The case f = 80% is interesting because it seems to be
a spurious result from the symbolic model-checker. In
fact we can use cheaper hypothesis testing to show that
the upper bound for the probability of finding an error
is very low: the model-checker accepts the hypothesis
Pr[<=200](<> error)<= 0.00001 with 99% confidence
just in 25s, hence the error is very rare if possible at
all. As summarized on line 2 of Table [l SMC allows to
confirm non-schedulability for f < 79% where the lower
bound for the probability of finding an error is strictly
greater than zero, i.e. there exist at least one concrete
simulation run leading to an error.

We can visualize traces (and inspect witnesses of
deadline violation) by asking the checker to generate

random simulation runs and visualize the value of a col-
lection of expressions as a function of time in a Gantt
chart. In addition, we can filter these runs and only re-
tain those that reach some state, here the error state.
This is done with the following query producing the plot
in Fig. [6H}
simulate 1000 [<=300] {
(T(1) .Ready+T (1) .Computing+T (1) .Release+runs[1]-2*T(1) .Error)+6,
(T(2) .Ready+T(2) .Computing+T(2) .Release+runs[2]-2+T(2) .Error)+3,

(T(3) .Ready+T(3) .Computing+T(3) .Release+runs [3]-2+T(3) .Error)+0
} : 1 : error

If the filtering (“:1:error”) is omitted, the plot con-
tains all the runs, and for clarity just a single of them
is displayed in Fig. [6a] As a result the plot encodes the
task states (idle, ready, running or error) in the level of
the curve. For example, Fig [6a] shows that T2 becomes
ready and running starting from 0 time. At 10 time units

e
=Y
@
&

0.033

0.024

o
o
N
N

0.012 0.011

ol
0 10 20 30 40 5
max: Task[1].r

probability density
probability density
robability density

13 26 39 52 65
max: Task[3].r

(c) Task T3.

S

(a) Task T1.

(b) Task T2.

Figure 7: Response time distributions for f = 0% show
that lowest priority task T3 is almost undisturbed, while
T1 and T2 timings seems to be split into two parts im-
plying that they are blocked and delayed by at least one
task, moreover T1 is far overdue past deadline at 20.

task T3 becomes ready, but is not running. Then at 20
time units task T1 becomes ready and becomes running
by preempting T2 but then it immediately gives up the
running status (due to resource blocking) and resumes
by preemption when T2 releases the resource. At this
point T2 is not finished yet and will be able to finish
only when T1 finishes and releases the CPU, hence there
is a small spike just before going to the idle state. The
lowest priority task T3 has a chance to run and finish
only when both T1 and T2 are done. Figure [6D] is in-
terpreted similarly, where task T1 violates its deadline
because T3 managed to get the resource before T1 and
thus T1 was blocked from finishing.

More insight on the behavior of the tasks is gained
by estimating expected response times (maximums over
a single run) using the queries:

E[<=200; 50000] (max: T(1).r)
E[<=200; 50000] (max: T(2).r)
E[<=200; 50000] (max: T(3).r)

The result is that the response time averages respec-
tively: 16.96, 36.96 and 63.65 time units. In addition,
the tool provides the probability densities over the max-
imum response times shown in Fig.[7} The plots show the
effect of priority inversion on the higher priority tasks
hindered by the lower priority task T3.

The response of T1 goes beyond the deadline for
f = 0%, thus we evaluate the shapes of response time
distributions for various f values in Fig. [§] Surprisingly
there is a sharp contrast between f = 79% (unsafe for
sure) and f = 80% which does not seem to exhibit the
error and responds within 20 time units. This worst re-
sponse time is more optimistic than the case f = 83%
from symbolic analysis, which suggests that the symbolic
analysis most probably is not exact for f € [80, 83]. Fig-
ureis an intermediate result between f = 0% (Fig.
and f = 79% where the two seemingly normal “hills” are
wide enough to meet each other, thus Fig. [7a]is the re-
sult of two “hills”: one from safe responses and the other
slipped beyond a safety threshold but they are overlap-
ping so tightly that this fact is hardly evident in Fig.

10

0.15 027

o

>
o
@

g
I
2
probability density
o
2
2

probability density
probability density

o
%=

8 19 30 41 52
max: Task[1].r

(a) 50% (not safe). (b) 79% (not safe). (c) 80% (seem OK).

19 27 35 43 51
max: Task[1].r

6.1 19.9
max: Task[1].r

Figure 8: Response time distributions for task T1 show
probability of unsafe cases (response times beyond 20)
shrink and disappear when tweaking f from unsafe 50%
to safe 80%, meaning that the system might be safe pro-
vided T1 is not faster than 80% of its WCET.

Table 9: Results of Herschel statistical model-checking.

Limit f Total Error traces Earliest Error [Verification
cycles % runs, # # Prob [cycle offset time
1 0 105967|1928 0.018194 0 79600.0 1:58:06

1 50 105967 753 0.007106 0 79600.0 2:00:52

1 60 105967 13 0.000123 0 79778.3 2:01:18

1 62 1036757 34 0.000033 0 79616.4) 19:52:22

160 63 1060| 177 0.166981 0 81531.6 2:47:03
160 64 1060] 118 0.111321 1 79803.0 2:55:13
160 65 738 57 0.077236 3 79648.0 2:06:55
160 66 1060] 60 0.056604 2 82504.0 2:62:44
160 67 1060 26 0.024528 1 79789.0 2:64:20
160 68 1060 3 0.002830, 67 81000.0 2:67:08
640 69 1060 8 0.007547 114 80000.0 12:23:00
640 70 1060 3 0.002830 6 88070.0 12:30:49
1280 71 1060 2 0.001887 458 80000.0| 25:19:35
640 71 7] 1 21 80000 5:15
640 72 951 1 521 80000 11:04:26
1280 73 1734 1 1027 85000 40:46:05

Herschel. We apply this methodology to our more com-
plex Herschel case-study to confirm deadline violations
and to study performance.

Table [0]shows the results when we vary the execution
times within the interval [f- WCET, WCET] and use the
following query: Pr[<=160%250000](<> error). The table
shows the probabilities in function of this factor f. We
varied significance («) and probability precision () sta-
tistical parameters to achieve different number of runs.
Since the model is complicated and search for counter
examples is time consuming, the experiment resembles
a manual search for the boundary while running multiple
queries in parallel with different settings of statistical pa-
rameters and relaunching queries with more demanding
settings if no error is found. The obtained counter exam-
ples are eventually sorted by the model parameter f. At
first we limited the search to just one cycle of 250ms, but
then at the point of f = 62% the errors are rarely found
even with high confidence and many runs. Then we in-
creased the limit which increased our chances of finding
the errors, we were lucky to find some errors as early as
in the first cycle. Most of the errors are found quite early
(cases where f < 68%), but for smaller time-windows it
is much harder to find and the few found ones are quite
far in the run. Eventually the search took more than a
day to find only a few error instances for f = 71%, hence

value

0 1.2E4 2.4E4 3.6E4 4.8E4 6E4 7.2E4 8.4E4
time

(a) A successful run with f = 90 (PrimaryF at level 63).

6w It
PR SR
12 --mmmmmmm e ! it it e et i 130
2 QWFI—X—I‘] =122
2 g EdT21
¥ EdT16
83 []T115
1 HT1i4
0
0 1.3E4 2.6E4 3.9E4 5.2E4 6.5E4 7.8E4

time

(b) Selected processes of a simulation run with f = 50%,
where PrimaryF (task T21 at level 9) violates its deadline.

Figure 9: The first 85ms of Herschel model simulation
run as displayed in UppAAL SMC.

we stopped here. The new UPPAAL releases (since ver-
sion 4.1.15) allow queries which stop exploration when
a number of successful runs have been found. For ex-
ample, the following would try 1000 runs, stop when
the first error trace is found, and display trajectories of
some diagnostic variables: simulate 1000 [<=640%250000]
{runs[21], ready[21]}:1: error. The last three lines in Ta-
ble [9] show some hard to find traces appended to older
data (obtained without predicate in simulate query be-
fore UPPAAL version 4.1.15).

Similarly to Fig. [} response times for the most
stressed task PrimaryF are estimated by generating 2000
probabilistic runs limited to 156 cycles for the safe case
of f = 90%. The vast majority (1787) of instances re-
sponded before 51093.3 and the rest is distributed about
evenly, which means that most runs have a good safe
margin, and only rarely it is disturbed. The worst found
response time was of 52851.2 which is significantly lower
than bound of 58586.0 found by symbolic MC in Table[7}
The computation for this model took 17.6 hours.

Figure [9a] shows an overview chart of all 32 tasks
interacting during the first 85ms. Each task can be
identified by its base level 3*ID, thus PrimaryF with
ID=21 is at 63. PrimaryF starts with an offset of 20ms
and it has to finish before a deadline of 59.6ms. Un-
der safe conditions of f = 90% PrimaryF finishes before
70500us (Fig. @ but with f = 50% it fails at 79828.3us
(Fig. . It seems that the overdue of T21 is mostly
caused by T22 and T30 lower priority tasks which in turn
are delayed by high priority T14 task.

5 Conclusion

In this paper, we have applied both symbolic MC and
statistical MC to schedulability analysis. In particular,
we have demonstrated that the complementary qualities
of the two methods allow to conclusively confirm as well
as disprove schedulability for a wide range of cases. This
is an impressive result as the problem is known to be
undecidable.

The experiments show that additional information
such as BCET values is useful in reducing the complexity
of symbolic model-checking while proving schedulability.
Another important but counter-intuitive result is that
the system can be schedulable with larger BCET values
while non-schedulability has been shown for the same
system except with smaller BCET values (or zero as in
response time analysis). This means that developers have
more possibilities to tweak the task model by changing
priorities, resource sharing protocols, putting more task
details as well as making the system more predictable by
carefully padding execution times closer to WCET and
hence guaranteeing schedulability.

In addition we have illustrated how the user can ben-
efit from the UPPAAL features in plotting, observing and
reasoning about task executions, and hence improving
the modeling process. We also believe that the combina-
tion of symbolic MC and statistical MC will prove highly
useful in analyzing systems with mixed critically, i.e. sys-
tems containing tasks with hard timing constraints as
well as soft, where the timing constraints are permitted
to be violated occasionally. In addition, we have pre-
sented an alternative symbolic technique using polyhe-
dra that can confirm that some error trace are indeed
realizable.

References

BACC'98. Hanene Ben-Abdallah, Jin-Young Choi, Dun-
can Clarke, Young Si Kim, Insup Lee, and
Hong-Liang Xie. A process algebraic approach
to the schedulability analysis of real-time sys-
tems. Real-Time Systems, 15:189-219, 1998.
10.1023/A:1008047130023.

Armin Biere, Alessandro Cimatti, Edmund
Clarke, and Yunshan Zhu. Symbolic model
checking without BDDs. In W.Rance Cleave-
land, editor, Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 1579
of Lecture Notes in Computer Science, pages
193-207. Springer Berlin Heidelberg, 1999.
Peter E. Bulychev, Alexandre David, Kim Guld-
strand Larsen, Axel Legay, Marius Mikucionis,
and Danny Bggsted Poulsen. Checking and dis-
tributing statistical model checking. In NASA
Formal Methods, volume 7226 of Lecture Notes
in Computer Science, pages 449-463. Springer,
2012.

BCCZ99.

BDL*12.

BHK99.

BHK ™" 04.

BHMO9.

Bur94.

CKMO1.

CL00.

DILS10.

DLL™11a.

DLL*11b.

DLLM12.

FKPYO07.

HLMPO04.

Steven Bradley, William Henderson, and David
Kendall. Using timed automata for response
time analysis of distributed real-time systems. In
Systems, in 24th IFAC/IFIP Workshop on Real-
Time Programming WRTP 99, pages 143-148,
1999.

H.C. Bohnenkamp, H. Hermanns, R. Klaren,
A. Mader, and Y.S. Usenko. Synthesis and
stochastic assessment of schedules for lacquer
production. In Quantitative Evaluation of Sys-
tems, 2004. QEST 2004. Proceedings. First In-
ternational Conference on the, pages 28 — 37,
sept. 2004.

Aske Brekling, Michael R. Hansen, and Jan
Madsen. MoVES — a framework for modelling
and verifying embedded systems. In Microelec-
tronics (ICM), 2009 International Conference
on, pages 149-152, dec. 2009.

Alan Burns. Principles of Real-Time Sys-
tems, chapter Preemptive priority based schedul-
ing: An appropriate engineering approach, page
225-248. Prentice Hall, 1994.

Sgren Christensen, Lars Kristensen, and Thomas
Mailund. A Sweep-Line method for state
space exploration. In Tools and Algorithms
for the Construction and Analysis of Systems,
TACAS 2001, pages 450-464, London, UK, 2001.
Springer-Verlag.

Franck Cassez and Kim Guldstrand Larsen. The
impressive power of stopwatches. In Catuscia
Palamidessi, editor, CONCUR, volume 1877 of
Lecture Notes in Computer Science, pages 138
152. Springer, 2000.

Alexandre David, Jacob Illum, Kim G. Larsen,
and Arne Skou. Model-based design for embed-
ded systems. In Gabriela Nicolescu and Pieter J.
Mosterman, editors, Model-Based Design for
Embedded Systems, chapter Model-Based Frame-
work for Schedulability Analysis Using UPPAAL
4.1, pages 93-119. CRC Press, 2010.

Alexandre David, Kim G. Larsen, Axel Legay,
Marius Mikuéionis, Danny Bggsted Poulsen,
Jonas Van Vliet, and Zheng Wang. Statisti-
cal model checking for networks of priced timed
automata. In FORMATS, LNCS, pages 80-96.
Springer, 2011.

Alexandre David, Kim G. Larsen, Axel Legay,
Zheng Wang, and Marius Mikucionis. Time
for real statistical model-checking: Statistical
model-checking for real-time systems. In CAV,
LNCS. Springer, 2011.

Alexandre David, Kim Guldstrand Larsen, Axel
Legay, and Marius Mikuéionis. Schedulability of
Herschel-Planck revisited using statistical model
checking. In ISoLA (2), volume 7610 of LNCS,
pages 293-307. Springer, 2012.

Elena Fersman, Pavel Krcal, Paul Pettersson,
and Wang Yi. Task automata: Schedulability,
decidability and undecidability. Information and
Computation, 205(8):1149 — 1172, 2007.
Thomas Hérault, Richard Lassaigne, Frédéric
Magniette, and Sylvain Peyronnet. Approxi-

JMO09.

JP8&6.

KZH'009.

LDB10.

MLRT10.

RPO09.

SLCO6.

SVA04.

YS02.

YS06.

12

mate probabilistic model checking. In Bern-
hard Steffen and Giorgio Levi, editors, Verifi-
cation, Model Checking, and Abstract Interpre-
tation, volume 2937 of Lecture Notes in Com-
puter Science, pages 73-84. Springer Berlin Hei-
delberg, 2004.

Bertrand Jeannet and Antoine Miné. Apron:
A library of numerical abstract domains for
static analysis. In Ahmed Bouajjani and Oded
Maler, editors, Computer Aided Verification, vol-
ume 5643 of Lecture Notes in Computer Science,
pages 661-667. Springer Berlin Heidelberg, 2009.
Mathai Joseph and Paritosh K. Pandya. Finding
response times in a real-time system. Comput.
J., 29(5):390-395, 1986.

J-Pieter Katoen, 1. S. Zapreev, E. Moritz Hahn,
H. Hermanns, and D. N. Jansen. The ins and
outs of the probabilistic model checker MRMC.
In Proc. of 6th Int. Conference on the Quantita-
tive Evaluation of Systems (QEST), pages 167—
176. IEEE Computer Society, 2009.

Axel Legay, Benoit Delahaye, and Saddek Ben-
salem. Statistical model checking: An overview.
In RV, volume 6418 of Lecture Notes in Com-
puter Science, pages 122—135. Springer, 2010.
Marius Mikucionis, Kim Guldstrand Larsen, Ja-
cob Illum Rasmussen, Brian Nielsen, Arne Skou,
Steen Ulrik Palm, Jan Storbank Pedersen, and
Poul Hougaard. Schedulability analysis using
Uppaal: Herschel-Planck case study. In Tiziana
Margaria, editor, ISoLA 2010 — jth Interna-
tional Symposium On Leveraging Applications
of Formal Methods, Verification and Validation,
volume Lecture Notes in Computer Science.
Springer, October 2010.

Diana Rabih and Nihal Pekergin. Statistical
model checking using perfect simulation. In
Zhiming Liu and Anders P. Ravn, editors, Auto-
mated Technology for Verification and Analysis,
volume 5799 of Lecture Notes in Computer Sci-
ence, pages 120-134. Springer Berlin Heidelberg,
20009.

Oleg Sokolsky, Insup Lee, and Duncan Clarke.
Schedulability analysis of AADL models. In
Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, page 8
pp-, april 2006.

Koushik Sen, Mahesh Viswanathan, and Gul
Agha. Statistical model checking of black-box
probabilistic systems. In CAV, LNCS 3114,
pages 202—215. Springer, 2004.

Hakan L.S. Younes and Reid G. Simmons. Prob-
abilistic verification of discrete event systems
using acceptance sampling. In Ed Brinksma
and Kim Guldstrand Larsen, editors, Computer
Aided Verification, volume 2404 of Lecture Notes
in Computer Science, pages 223-235. Springer
Berlin Heidelberg, 2002.

Hakan L. S. Younes and Reid G. Simmons. Sta-
tistical probabilistic model checking with a fo-
cus on time-bounded properties. Inf. Comput.,
204(9):1368-1409, 2006.

	Introduction
	Modeling
	Symbolic Safety Analysis
	Statistical Analysis
	Conclusion

